UDC 517.5

H. Bor (Ankara, Turkey)

КВАЗІСТЕПЕНЕВОГО ЗРОСТАННЯ

A NEW APPLICATION OF GENERALIZED QUASI-POWER INCREASING SEQUENCES HOBE ЗАСТОСУВАННЯ УЗАГАЛЬНЕНИХ ПОСЛІДОВНОСТЕЙ

We prove a theorem dealing with $|\bar{N}, p_n, \theta_n|_k$ -summability using a new general class of power increasing sequences instead of a quasi- η -power increasing sequence. This theorem also includes some new and known results.

Доведено теорему про $|\bar{N}, p_n, \theta_n|_k$ -сумовність із використанням нового загального класу послідовностей степеневого зростання замість послідовності квазі- η -степеневого зростання. Окремими випадками цієї теореми є деякі нові та відомі результати.

1. Introduction. A positive sequence (b_n) is said to be almost increasing if there exists a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \leq b_n \leq Bc_n$ (see [1]). We write $\mathcal{BV}_{\mathcal{O}} = \mathcal{BV} \cap \mathcal{C}_{\mathcal{O}}$, where $\mathcal{C}_{\mathcal{O}} = \{ \ x = (x_k) \in \Omega \colon \lim_k |x_k| = 0 \}$, $\mathcal{BV} = \{ x = (x_k) \in \Omega \colon \sum_k |x_k - x_{k+1}| < \infty \}$ and Ω being the space of all real-valued sequences. A positive sequence (δ_n) is said to be a quasi- η -power increasing sequence if there exists a constant $K = K(\eta, \delta) \geq 1$ such that $Kn^{\eta}\delta_n \geq m^{\eta}\delta_m$ holds for all $n \geq m \geq 1$ (see [9]). Let $\sum a_n$ be a given infinite series with partial sums (s_n) . We denote by t_n the nth (C,1) mean of the sequence (na_n) , that is, $t_n = \frac{1}{n} \sum_{v=1}^n va_v$. A series $\sum a_n$ is said to be summable $|C,1|_k$, $k \geq 1$, if (see [7])

$$\sum_{n=1}^{\infty} \frac{1}{n} |t_n|^k < \infty. \tag{1}$$

Let (p_n) be a sequence of positive real numbers such that

$$P_n = \sum_{v=0}^{n} p_v \to \infty \quad \text{as} \quad n \to \infty \qquad (P_{-i} = p_{-i} = 0, \ i \ge 1).$$
 (2)

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \tag{3}$$

defines the sequence (σ_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [8]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$, $k \ge 1$, if (see [2])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} |\Delta \sigma_{n-1}|^k < \infty, \tag{4}$$

where

$$\Delta \sigma_{n-1} = \sigma_n - \sigma_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad n \ge 1.$$
 (5)

In the special case $p_n=1$ for all values of n, $|\bar{N},p_n|_k$ summability is the same as $|C,1|_k$ summability. Let (θ_n) be any sequence of positive constants. The series $\sum a_n$ is said to be summable $|\bar{N},p_n,\theta_n|_k, k\geq 1$, if (see [11])

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |\Delta \sigma_{n-1}|^k < \infty. \tag{6}$$

If we take $\theta_n=\frac{P_n}{p_n}$, then $|\bar{N},p_n,\theta_n|_k$ summability reduces to $|\bar{N},p_n|_k$ summability. Also, if we take $\theta_n=n$ and $p_n=1$ for all values of n, then we get $|C,1|_k$ summability.

Furthermore, if we take $\theta_n = n$, then $|\bar{N}, p_n, \theta_n|_k$ summability reduces to $|R, p_n|_k$ (see [4]) summability.

2. Known result. In [6], we have proved the following main theorem dealing with $|\bar{N}, p_n, \theta_n|_k$ summability factors of infinite series.

Theorem A. Let $\left(\frac{\theta_n p_n}{P_n}\right)$ be a non-increasing sequence, $(\lambda_n) \in \mathcal{BV_O}$ and (X_n) be a quasi- η -power increasing sequence for some η $(0 < \eta < 1)$. Suppose also that there exist sequences (β_n) and (λ_n) such that

$$|\Delta \lambda_n| \le \beta_n,\tag{7}$$

$$\beta_n \to 0 \quad as \quad n \to \infty,$$
 (8)

$$\sum_{n=1}^{\infty} n|\Delta\beta_n|X_n < \infty,\tag{9}$$

$$|\lambda_n|X_n = O(1). (10)$$

If

$$\sum_{v=1}^{n} \theta_v^{k-1} v^{-k} |s_v|^k = O(X_n) \quad \text{as} \quad n \to \infty,$$
 (11)

and (p_n) is a sequence such that

$$P_n = O(np_n), (12)$$

$$P_n \Delta p_n = O(p_n p_{n+1}),\tag{13}$$

then the series $\sum_{n=1}^{\infty}a_n\frac{P_n\lambda_n}{np_n}$ is summable $|\bar{N},p_n,\theta_n|_k,\ k\geq 1$. If we take (X_n) as an almost increasing sequence and $\theta_n=\frac{P_n}{p_n}$ in Theorem A, then we get a result which was published in [3], in this case the condition " $\left(\frac{\theta_np_n}{P_n}\right)$ is a non-increasing sequence" is automatically satisfied and the condition $(\lambda_n)\in\mathcal{BV_O}$ is not needed.

Remark. It should be noted that, we can take $(\lambda_n) \in \mathcal{BV}$ instead of $(\lambda_n) \in \mathcal{BV}_{\mathcal{O}}$ and it is sufficient to prove Theorem A.

3. Main result. In the present paper, we have generalized Theorem A by using a quasi-f-power increasing sequence instead of a quasi η -power increasing sequence. For this purpose, we need the concept of a quasi-f-power increasing sequence. A positive sequence $\alpha=(\alpha_n)$ is said to be a quasi-f-power increasing sequence, if there exists a constant $K=K(\alpha,f)\geq 1$ such that $Kf_n\alpha_n\geq f_m\alpha_m$, holds for $n\geq m\geq 1$, where $f=(f_n)=\left[n^{\eta}(\log n)^{\sigma},\ \sigma\geq 0,\ 0<\eta<1\right]$ (see [12]). It should be noted that, if we take σ =0, then we get a quasi- η -power increasing sequence.

Now, we shall prove the following general theorem.

Theorem. Let $\left(\frac{\theta_n p_n}{P_n}\right)$ be a non-increasing sequence, $(\lambda_n) \in \mathcal{BV}$ and (X_n) be a quasi-f-power increasing sequence. If the conditions (7)–(13) of Theorem A are satisfied, then the series $\sum_{n=1}^{\infty} a_n \frac{P_n \lambda_n}{n p_n}$ is summable $|\bar{N}, p_n, \theta_n|_k$, $k \ge 1$.

If we take $\sigma = 0$, then we have Theorem A.

We require the following lemmas for the proof of the theorem.

Lemma 1. Except for the condition $(\lambda_n) \in \mathcal{BV}$, under the conditions on (X_n) , (β_n) and (λ_n) as expressed in the statement of the theorem, we have the following:

$$nX_n\beta_n = O(1), (14)$$

$$\sum_{n=1}^{\infty} \beta_n X_n < \infty. \tag{15}$$

Proof. Since $\beta_n \to 0$, then we have $\Delta \beta_n \to 0$, and hence

$$\sum_{n=1}^{\infty} \beta_n X_n \le \sum_{n=1}^{\infty} X_n \sum_{v=n}^{\infty} |\Delta \beta_v| = \sum_{v=1}^{\infty} |\Delta \beta_v| \sum_{n=1}^{v} X_n =$$

$$= \sum_{v=1}^{\infty} |\Delta \beta_v| \sum_{n=1}^{v} n^{\eta} (\log n)^{\sigma} X_n n^{-\eta} (\log n)^{-\sigma} =$$

$$= O(1) \sum_{v=1}^{\infty} |\Delta \beta_v| v^{\eta} (\log v)^{\sigma} X_v \sum_{n=1}^{v} n^{-\eta} (\log n)^{-\sigma} =$$

$$= O(1) \sum_{v=1}^{\infty} |\Delta \beta_v| v^{\eta} (\log v)^{\sigma} X_v \sum_{n=1}^{v} n^{\epsilon} (\log n)^{-\sigma} n^{-\eta - \epsilon} =$$

$$= O(1) \sum_{v=1}^{\infty} |\Delta \beta_v| v^{\eta} X_v (\log v)^{\sigma} v^{\epsilon} (\log v)^{-\sigma} \sum_{n=1}^{v} n^{-\eta - \epsilon} =$$

$$= O(1) \sum_{v=1}^{\infty} |\Delta \beta_v| v^{\eta + \epsilon} X_v \int_{0}^{v} x^{-\eta - \epsilon} dx =$$

$$= O(1) \sum_{v=1}^{\infty} |\Delta \beta_v| v^{\eta + \epsilon} X_v v^{1 - \eta - \epsilon} =$$

$$= O(1) \sum_{v=1}^{\infty} v |\Delta \beta_v| X_v = O(1), \quad 0 < \epsilon < \eta + \epsilon < 1.$$

Again, we have that

$$n\beta_n X_n = nX_n \sum_{v=n}^{\infty} \Delta \beta_v \le nX_n \sum_{v=n}^{\infty} |\Delta \beta_v| =$$

$$= n^{1-\eta} (\log n)^{-\sigma} n^{\eta} (\log n)^{\sigma} X_n \sum_{v=n}^{\infty} |\Delta \beta_v| \le$$

$$\le n^{1-\eta} (\log n)^{-\sigma} \sum_{v=n}^{\infty} v^{\eta} (\log v)^{\sigma} X_v |\Delta \beta_v| \le$$

$$\le \sum_{n=v}^{\infty} v^{1-\eta} (\log v)^{-\sigma} X_v v^{\eta} (\log v)^{\sigma} |\Delta \beta_v| =$$

$$= \sum_{v=1}^{\infty} v X_v |\Delta \beta_v| = O(1).$$

Lemma 1 is proved.

Lemma 2 [10]. If the conditions (12) and (13) are satisfied, then we have that

$$\Delta\left(\frac{P_n}{np_n}\right) = O\left(\frac{1}{n}\right). \tag{16}$$

4. Proof of the theorem. Let (T_n) be the sequence of (\bar{N}, p_n) mean of the series $\sum_{n=1}^{\infty} \frac{a_n P_n \lambda_n}{n p_n}$. Then, by definition, we have

$$T_n = \frac{1}{P_n} \sum_{v=1}^n p_v \sum_{r=1}^v \frac{a_r P_r \lambda_r}{r p_r} = \frac{1}{P_n} \sum_{v=1}^n (P_n - P_{v-1}) \frac{a_v P_v \lambda_v}{v p_v}.$$
 (17)

Then

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n \frac{P_{v-1} P_v a_v \lambda_v}{v p_v}, \quad n \ge 1.$$
 (18)

Using Abel's transformation, we get

$$\begin{split} T_n - T_{n-1} &= \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n s_v \Delta \left(\frac{P_{v-1} P_v \lambda_v}{v p_v} \right) + \frac{\lambda_n s_n}{n} = \\ &= \frac{s_n \lambda_n}{n} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} s_v \frac{P_{v+1} P_v \Delta \lambda_v}{(v+1) p_{v+1}} + \\ &+ \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v s_v \lambda_v \Delta \left(\frac{P_v}{v p_v} \right) - \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} s_v P_v \lambda_v \frac{1}{v} = \\ &= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \quad \text{say}. \end{split}$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show for $k \ge 1$

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |T_{n,r}|^k < \infty \quad \text{for} \quad r = 1, 2, 3, 4.$$
 (19)

Firstly, by using Abel's transformation, we have that

$$\sum_{n=1}^{m} \theta_n^{k-1} |T_{n,1}|^k = \sum_{n=1}^{m} \theta_n^{k-1} n^{-k} |\lambda_n|^{k-1} |\lambda_n| |s_n|^k =$$

$$= O(1) \sum_{n=1}^{m} |\lambda_n| \theta_n^{k-1} n^{-k} |s_n|^k =$$

$$= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^{n} \theta_v^{k-1} v^{-k} |s_v|^k + O(1) |\lambda_m| \sum_{n=1}^{m} \theta_n^{k-1} n^{-k} |s_n|^k =$$

$$= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m =$$

$$= O(1) \sum_{n=1}^{m-1} \beta_n X_n + O(1) |\lambda_m| X_m = O(1) \quad \text{as} \quad m \to \infty$$

by virtue of (7), (10), (11) and (15).

Now, using the fact that $P_{v+1} = O\left((v+1)p_{v+1}\right)$ by (12), and applying Hölder's inequality we have that

$$\begin{split} &\sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,2}|^k = O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}^k} \left| \sum_{v=1}^{n-1} P_v s_v \Delta \lambda_v \right|^k = \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}^k} \left\{ \sum_{v=1}^{n-1} \frac{P_v}{p_v} |s_v| p_v |\Delta \lambda_v| \right\}^k = \end{split}$$

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6

$$=O(1)\sum_{n=2}^{m+1}\theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\frac{1}{P_{n-1}}\sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}|s_{v}|^{k}p_{v}\left(\beta_{v}\right)^{k}\left(\frac{1}{P_{n-1}}\sum_{v=1}^{n-1}p_{v}\right)^{k-1}=$$

$$=O(1)\sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}|s_{v}|^{k}p_{v}\left(\beta_{v}\right)^{k}\sum_{n=v+1}^{m+1}\left(\frac{\theta_{n}p_{n}}{P_{n}}\right)^{k-1}\frac{p_{n}}{P_{n}P_{n-1}}=$$

$$=O(1)\sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}|s_{v}|^{k}p_{v}\left(\beta_{v}\right)^{k}\left(\frac{\theta_{v}p_{v}}{P_{v}}\right)^{k-1}\sum_{n=v+1}^{m+1}\frac{p_{n}}{P_{n}P_{n-1}}=$$

$$=O(1)\sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}|s_{v}|^{k}\left(\beta_{v}\right)^{k}\left(\frac{p_{v}}{P_{v}}\right)\theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}=$$

$$=O(1)\sum_{v=1}^{m}\left(v\beta_{v}\right)^{k-1}v\beta_{v}\frac{1}{v^{k}}\theta_{v}^{k-1}|s_{v}|^{k}=$$

$$=O(1)\sum_{v=1}^{m}v\beta_{v}\theta_{v}^{k-1}v^{-k}|s_{v}|^{k}=$$

$$=O(1)\sum_{v=1}^{m-1}\Delta(v\beta_{v})\sum_{r=1}^{v}\theta_{r}^{k-1}r^{-k}|s_{r}|^{k}+O(1)m\beta_{m}\sum_{v=1}^{m}\theta_{v}^{k-1}v^{-k}|s_{v}|^{k}=$$

$$=O(1)\sum_{v=1}^{m-1}|\Delta(v\beta_{v})|X_{v}+O(1)m\beta_{m}X_{m}=$$

$$=O(1)\sum_{v=1}^{m-1}|\Delta(v\beta_{v})|X_{v}+O(1)m\beta_{m}X_{m}=O(1)$$

as $m \to \infty$, in view of (7), (9), (11), (14) and (15).

Again, we have that

$$\sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,3}|^k = O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}^k} \left\{\sum_{v=1}^{n-1} P_v |s_v| |\lambda_v| \frac{1}{v}\right\}^k =$$

$$= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{p_v}\right)^k v^{-k} p_v |s_v|^k |\lambda_v|^k \left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v\right\}^{k-1} =$$

$$= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^k v^{-k} |s_v|^k p_v |\lambda_v|^k \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} =$$

$$= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{k-1} v^{-k} \theta_v^{k-1} \left(\frac{p_v}{P_v}\right)^{k-1} |\lambda_v|^{k-1} |\lambda_v| |s_v|^k =$$

$$= O(1) \sum_{v=1}^{m} |\lambda_v| \theta_v^{k-1} v^{-k} |s_v|^k =$$

$$= O(1) \sum_{v=1}^{m-1} \beta_v X_v + O(1) |\lambda_m| X_m = O(1) \quad \text{as} \quad m \to \infty,$$

in view of (7), (10), (11), (15) and (16).

Finally, using Hölder's inequality, as in $T_{n,3}$ we have that

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} |T_{n,4}|^k &= \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}^k} \left| \sum_{v=1}^{n-1} s_v \frac{P_v}{v} \lambda_v \right|^k = \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}^k} \left| \sum_{v=1}^{n-1} s_v \frac{P_v}{vp_v} p_v \lambda \right|^k = \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} |s_v|^k \left(\frac{P_v}{p_v}\right)^k v^{-k} p_v |\lambda_v|^k \left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v\right)^{k-1} = \\ &= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^k v^{-k} |s_v|^k p_v |\lambda_v|^k \frac{1}{P_v} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} = \\ &= O(1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^{k-1} v^{-k} \left(\frac{p_v}{P_v}\right)^{k-1} \theta_v^{k-1} |\lambda_v|^{k-1} |\lambda_v| |s_v|^k = \\ &= O(1) \sum_{v=1}^{m} |\lambda_v| \theta_v^{k-1} v^{-k} |s_v|^k = \\ &= O(1) \sum_{v=1}^{m-1} \beta_v X_v + O(1) |\lambda_m| X_m = O(1) \quad \text{as} \quad m \to \infty. \end{split}$$

Therefore, we get that

$$\sum_{n=1}^{m} \theta_n^{k-1} |T_{n,r}|^k = O(1) \quad \text{as} \quad m \to \infty, \quad \text{for} \quad r = 1, 2, 3, 4.$$

This completes the proof of the theorem. If we take $p_n=1$ for all values of n, then we have a new result for $|C,1,\theta_n|_k$ summability. Furthermore, if we take $\theta_n=n$, then we have another new result for $|R,p_n|_k$ summability. Finally, if we take $p_n=1$ for all values of n and $\theta_n=n$, then we get a new result dealing with $|C,1|_k$ summability factors.

1. *Bari N. K., Stečkin S. B.* est approximation and differential proprerties of two conjugate functions (in Russian) // Trudy Mosk. Mat. Obshch. – 1956. – 5. – P. 483 – 522.

- 2. Bor H. On two summability methods // Math. Proc. Cambridge Phil. Soc. 1985. 97. P. 147–149.
- 3. Bor H. A note on $|\bar{N}, p_n|_k$ summability factors of infinite series // Indian J. Pure and Appl. Math. 1987. 18. P. 330–336.
- 4. *Bor H.* On the relative strength of two absolute summability methods // Proc. Amer. Math. Soc. 1991. 113. P. 1009–1012.
- 5. Bor H. A general note on increasing sequences // J. Inequal. Pure and Appl. Math. 2007. 8. Article 82 (electronic).
- 6. Bor H. New application of power increasing sequences // An. ști. Univ. Iași. Mat. (N.S.) (to appear).
- 7. Flett T. M. On an extension of absolute summability and some theorems of Littlewood and Paley // Proc. London Math. Soc. 1957. 7. P. 113 141.
- 8. Hardy G. H. Divergent series. Oxford: Oxford Univ. Press, 1949.
- 9. Leindler L. A new application of quasi power increasing sequences // Publ. Math. Debrecen. 2001. 58. P. 791–796.
- 10. Mishra K. N., Srivastava R. S. L. On $|\bar{N}, p_n|$ summability factors of infinite series // Indian J. Pure and Appl. Math. -1984. -15. -P. 651-656.
- 11. Sulaiman W. T. On some summability factors of infinite series // Proc. Amer. Math. Soc. 1992. 115. P. 313 317.
- 12. *Sulaiman W. T.* Extension on absolute summability factors of infinite series // J. Math. Anal. and Appl. 2006. **322**. P. 1224–1230.

Received 31.08.11