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OPTOI'OHAJILHOI PET'PECIIL

For any nonlinear regression function, it is shown that the orthogonal regression procedure delivers an
inconsistent estimator. A new technical approach to the proof of inconsistency is presented, which is
based on the implicit-function theorem. For small measurement errors, a leading term of asymptotic
expansion of the estimator is derived. A corrected estimator is constructed, which has smaller
- asymptotic deviation for small measurement errors.

Mo posisbiiol nesinifinol dynkuii perpecii nokasano, 1o ollinKa opToOroHaibHOI perpecil € HeKoH-
BHCTEIITIo0. 3acTOCOBAIO HOBY TEXIKY JIOBE/IEIII] HeKOHSHCTEHTHOCTI, KA IPYHTYETLC Ha Teope-
Mi mpo nesisny pynkiio. [ BunajiKy Malix noxuboK BHMIpIOBaHHA BHITHCAHO TOJIOBHHH YieH
ACHMITTOTHYIIONC po3Kajly oninky. ITo6GyjioBario BUNpasiieny OUIHKY, 10 Mae MeHIlle ACHMIITOTHYHE
BiIXHJIEHHS Y BHIIA/IKY MAJIHX TOXMOOK BHMIpIOBAHHA.

Introduction. We consider the nonlinear errors-in-variables model

v = 8B + ey, &)
xp =& + &y, @
where i=1,..., n. The design points or variables {&;,...,§,} € R are unknown

and fixed. In this model, the application of the least-squares method is often called
orthogonal regression, because the sum of orthogonal distances between the
observations and the regression curve has to be minimized.

This method is known in numerical literature also under the name of total least
squares, compare the works by Boggs, Byrd and Schnabel [1], Schwetlick and Tiller
[2], and the references there. The numerical algorithms are globally and locally
convergent and already implemented in software packages ODRPACK, FUNKE,
GaussFit as discussed by Boggs and Rogers [3] (ODRPACK), by Strebel, Sourlier and
Gander [4] (FUNKE). The application of the nonlinear orthogonal distance estimator
and the use of these packages are recommended in meteorology by Strebel, Sourlier
.and Gander [4], in astronomy by Branham [5], Jefferys [6] (GaussFit), in biology by
Van Huffel [7], in robotics by Mallick [8].

For linear errors-in-variables model, this estimation procedure is consistent. In the
case of normally distributed errors, the least-squares estimator is the maximum
likelihood one and is also efficient. An excellent and thorough summary of the linear
errors-in-variables models was given by Fuller [9].

In the nonlinear case, the consistency of the least-squares estimator is only given
under additional conditions, which ensure that the unknown design points are
consistently estimable. This is fulfilled, for instance, under an entropy condition on the
set of design points [10], or in the case of repeated observations [11], or in an
asymptotic inference with respect to a vanishing error variance [9, p. 240].

In the statistical literature, the inconsistency of the unrestricted nonlinear
orthogonal distance estimator has been known for a long time and several adjusting
proposals are given by Wolter and Fuller [11], Stefanski [12], Stefanski and Carroll
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1102 1. FAZEKAS, A. KUKUSH, S. ZWANZIG

[13], Nagelkerke [14], Armstrong [15], Schafer [16], Hillegers [17], Amemiya [18],
Gleser [19], Kukush and Zwanzig [20].

Nevertheless, inconsistency results are proved for special cases only. Carroll et. al.
[21] assumed, instead of (1), that y; is a Bernoulli variable with expected value

G(efB) 3)
and that, in (2), the error term is normally distributed with known covariance matrix.
They argued that the maximum likelihood estimator for B is not consistent and
advised to consult the authors in this point. Stefanski [22] gave the proof of
inconsistency for the above binary regression model with logistic link function G(t) =

(1 +exp (=)' in (3). Stefanski [12] proposed M-estimators P defined as a
measurable solution of the estimating equation

> vi(x v, B) = 0. @
=

The main point is that the estimating functions ; in (4) have to be unbiased, 1. e.,

Er;,[{zl, WE(xE:J’E:B)) = o(1), 5)

to obtain the consistency of the M-estimator . Stefanski [22] argued that if (5) fails,
then the M-estimator for B in inconsistent. The fact that (5) is violated is established
only in special cases, like for the exponential regression function.

In this paper, we give a general proof of the inconsistency of the orthogonal
_regression procedure for arbitrary nonlinear smooth regression functions. The main
idea is to use the technique of implicit defined functions and to derive an expansion of
the respected score functions

i Wi(x;, i, B)-
i=l

This expansion includes terms which do not vanish in the nonlinear case with fixed
error variances. This is also a new technical approach for such inconsistency proof in
statistics. '

- Under mild additional assumptions, we consider the asymptotic deviation of the
orthogonal distance estimator. We derive a leading term of the asymptotic expansion
for small measurement errors and present a corrected estimator, which has a smaller
asymptotic deviation. Our new estimator is different from the adjusted estimator
proposed by Amemiya and Fuller in [23], where an asymptotic expansion of the
estimator is given in a replication type model. Especially, they require that the
variances decrease quicker than the sample sizes increase and obtain another
nonvanishing leading term under their asymptotic approach.

The paper is organized as follows. In Section 2, model assumptions and the
orthogonal regression estimator are given. In Section 3, the inconsistency of the
orthogonal regression estimator and related results are formulated. In Section 4, a
leading term of the asymptotic expansion is presented and, in Section 5, the corrected
estimator is constructed. Section 6 contains the conclusions. The proofs are given in
Appendices 1 and 2.

2. The model. Suppose that we have observations (y;, X;),... , (¥u %X,)
independently and, in general, not identically distributed, generated by (1) and (2). The
errors {€g;} are

g~ 2(0,0%) iid, iI=l.,m F=L2 (6)

This assumption is done for convenience. In [24], the proof of inconsistency is given
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CORRECTION OF NONLINEAR ORTHOGONAL REGRESSION ESTIMATOR 1103
for arbitrary error distributions with a moment condition and weak dependence
between the variables €. .

The regression function g(-, -) is known. The unknown parameters are BU, €z
i=1,...,n, and o> The parameter of interest is [3'0 € ® c R”. The variables

€,,..., &, are the nuisance parameters, whose number grows up with the sample

size n.
We assume that the variables |, ..., ., come from a product set

[~a, a]’, : @)
where a is fixed but unknown and B° lies in the interior of a compact set:
B’cint®, OCR” is compact. (8)
‘We also suppose the smoothness condition -
gE .C3.(R x U) for.someopen U>O. 9)

Derivatives will be dencted by superscripts, e. g.,

) 9
EEEP. e B) = 5?3@' B).

The orthogonal regression estimator ﬁ woif :ﬁo is«defined as a measurable solution of
the optimization problem: '

g° (&, B) =

n

[3 € arg minlz

Be® n iml

min] (3 — (& B +(x —&)? ]

EeR

3. Inconsistency results. Inithis section, we nse an asymptotic .approach for an
increasing sample size n— oo and arbitrary small fixed variances. We will show that,

under this setup, B is inconsistent.
The sum of the projected squares is denoted by

1 n s
Qrri(B) = =3 gg;[(y,-—g@,sm)%(x; ~&)?], foral e ®.  (10)
i=1
The function Q ij(ﬁ) is our estimating criterion for the parameter of interest [,
where the nuisance parameters ‘are eliminated. Note that, under (6), the orthogonal
regression estimator.coincides with the maximum likelihood one.
‘We have

2 Q(xi’ Yis ﬁ)u

n
i=l1

QPrcj(B) - l
n
where

g(xy,B) = [y—g(h(xyB)B) P + [x—h(xy B) ] (11)

and h(x,y, B) is the minimum point of the function

2 i
f&) = (y-8&B))" + (x-5"
Then the function h(x, y, B) is implicitly defined by the normal equation:

F(x,y,B k) = (y—g(hB))g°(h,B) + x— h = 0 forall x, y, B, (12)
with the initial condition
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1104 : 1. FAZEKAS, A. KUKUSH, 8. ZWANZIG

h(E g(E B),B) =& forall Be®.

Because _
F'(x,y,B,h) = =1 - (85, B))* + (y—g(h, ))& (h B)
with '

i
FYE g(&.B).B.E) = -1 - (£°E& B))* # 0,
the implicit-functions theorem implies the following. Under the smoothness condition
(9), there exist a constant v, and an e-neighborhood US(BU) of BO such that

h(os )i [E=vo, E+ Vol X [8(E, B = vy g6, BY) + Vol x U (B > R (13)

and h(:, -, -) is a uniquely defined twice differentiable function. For the derivative
dh(x,y, B)/3B=hP(x 3, B), .
1.
hPx,y,B) = (r-8)s%? - g%" (14)
@ (y—g)g?ﬁ( )

where the regression function g and its derivatives are takcn at the point (h, B).
For illustration, consider the simple linear model

g(& B)= BE&.

In this case, we know that h(x,y, B)—(yB+x);’([3 +1) and hﬁ(x ¥, B)v(y—
-yB%-2xB)/ (B +1)%

In the following theorem, we derive a stochastic expansion of the first derivatives of
the leading term Qp.,4(B) of the estimation criterion Oproi(B) defined in (10).

Theorem 1. Suppose that, for the model (1) and (2), assumptions (6), (7), (8),
(9) are satisfied. Then, fo;' each positive constant v <V, Vg from (13),

Oproj(B) = Qreaa(B) + orest(y(n, B, v, 67), (15)
o, (B%) = o, + [v02+%)0},(l) + o*rest(y(n, v, 62) (16)
" n

with

o &
i1 (1 +(8°&: %) ) -

and, for all constants ¢ >0,

" 2 _
(}g}] it;;l:P!w”gmﬁn(sup[restm(n, B,v,o )‘>c) = 0, (18)
éiﬂ})s’:.;?PEi Bu[]rcst(z)(n v, o )‘>c) =0, (19)

where Op(l) denotes a remainder term, which is um’form!y bounded in probability
P§1 £ o with respect to all n, and all V=Vg and all 6> 0.

The leading term ¥, is related to the curvature of the regression function. Recall
that the curvature of the graph I'g= { (&, g(§,B)), E€R} at the point (&% g(&% B))

is given by (gég(ﬁo- B)) (1 + (SE(ED’ B))Z)'”z
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CORRECTION OF NONLINEAR ORTHOGONAL REGRESSION ESTIMATOR 1105

Theorem 1 implies the main result of this paper, which states that the orthogonal
regression estimator is inconsistent if the leading term in the expansion (16) is
nonvanishing. Actually, the following Theorem 2 states much more than
inconsistency.

Theorem 2. Suppose that, for the model (1) and (2), the conditions of Theorem
1 are satisfied. Assume additionally that

liminf ||, || > 0, (20)
N—3ea .
where ¥, is given in (17). Then, for each € > 0, there exist © >0 and G, >0
such that for any o e (0, o]
' oy A_ RO 2 Nig iy
llilol:f PEI ... E,..BO(”B B ”>0 'r) >1-g
Corollary 1. Suppose that condition (20) in Theorem 2 is changed by the
condition
limsup [k, || > O,
n—yoe
where x, is given in (17). Then, for each € >0, there exist © >0 and oy >0
such that for any o € (0, og]
; 0
llfrlri)s:pPg :, B“(“B B ”>c ’I:) 21-¢

- Remark 1. Theomm 2 states inconsistency for small enough but fixed variances

o2 The case 62— 0 is excluded in Theorem 2..
Remark 2. We have no inconsistency in the case where the regression function is

linear in the design points, because gEE =0 and, hence, x,=0. We also have x,=0

if the regression function is independent of (. But then necessary contrast condition
for the consistency of the orthogonal regression estimator is not satisfied.

Example 1. Consider the model (1) and (2) with g(&, B) = exp(BE), € e R,
B € R. For the exponential model
(BO)Z n aI'EZﬁug"
n i=1 (1 $ (BU)ZEZIEHE’)'_), .

Kp =

If B°+# 0 and the design points &; are positive, bounded, and separated from zero,
then (20) holds and, under the assumption (6), the orthogonal regression estimator is

inconsistent for small enough but fixed variances o>

4. Asymptotic deviation.

Definition 1. Let m,= 1],,(02) be a sequence of random vectors depending on
6% ©>0. Then we write M= op (1) if, for each €>0 and y>0, there exists

Ogy> 0 such that, for all c € (0, O'ET],

Iiminf P(|n.c®|<sy) 2 1-e.

Definition 2. Let m,= 1],1(6 ) bé a sequence of random vectors depending on

0'2, o > 0. Then we write 1,= OP[,(I) if, for each € > 0, there exist Cg; and
o> 0 such that, for any ¢ € (0, 6],

ISSN 0041-6053. Yip. atam. zypit., 2004, m. 56, Nt 8



1106 . L. FAZEKAS, A. KUKUSH, 8. ZWANZIG

liminf P(||n,[|S£C.) 2 1 —&.

n—yee

Further we need the following contrast condition: for each 8> 0,

hrrunf"ﬁlnnf;I Ep (pﬂ 1"[_,') > 0, (21)

where pz(}}o, Fﬁ) is the distance between the point PB° = (&;, g(&;, B%) and the
graph Tp= {(§ g(& B)):LeR}.

The following result is very close to the Lemma 1 in [23]. We give it without
proof. Remind that the estimator B is a random vector depending on the sample size

n and the error variance G-.
Lemma 1. Suppose that, for the model (1) and (2), assumptions (6), (7), (8),
and (21) are satisfied and g € C(R x ©). Then

[B-°] = oz,
‘Introduce the matrix

1 i 0, B 0T
= —3 &, BM&" i B) .
i +(5&.B%)’

Note that Vn"l respects to the asymptotic covariance matrix of ﬁ - BG in the setup of
Amemiya and Fuller [23].

Then we can show that the total least-squares estimator ]§ is with high-probability
near the point B°— 0%V 'k, /2.

Theorem 3. Suppose that, for the model (1) and (2), the conditions of Theorem
2 are satisfied. Assume additionally the validity of (21) and

liminf A, (V,) > 0, (22)

n—yea

where Ay, denotes the smallest eigenvalue. Then we have

2
~ G 1
B=p"~ZVilky + clop . (23)
Definition 2, the fact that x, is bounded, and Theorem 3 imply
3 _ p0 o .2 :
B=p +o0 Op, (1). (24)
5. The corrected estimator. Relation (23) enables us to define a corrected
estimator fi by

~Q
B=p4+ "71?;11‘&,,, (25)

where 62 is a corrected variance estimator given by

@ = (15 (re st 125 (B o

V,, is an estimate of the matrix V,, determined as

ISSN 0041-6053. Ykp. mam. sxyph., 2004, m. 56, N* 8
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S SR YRR Y
2 — ET (1. B)e® (s B)

and X, isan estimate of k, occurring in Theorem 1:
& 1< ggé(xf: B)
Kn = ;Z A2
[ B
Lemma 2. Suppose that the conditions of Lemma 1 hold. Consider a function

Fe CI(RX U) for some open U D ©. Assume that, for some fixed C >0 and
A>0,

V=1
n

ggﬁ(xb E‘)

|F5E.B)| < Cexp(AlE]), .E<R, BeU. @7)
Then, for the model (1) and (2),
138 A1
EE{ F(x,B) = ;E F(E,B%) + op ().

Applying Lemma 2, we obtain

Vo = Vot op (D), (28)
.rcn = Kn + Ong (1) (29)
if
3 i
¥ :C%g(&,ﬁ) + €% Bl + || €%PE BY|| < Cexp(4]E]) (30)
i=1

for some fixed C>0, A>0, andforall Ee R, Be U.

Lemma 3. Suppose that the conditions of Theorem 3 hold. Assume additionally
that inequality (30) is satisfied with omitting the terms 9°g(E,B)/0&> and g 3 ﬂ(ﬁ,
B). Then ; ;

' 8% = o® + 6%0p (D). 31)

Summarizing (28), (29) and (31), we obtain the following result:

Theorem 4. Suppose that condition (30) and the assumptions of Theorem 3 are
satisfied. Then the corrected estimator B in (25) has the representation

n 0 2
B=PB" +070p D).
Remark 3. If the variances are different, i. e., Dza“ # DZE.Z,-, but their ratio is

known, then one can transform (1) and (2) to obtain equal variances.

Remark 4. Tt is also possible to find a correction of the naive estimator of B°
defined by

~ . 1.2 2
Bnaive € argmin — Z (yi - 8&(x;, B)) .
Be® n -l
The naive estimator is also inconsistent and its asymptotic expansion has leading term

" of order o> involving gBB. The correction demands stronger restrictions than (30) on
the derivatives of g. For instance, a bound for the third derivative with respect to B is

ISSN 0041-6053. Yip. atam. sypit., 2004, m. 56, N® 8



1108 ; ¥ I. FAZEKAS, A. KUKUSH, S. ZWANZIG

needed. Recall that, in a linear model, P, isinconsistent, while [ is consistent.

6. Conclusions. We considered an orthogonal regression estimator 3 in a
nonlinear functional errors-in-variables model. In the situation when the model is
strictly separated from a linear model, we gave a mathematical proof of inconsistency

of ﬁ The proof relies on the implicit-function theorem.
Moreover, we derived an expansion of the asymptotic deviation for small

measurement errors and constructed a new corrected estimator E, which has smaller
asymptohc deviation for small errors.

It would be interesting to derive the next term of order ¢* in the expansion of ﬁ -
- B and to construct a correction of higher order.
7. Appendix 1: Proof of the inconsistency. 7. 1. Proof of Theorem 1. The proof
is divided into several steps.
Truncation. Let v, be the constant introduced in (13). For arbitrary positive
constant v, v <v,, we define the index set
B,(v) = {ir1<i<n, |g;|=V, |ey|<Vv}. (32)

We separate the projected sum of squares Qp;(f3) into two parts

Oproj(B) = 2 > (i yinB) + s >, aCx B

ieB, (V) ™ ieB,(v)
and define the leading term
1 .
Q]_Md(B) = E q(xi, yis B.
M ieB,(v)
‘Now we show that _
= Y, a(x, i B) = o restyy(n, B, v, 57, (33)
igB,(v)
whcre the remainder term rest(;, satisfies (18). Because of (11), we have

a(x v B) S (3-8, B))? + (% —E)?
= (e +8E, B -2(&, B))* + €& <

< 2&f; + €3; + const

for some constant const, since g(-,-) is continuous and, therefore, bounded on the
compact set [—a, a] x ©.
Hence,

2
Y, qxynB) < = Y, (el +€3; +const) <
igB,(v) n ieB, (V)

_Z [E’!t +€2r +COHS£][I(IEH|>V)+I(]82‘]>V)]

where I(A) is the indicator function of the set A. The typical terms of the expectation
of the above expression are: E(x—:l, (leg |2 v)) E(I(]g; |2 V), E(eﬁ I(|eq; |2 v))
We now can use inequalities like

E 4 2
E(e2I(le:|2v) < S B ﬁr(@zl) ;
(5 enl2) < Zpo( p(2l=

ISSN 0041-6053. Ykp. mam. sxcypn., 2004, m. 56, N° 8
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where £,;/0c is standard noermally distributed. Therefore, by Chebyshev’s mcquahty,
we obtain

P{l 2 q£xi,yi,ﬁ)>€) < C(}nstE‘."I(O'd'(V"Z +v Ho(1)) (34)

i#B, (V)
as 6> — 0. Inequality (34) implies (33) with rest(;) satisfying (18).
Taylor’s expansions. Now consider the case i€ B, (v). Then, under the
assumptions above, all observations y;, x; belong to a compact set. Let us omit the
index i andset & =:8, g, =:¢€._We have

x=E+¢ _ (35)

.and
y =8B +38 (36)

with
le| <v, |8 <v. (37)

Introduce A with the equality

h(xy,B%) = & + A
where h(x, y, BO) is defined in (12). Under (7), (8), (9), the expansions of the

regression function and of its derivatives at the point -h = h(x, y, [30) are:

g(hB%) = g(&B%) + Ag°E BY) + %Azgﬁ’;(«:, B% + 0(A®,  (3%)
g5(h BY) = 5 B°) + Ag5EE B®) + 0(AY), (39)
gPh B%) = P& BO) + AgP(E B + 0(aY). (40)

Because of (37), all the variables in (38) — (40) belong to some compact set. So, (9)
implies that, for k=2, 3, the remainder terms satisfy the inequality

apl 28]

4]
x.)l

‘We put (35), (36), (37), (38) and (39) into (12) and obtain

const.

A®A + ABB + AC - 8% — & = O(|AP +]8]42) (41)
with

A= g(g‘r;‘g:;&‘g), E— _855, C=1+ (gg)z, ; . (42)
where the regression function g and its danvat:wcs are taken at the point (&, B )
Further, let

8g5+€

A, =
- c

Note that
_ Ap = O(|e|+]3]). (43)
Using the definition of A and of h(x,y, B), we obtain
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A= O(le|+|3]). | : (44)
Now (41) gives '

8B 24 3 3
A=A - AZ - 22 ¢ Of|ef +|5]).
f g ﬁc’*' (|3| |iJ
Thus,
A = Aps %Az + 0|eP +I8P), | | @45)
‘where A, is of order O(Isl2 +|5|2). Substituting this into (41), we obtain
2(ATA + A,3B)
e c
and, more explicitly,
EE
= £ (82(0p8 _ (o8)3) _3p2,8 — A(p5)2
=15 (62(28° — (6%)%) — 3e%¢" +&5(2 — 4(s%)?)).- (46)
Proof of (16). We now consider
! .
Poaa®) = = 3 a5 31,8%). @7
i€B, (V)

From (11) we have

& (x1, 31 B) = —2(WP[(x—m) + (y-2)g° |+ (v - 2)gP),
where the regression function g and its derivatives are taken at the point (k(x, y, B),
B). As h(x,y, B) satisfies the normal equation (12), we have

2P (%3, B) = —2(y— g(h(x, y, B), B)&P (h(x, », B), B). (48)
We put (38), (40) into_ (48) and apply (44). Thus,

aP(x,y, B%) = —28gP + 2A(gPe%-55%P) + A%(2¢%% % + 5% +
+ O(|ef +|3P), (49

where all derivatives are taken at the point (&, BO). Using (45) with (43) and (46), we
have ;
Y PnyB) =L+V+R (50)
ieB, (V) ;
Here, L is the linear term and has the form
L= Z (aiy; +bigy;),
5 _ ieB, (V)
V is the quadratic term and has the form
V= Z (ci€ﬁ+diagf+mieiie2i)
ieB, (V)
with
3 e k2 B, 2 g s 1 eop
d = e— + —= + —=
i = 38 &*)'g 288 2878
and :
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¢ = ggg&(g-é)zgﬁ - -éi—%gﬁgéﬁ-
The coefficients a;, b;, ¢;, d;, m; depend only on bounded partial derivatives of the
regression function.

In (50), R is the remainder term consisting of terms with orders of €); and &,;

higher than 2,
1 < 3 3
R< =Y ﬁ(]ﬁls| +lexl ),
i€B,(v)
where r; depends only on bounds of partial derivatives of the regression function and

max;.; . .7% <const. Then we have

E|R| < constE(]t—:“PI(le“[ﬁv}) < comstvo?.

Therefore,
R = vo?0p(1).
Here and in the following Op(1)- is uniformly beunded in- probability PE; ELRO
with respect to all' n- and all v <vy, andall o> 0. .
By (47) and (50), we get
1 4
Ofaa®%) = = X, ¢P(x, 3, B%) = §; = 8, + vo?0,(1) (51)
ieB,(v)
with
lz (a E’h +b; €9 +c; E’lt +d; %‘ +m EIEE’ZI)
ni
and
-1 E (“ i€1; + bjgy; + Ci"?ﬁ"‘“dﬂ’«%}. +m;€€q; )
n.
£BI(v)
Similarly to (34), we have
S, = o*estyy;(m vi 6?), (52)
where rest(y) satisfies (19). By (6)
I 2 o
= =% o(c: +d:) + —=0x(1 53
n):l (e +dy + =0pM (53)

and, furthermore,

n

—Zc{c +d;) 120‘ g%k = o,
L (1 + (gﬁ) )
where the derivatives are taken at (&;, BO) and x,, is introduced in (17). From (51) —

(53), we get the expansion (16) for Q&ad (BD').
Theorem 1 is proved.

7.2. Proof of Theorem 2. QP ,(B)- isbounded. Let

G(xyBu) = (y-gB))* + (x—u)*
with x,y,ue R, B e ©. Then, by (11),
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q(x,y,B) = G(x,y, B.h(x y,B)).
u=h(xy,) =0 for x, y, B in
the neighborhood of (&, g(&, B°), B°). We get from EP(x,y, B) =GP+ G"hP that

ﬁﬁ(x, »PB) = GB(I' ¥ B, u)l u=h(x,,B) *

The second derivative is

ﬁﬁﬁ(x, Y, B) = Gﬁa(xs Y, ’BI “)J u=h(x,y,p} +

Because h(x,y,

+ GPCx, 3, B, 1) ey (5 ) B). (54)

From formulas (54) and (14), we obtain that, under condition (9), for v, v being small
enough but positive,

i |oPu®] < A <= (55)

B8]
with a deterministic constant A depending only on 7y and v.
Representation of Qpy,;(B). Denote

Uy(B?) = {B:[B-B"[<v}.
Reminding (8) and (9), for B e UT(BO) and AB= H—Bn, we have

Oteat(B) = Qreaa(B%) + OfraBIAB + SABTOME,(B)AB,  (56)

where [ is an intermediate point between [ and BD. It follows from Theorem 1
that, for B e U{B %

QP}'O_](B) QPro_](B ) = Ql_md(ﬁ) = Q]_;end(['f )+ 0 re'St(B)‘

where
rest) = restay(n, B, v, o?) = .rf.:st(ll)(n, B ﬁ._(‘rz) — restyy (n, BD. v, 62).
Relation (56) with Agp=0c ‘AB assertion (16) of Theorem 1, and the boundedness of
Of.4(B) imply :
Oproj (B) — meJ(B )=o0 [ a + (V+—I-HJ—)OP(1) + o resty ]Acp +

" O(l)cr |lao|? + o restm o (57

Inconsistency: We will show that Ad = g (B =B ) is separated from zero
with large probability. Fix o3>0 and consider 0 < 0.< 0. As X, is bounded, one
can find t> 0 such that, forall n=1, :

B, = [3_0"+ 0'2(—r1c,,)'e U.(iﬁo) = @.

Put both A¢ =—tk, and AQ into (57) and remember QP-I'QJ (B) Oproj (By)-
obtain
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0= Uu4(QProj(Br)—QPrnj(ﬁ)) =
= p(A®) + R (1) + Ry(n) + Ry(0), (58)

where

P(89) = —x,89 +vOR(1)[ 4] + o(1)[A4|
is a polynomial in A$ and
R (1) = =||x,|I*t + vOp(D)|| %, ||t + O ||, ||* 2
| ) .
o 0 (PR .
2(n) cﬁOP(D(“A(P"'F”Kn"r)’

R3(0) = l'eSt(:),)(J'l, Bf' v, 02) L l‘CS{('_;‘)(H., ﬁ, Ny 0'2) i

- cgrestm(n., v, cz)Ac'b = O‘erst(z)(n, v, 0"2)1(,,:.

Now let x € (0, 1). (In the following, x can be different in different statements but it
can be chosen to be arbitrary close to 1.) By (20), one can choose v>0 and n, such
that, for n > ng,

P( VO, (1) <w) > K. (59)

At the same time, one can find #3 > 0 such that, for suitable small positive ¢, for v
chosen above, and for n > ng,

R\(1) € —1,

with probability greater than x. There is an ng 2 ng such that, for n2ng,
!
Ry(n) < 2
5(n) 4

with probability greater than k. Moreover, we can find and fix a suitable small
positive oy such that, for all ¢ € (0, 65] and forall n=1,

T
R 7'
3(0) 4

with probability greater than x. Therefore, (58) implies that, for n2 ng, ¢ <oy,

rﬂ -~
2 < plA
, < P(ad)
with probability greater than k. As the coefficients in the polynomial p are

stochastically bounded, [|A®|[* cannot be arbitrarily close in probability to 0. This
implies Theorem 2.
7.3. Proof of Corollary 1. In the proof of Theorem 2 we used (20) in proving

(59). If limsup,_,.|x,|| >0, then we can choose a subsequence n(m) such that
lim,,_,.. ]IK",(”) " > 0. For this subsequence relation (59) and statement in Theorem 2
remain valid. This proves Corollary 1.

8. Appendix 2: Proofs for the correction. 8.1. Proof of Theorem 3. According
to Lemma | we can consider ¢ € (0, 6¢y] and n = ngy, such that [3 (S U.’,(BU). (It
has probability greater than 1—¢g.) .

First we shall prove the following. For some vy>0, if 0 <v <vy, then
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o84 (B%) =2V, + cop (1) + resty, (60) .
where |rest4| <constv. Here v comes from (32). To obtain this, recall that
OB = = 3 oPPCx, . B0. (61)
ieB, (V)
From (48) we obtain
1 -
=g = (gPPT+g%ePhPT) + (y-£)(sPonPT+ gPP), (62)

2

where AP is given in (14). For the first summand in (62) we have

g BT
1 o] BT, g°g }
2 (1B [ 2 g { 1+(g€)2 ]} &:.8%)

(%67 + g%Ph7 ]

IEB )]
< constv. (63)
We have '
p_BT _ EPB SESBT 8'33]3? 64
88 8 B o Eg (64)
1+(g°) t+{g")
Because ||gﬁ(§. Bo')ﬂﬁqonst, as |B| < a, we obtain
1 g’ ] 4 '
=y ; = V,+ 0 0p (). (65)
niEB,,{\J)[I'F(gg)Z (&:.8%) "
For ie B,(v) wehave |y;,—g(x;, B0)|sconstv. Therefore
1 — o) (PERBT 4 B <
”;Egz('\,){y g)(g™h™ +¢ )CXM’“BQ) < constV. (66)

Now, relations (62) — (66) imply (61).
Due to the smoothness condition (9), the third derivative EEEd(B), for
Be U (B ) satisfies the boundedness relation: ’

| P,@®)| < const

for small positive ¥y, v
For B € UT(B f:') we use the Taylor expansion

QLead(B) QL:ad(B ) + QEcad(Bo)AB + %ABTQEEM(BO )AB *

)PZ PP+ (5) AR AB; AB, 67
I LJk=1

where B is an intermediate point between [° and B. From (15) and (16) of
Theorem 1 and from (60) and (67) we get '

Opeoj(B)e= Oproj(B”) + kL AB + AB"V,AB + rest
with g
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rest = vo 0p(1) || B + c“op;(l)} vo(1)||AB||* + o] AB]J>.
Weset B= [3@=[30+ o*A¢. Then i
Oproj(By) = Qpegj(B”) + 0 (k7 A0 +AQTV, Ag) + rest (@), (68)
" where .
rest (@) = VG4OP(I)||Acp[[ + c"'opu(]) + v040(])||A(p||2 + 0'60(1)||A<p||3.
Let f=B°+0%A. By Lemma 1, we have o°[|Ad| = op,(1). Recall that we
consider B e Uy(B®). From (68) and Oproi( B) < Qproj (B®) we obtain
KAD + APTV, AP + o rest(§) < 0 (69)
with _
o *rest () = oPa(l)”Aff)i[Z + VOp(L)||AG] + op (1) + vo()|Ad|>.

We consider. v > 0 such that v|O(1)| £ (liminf, . An,(V;,)) /2 in the last
summand. Then, from the boundedness conditi_on for x,, (22) and from (69) we get

- T 2 AnB _ A2
[A¢] = Op (1). This implies o“[AQ|" = op (1) and v O (D)[AG[" =
=vOp (1) |A®|. Therefore, from (68), it follows that

mej(ﬁ) = mej(ﬁo) 4
+ ot (xIAd + ATV, A6 +v0p, ]| AB]) + o*op, (). (70)
Let zn:—(Vn“lKn /2) . By (20) and (22), || z,| is bounded and separated from zero.
By the definition of |§, we have mej(B) < Qp,oj(ﬁo + czzn). Therefore from (70)
and (68) we obtain
[v*@a4-2)

But the value v in (32) can be chosen small enough and from (71) and (22) we obtain
[(A®—z,)] = op, (1), which proves (23).
8.2. Proof of Lemma 2. We have

3 (s B)- P B) = ri e 7

i=1

+ VOPG(I)”ALT)" < vOp(l) + op (1). (71)

no= 23 (F(xB)- F(& ).

n = 13 (P(e B)- Pe, %)
i=1
By the mean value theorem

Ty = ig FF’(E:', ﬁ)az;,

where &; is an intermediate point between &; and x;=&; + &,;. Therefore, by (27),
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1 . i E i
|7 | < :—1; ccxp(A!ﬁ,-l]!82;| < ccexp(Aa)iE, exp(cA\%[]‘e—;i'.

Here e,;/0, i=1,...,n, arei.id. standard normal. Therefore the expectation of

o2A?

exp(cA|%i|)|%| is bounded by (¢ +.:'2Ac)exp( ) Using the law of large

numbers, we have

o242
limsup|r | < Gexp(Aa)(cI+c2A0)exp(' z J (73)

n—yee

with probability 1.
By the mean value theorem

rg = iz FB(E_,,-,EI(,-})._T([E—BD),
i=1

where Bm is an intermediate point between [30 and [3 We recall that, by (8), BG

lies in the interior of the compact set ®. By Lemma 1, “f} -p° ” = op_(1). Therefore,
for fixed €>0 and some y> 0 we can choose Ogy> 0 and ngy <ee such that if
oe (0, Ogy]l and n > ng, then, with probability greater than 1 — g, we have:

Be T,@%={B:|B-B°|<v]} and therefore
Inls s |FPeEp|ap] < kv
|E|<a,pe®
So rpy= op, (1). This and (73) give the result.
- 8.3, Proof of Lemma 3. The nominator of 6% is

3 (o B) - -

- %E (8(&i+e2i. B) — 21~ 81, BG))2 = Ry + Ry - 2Rs (74)
with

R, = ?llg; [8(&”2:“@‘3@5’30)]2’ Ao ii‘ el

i=1
Ry = ii Eli[g(ﬁfﬂzi,ﬁ]‘g(ﬁh BD)]-
i=1

Here R,=o2(1+0p(1)). _
Estimate now R;. Applying the mean value theorem twice, we obtain

3(5..,-_+82,-, ﬁ) = g(&,B%) + gﬁ@s,ﬁo)ezf + Sa(ﬁf'*'ﬁzf- B—(f))rﬁﬁ,

where E; is an intermediate point between &; and &; + €,;, while E(i) is an

intermediate point between ﬁ and BO. Therefore
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= —2[8 5,,5 ] Ez + 2= ZS’ (En )Szfg'ﬁ(ﬁf"'ez:,ﬁci))TAE +

Mi=1 sy
I = . Al 4
+ ;Z [gﬂ(§i+82f’ B(s)) AB] = Ry + Ryp + Ry3.
i=1 :
By Theorem 3, Aﬁ =g? Op, (1). Therefore, using (30),

|Riz| < o Op (1) coexp(24a)- z exp(ZcA'Ez‘Dl%il.

sl

Here I%, i=1,...,n, are ii.d. standard normal. Therefore, by the law of large
o

numbers, R, = O-ZOPC M.

We obtain similarly that Rj3 =06"0p, (1).
Now, using the mean value theorem, we obtain

-Ru = .rl‘;i [gg(ﬁ,-.._B”)Jrs&(E;.B”)"ézs]ze%s =

I [ 21 N sk <

My
+ 3[4 euea]

where E; is an intermediate point between £ and &, + &,;, while |E| < |eyl.
Using (30), and the law of large numbers, we obtain that the second and the third terms

in the last expression are 6o p,(1). However, Cantelli’s strong law of large numbers
implies that for the first term we have

lzl (65 B(€3 = 6%) = 0?05, M.
Therefore, we obtain
= iéoz[gﬁ@; BOT + o%p, .
Applying again the mean value theorem, we get that

3 }li SE(EhBo)EQFSh —ES (f;,+82,,]3(0) Apey;.
i=1

!=1
Here for the first term we use (30) and Cantelli’s strong law of largc numbers, while for

the second term we use (30) and Theorem 3 to obtain that Ry = o> op (1).
Summarizing, we obtain from (74) that

i‘E[g(xs»B)—w J = "?‘[“f:): (38 B"))z] + oo, . (79

=l
According to Lemma 2,
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%i[gg(gf-ﬁ)]z " ;}i[st(és,ﬁ")]z + op (1). (76)
el i=1

(75) and (76) imply the statement of Lemma 3.
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