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QUASI-UNIT REGULARITY AND QB-RINGS*

КВАЗIОДИНИЧНА РЕГУЛЯРНIСТЬ ТА QB-КIЛЬЦЯ

Some relations for quasiunit regular rings and QB-rings, as well as for pseudounit regular rings and QB∞-rings, are
obtained. In the first part of the paper, we prove that (an exchange ring R is a QB-ring) ⇔ (whenever x ∈ R is regular,
there exists a quasiunit regular element w ∈ R such that x = xyx = xyw for some y ∈ R)⇔ (whenever aR+ bR = dR
in R, there exists a quasiunit regular element w ∈ R such that a + bz = dw for some z ∈ R). Similarly, we also give
necessary and sufficient conditions for QB∞-rings in the second part of the paper.

Отримано деякi спiввiдношення для квазiодиничних регулярних кiлець та QB-кiлець, а також для псевдоодиничних
регулярних кiлець та QB∞-кiлець. У першiй частинi статтi доведено, що (кiльце R з властивiстю замiни є QB-
кiльцем) ⇔ (якщо x ∈ R є регулярним, то iснує квазiодиничний регулярний елемент w ∈ R такий, що x = xyx =
= xyw для деякого y ∈ R)⇔ (якщо aR+ bR = dR в R, то iснує квазiодиничний регулярний елемент w ∈ R такий,
що a + bz = dw для деякого z ∈ R). Аналогiчним чином отриманi необхiднi та достатнi умови для QB∞-кiлець
наведено у другiй частинi статтi.

1. Introduction. Let R be an associative ring with nonzero identity. Recall that a ring R is an
exchange ring if for every right R-module A and any decomposition A = M ′ ⊕ N =

⊕
i∈I Ai,

where M ′R ' RR and the index set I is finite, there exist submodules A′i ⊆ Ai such that A =

= M ′
⊕

(
⊕

i∈I A
′
i) [8]. The class of exchange rings is large and includes all von Neumann regular

rings, all π-regular rings and C∗-algebras of real rank zero [1] etc. The ring R is said to have stable
range one provided that whenever ax+ b = 1 in R, there exists y ∈ R such that a+ by is a unit in
R. An exchange ring R has stable range one if and only if whenever x ∈ R is regular, there exists
a unit-regular element w ∈ R such that x = xyx = xyw for some y ∈ R if and only if whenever
aR + bR = dR in R, there exists a unit regular element w ∈ R such that a + bz = dw for some
z ∈ R [9]. Some necessary and sufficient conditions under which an exchange ring R has weakly
stable range one are also proved.

Replacing invertibility with quasi-invertibility in stable range one Pere Ara discover a new class
of rings, the QB-rings [2]. The ring R is a QB-ring provided whenever aR + bR = R in R, there
exists y ∈ R such that a + by is quasi-invertible in R. As well known, this definition is left-right
symmetric. Replacing R−1q with R−1∞ in the definition of QB-ring, we say that a ring is QB∞-ring
if whenever aR+ bR = R in R, there exists y ∈ R such that a+ by ∈ R−1∞ [6].

In this paper, the definitions of quasi-unit regular and pseudo-unit regular are given. An element
x ∈ R is called quasi-unit regular (pseudo-unit regular) if there exists a quasi-invertible (pseudo-
invertible) element u ∈ R such that x = xux. The purpose of this article is to investigate the
relations of quasi-unit regular and QB-rings, as well as pseudo-unit regular and QB∞-rings. It is
shown in Section 2 that an exchange ring R is a QB-ring if and only if whenever x ∈ R is regular,
there exists a quasi-unit regular element w ∈ R such that x = xyx = xyw for some y ∈ R if and
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only if for any regular x ∈ R there exist a quasi-unit regular element w ∈ R and an idempotent
e ∈ R such that x = ew if and only if whenever aR + bR = dR in R, there exists a quasi-unit
regular element w such that a + bz = dw for some z ∈ R. In Section 3, we extend these to QB∞-
ring. It is extended the results of Chen [7]. We prove that an exchange ring R is a QB∞-ring if
and only if whenever x ∈ R is regular, there exists a pseudo-unit regular element w ∈ R such that
x = xyx = xyw for some y ∈ R.

Throughout this paper, R denotes an associative ring with identity. We denote by R−1, E(R)

the set of all units of R, the set of all idempotents in R, respectively. An element x ∈ R is regular
provided that x = xyx for some y ∈ R, which is also commonly known as von Neumann regular.

2. Quasi-unit regular. Let us start by recalling the concept of quasi-invertibility. We say that
elements x and y in a ring R are centrally orthogonal provided that xRy = yRx = 0, and we write
x⊥y. An element u in an arbitrary ring R is said to be quasi-invertible if there exist elements a, b
in R such that

(1− ua)⊥(1− bu). (2.1)

The set of quasi-invertible elements in R will be denoted by R−1q . It is easily checked that R−1R−1q =

= R−1q and R−1q R−1 = R−1q .
If u ∈ R−1q , then we have the equation (1 − ua)u(1 − bu) = 0. Taking v = a + b − aub this

implies that u = uvu. By computation 1−uv = (1−ua)(1− bu) and 1−vu = (1−au)(1−ub), so
that we have the relation (1− uv)⊥(1− vu). We say in this situation that v is a quasi-inverse of u.

Definition 2.1. Let R be a ring. An element x ∈ R is quasi-unit regular if there exists a
quasi-invertible element u ∈ R such that x = xux. A ring R is quasi-unit regular if every element
in R is quasi-unit regular.

Lemma 2.1. Let R be a ring and x ∈ R. Then the following are equivalent:
(1) x is quasi-unit regular;
(2) x = xyx = xyu, where y, u ∈ R and u ∈ R−1q ;

(2′) x = xyx = uyx, where y, u ∈ R and u ∈ R−1q ;

(3) x = xyx = xyw, where y, w ∈ R and w is quasi-unit regular;
(3′) x = xyx = wyx, where y, w ∈ R and w is quasi-unit regular.

Proof. (1) ⇒ (2). Since x is quasi-unit regular, there exists a quasi-invertible element u ∈ R
such that x = xux. Let ux = e and 1− xu = f . Then e, f ∈ E(R) and

euxu+ uf = uxuxu+ u(1− xu) = u, e(uxu+ uf) + (1− e)uf = u.

Let g = (1− e)ufu−1q (1− e) where u−1q is the quasi-inverse of u. Since (1− e)uf = (1− e)u, we
have

g2 = g, (1− e)u = (1− e)uu−1q (1− e)u = g(1− e)u = gu.

Therefore

u(x+ fu−1q (1− e))(1− eufu−1q (1− e))u = (ux+ ufu−1q (1− e))(1− eufu−1q (1− e))u =

= (e+ ufu−1q (1− e))(1− eufu−1q (1− e))u = (e(1− eufu−1q (1− e)) + ufu−1q (1− e))u =

= (e+ (1− e)ufu−1q (1− e))u = (e+ g)u = u.
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Let

v = (1− eufu−1q (1− e))u = (1 + eufu−1q (1− e))−1u, p = x+ fu−1q (1− e).

Then vpv = v. Since R−1R−1q = R−1q = R−1q R−1, we have v ∈ R−1q .
Since (1− v−1q v)R(1− vv−1q ) = 0, we have (1− v−1q v)p(1− vv−1q ) = 0. Then p = v−1q + 2p−

− v−1q vp − pvv−1q = v−1q + (1 − v−1q v)p + p(1 − vv−1q ). In view of Theorem 2.3 [2], we conclude
that p ∈ R−1q . It is clear that

x = xux = xu(x+ fu−1q (1− e)) = xup.

(2) ⇒ (1). Suppose that x = xyx = xyu where u ∈ R−1q . Let z = yxy. Then x = xzx = xzu

and z = zxz. Hence z = z(x + (1 − xz)u)z where x + (1 − xz)u = u ∈ R−1q . That is, z is
quasi-unit regular. It follows from (1) ⇒ (2) that there exists a p ∈ R−1q such that z = zuz = zup.
Let e = 1− zx and f = zu. Then e, f ∈ E(R) and

fpx(1− f) + e(1− f) = 1− f, (1− f)e(1− f) = 1− f.

Then

z + e(1− f)p = fp+ e(1− f)p = (1 + fpx(1− f))−1p ∈ R−1q .

It is clear that x = x(z + e(1− f)p)x with z + e(1− f)p ∈ R−1q . Therefore, x is quasi-unit regular.
(2)⇒ (3). It is trivial.
(3) ⇒ (2). Let x = xyx = xyw where w is quasi-unit regular. It follows from (1) ⇒ (2), we

have w = ep where e2 = e and p ∈ R−1q . It follows from the equation xy + (1 − xy) = 1 we have
xyw+ (1−xy)w = w. Since x = xyw, we have x+ (1−xy)w = w. Then xy+ (1−xy)wy = wy.
Hence wy + (1− xy)(1−wy) = 1. It follows that ewy(1− e) + (1− xy)(1−wy)(1− e) = 1− e.
Consequently,

e+ (1− xy)(1− wy)(1− e) = 1− ewy(1− e) = (1 + ewy(1− e))−1

is invertible in R. Let

u = w + (1− xy)(1− wy)(1− e)p = (e+ (1− xy)(1− wy)(1− e))p.

Since R−1R−1q = R−1q and R−1q R−1 = R−1q , we have u ∈ R−1q . It is easy to check that x = xyx =

= xyw = xyu where u ∈ R−1q .
Similarly, we can prove equivalences of (1), (2′), (3′).
Lemma 2.1 is proved.
Corollary 2.1. Let R be a ring and x ∈ R be regular. Then the following are equivalent:
(1) x is quasi-unit regular;
(2) there exist some idempotent e ∈ R and some quasi-invertible element u ∈ R such that

x = eu;

(2′) there exist some idempotent e ∈ R and some quasi-invertible element u ∈ R such that
x = ue;

(3) there exist some idempotent e ∈ R and some quasi-unit regular element w ∈ R such that
x = ew;

(3′) there exist some idempotent e ∈ R and some quasi-unit regular element w ∈ R such that
x = we.
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Proof. (1)⇒ (2). It follows from (1)⇒ (2) of Lemma 2.1.
(2)⇒ (3). It is obvious.
(3)⇒ (1). Assume x = xyx = ew, where e ∈ R is an idempotent and w is quasi-unit regular. Let

w = wuw where u is a quasi-invertible in R. Since xy+(1−xy) = 1, we have ewy+(1−xy) = 1.
It follows that

ewy(1− e) + (1− xy)(1− e) = 1− e.
Then

v := e+ (1− xy)(1− e) = 1− ewy(1− e) = (1 + ewy(1− e))−1

is a unit in R. Let

p = x+ (1− xy)(1− e)w = (e+ (1− xy)(1− e))w = vw = vwuw = vw(uv−1)vw.

Since R−1R−1q = R−1q and R−1q R−1 = R−1q , we have uv−1 ∈ R−1q . Then q is quasi-unit regular. It is
easy to check that x = xyx = xy(x+(1−xy)(1−e)w) = xyp. The result follows from Lemma 2.1.

Similarly, we can prove equivalences of (1), (2′), (3′).
Corollary 2.1 is proved.
By the result of Theorem 8.4 [2], an exchange ring R is a QB-ring if and only if every regular

element in R is quasi-unit regular. It follows from Lemma 2.1, we immediately have the following
characterizations of exchange QB-ring.

Theorem 2.1. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB-ring;
(2) whenever x ∈ R is regular, there exists a u ∈ R−1q such that x = xyx = xyu for some

y ∈ R;

(2′) whenever x ∈ R is regular, there exists a u ∈ R−1q such that x = xyx = uyx for some
y ∈ R;

(3) whenever x ∈ R is regular, there exists a quasi-unit regular element w ∈ R such that
x = xyx = xyw for some y ∈ R;

(3′) whenever x ∈ R is regular, there exists a quasi-unit regular element w ∈ R such that
x = xyx = wyx for some y ∈ R.

By Theorem 2.1, an exchange ring R is a QB-ring if and only if whenever x = xyx ∈ R, there
exists a quasi-invertible element u ∈ R such that x = xyu if and only if whenever x = xyx ∈ R,
there exists a quasi-invertible element u ∈ R such that x = uyx. The following theorem gives a
common quasi-invertible element u ∈ R such that x = xyu = uyx.

Theorem 2.2. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB-ring;
(2) whenever x = xyx, there exists a quasi-invertible element u ∈ R such that x = xyu = uyx;

(3) whenever x = xyx, there exists a quasi-invertible element u ∈ R such that xyu = uyx.

Proof. (1) ⇒ (2). For any x = xyx in R, we have x = xzx and z = zxz with z = yxy. By
Theorem 8.4 [2], we have z = zxz = zvz for some quasi-invertible element v ∈ R. Let

u = (1− xz − vz)v(1− zx− zv) = v − vzv + x.

Since v ∈ R−1q , there exist a, b ∈ R such that (1− va)⊥(1− bv). It is easily checked that (1− xz −
− vz)2 = 1 and (1− zx− zv)2 = 1. Then
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(1− u(1− zx− zv)a(1− xz − vz)) = (1− xz − vz)(1− va)(1− xz − vz),

(1− (1− zx− zv)b(1− xz − vz)u) = (1− zx− zv)(1− bv)(1− zx− zv).

Hence, (1− u(1− zx− zv)a(1− xz − vz))⊥(1− (1− zx− zv)b(1− xz − vz)u). Therefore, u is
quasi-invertible. It follows from

xzu = xzv − xzvzv + xzx = xzx = x, uzx = vzx− vzvzx+ xzx = xzx = x

we obtain that x = xyu = xzu = uzx = uyx with u ∈ R−1q .
(2)⇒ (3). It is obvious.
(3) ⇒ (1). For any x = xyx in R, there exists a quasi-invertible element u ∈ R such that

xyu = uyx. Define

η : xyR = xR ' yxR, r ∈ R, η(xr) = yxr;

α : (1− xy)R→ (1− yx)R, r ∈ R, (1− xy)r → (1− yx)u−1q (1− xy)r;

β : (1− yx)R→ (1− xy)R, r ∈ R, (1− yx)r → (1− xy)ur.

Since (1 − xy)u = u(1 − yx), we easily check that α and β are right R-module homomorphisms.
Define

φ : R = xR⊕ (1− xy)R→ yxR⊕ (1− yx)R = R,

x1 ∈ xR, x2 ∈ (1− xy)R, φ(x1 + x2) = η(x1) + α(x2);

ψ : R = yxR⊕ (1− yx)R→ xR⊕ (1− xy)R = R,

y1 ∈ yxR, y2 ∈ (1− yx)R, ψ(y1 + y2) = η−1(y1) + β(y2).

Then

(1− ψφ)(x1 + x2) = x2 − (1− xy)u−1q ux2 =

= (1− xy)x2 − (1− xy)u−1q ux2 = (1− xy)(1− u−1q u)x2

for any x1 ∈ xR, x2 ∈ (1− xy)R. On the other hand,

(1− φψ)(y1 + y2) = y2 − (1− yx)uu−1q y2 = (1− yx)(1− uu−1q )y2

for any y1 ∈ yxR, y2 ∈ (1−yx)R. Then we have φ is quasi-invertible such that x = xφx. Therefore
R is a QB-ring.

Theorem 2.2 is proved.
Chen had shown that an exchange ring R is a QB-ring if and only if for any regular x ∈ R,

there exist e ∈ E(R) and u ∈ R−1q such that x = eu [5] (Theorem 5). Using Corollary 2.1, we have
following corollary.

Corollary 2.2. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB-ring;
(2) whenever x ∈ R is regular, there exists an idempotent e ∈ R and a quasi-unit regular element

w ∈ R such that x = ew;

(2′) whenever x ∈ R is regular, there exists an idempotent e ∈ R and a quasi-unit regular
element w ∈ R such that x = we.
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Canfell showed that R has stable range one if and only if aR+ bR = R implies that there exists
a unit u ∈ R such that a+ by = du for some y ∈ R, by using the method of completion of diagrams
[4] (Theorem 2.9). We generalize Canfell’s result to QB-rings.

Proposition 2.1. Let R be a ring. Then the following are equivalent:
(1) R is a QB-ring;
(2) whenever aR+ bR = R, there exists some z ∈ R such that a+ bz is quasi-invertible;
(3) whenever aR + bR = dR, there exists some quasi-invertible element u ∈ R such that

a+ bz = du for some z ∈ R.

Proof. (3)⇒ (2)⇒ (1) are obvious.
(1)⇒ (3). Let aR + bR = dR. Then a, b ∈ dR. Hence we may assume that a = dr and b = ds

for some r, s ∈ R. Let ax + by = d. Equivalently we have drx + dsy = d. It follows that dg = 0

where g = 1− rx− sy. Now from the fact that rx+ sy + g = 1 we have there exists some z′ ∈ R
such that r + (sy + g)z′ = u ∈ R−1q . Hence

du = d(r + (sy + g)z′) = a+ byz′ + dgz′ = a+ byz′ = a+ bz

where z = yz′.
Proposition 2.1 is proved.
In case R is an exchange ring. We even have the following more general result.
Theorem 2.3. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB-ring;
(2) whenever aR + bR = R, there exists some quasi-unit regular element w ∈ R such that

a+ bz = w for some z ∈ R;

(3) whenever aR + bR = dR, there exists some quasi-unit regular element w ∈ R such that
a+ bz = dw for some z ∈ R.

Proof. (1)⇒ (3). It follows from Proposition 2.1.
(3)⇒ (2). It is obvious.
(2) ⇒ (1). Let x = xyx for some y ∈ R. Since xy + (1 − xy) = 1. By assumptions we have

x+ (1− xy)z = w is quasi-unit regular for some z ∈ R. Hence

x = xyx = xy(w − (1− xy)z) = xyw.

The conclusion follows from Theorem 2.1.
Theorem 2.3 is proved.
Following a similar route above we give the following characterizations of QB-ring.
Theorem 2.4. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB-ring;
(2) whenever aR+bR = R, there exists a quasi-unit regular element w ∈ R such that aw+by = 1

for some y ∈ R;

(3) whenever aR + bR = R, there exist quasi-unit regular elements w1, w2 ∈ R such that
aw1 + bw2 = 1;

(4) whenever a1R + . . . + amR = R, there exist quasi-unit regular elements w1, . . . , wm ∈ R
such that aw1 + . . .+ amwm = 1, where m ≥ 2;

(5) whenever aR+bR = dR, there exists a quasi-unit regular element w ∈ R such that aw+by =

= d for some y ∈ R;
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(6) whenever aR + bR = dR, there exist quasi-unit regular elements w1, w2 ∈ R such that
aw1 + bw2 = d;

(7) whenever a1R + · · ·+ amR = dR, there exist quasi-unit regular elements w1, . . . , wm ∈ R
such that aw1 + . . .+ amwm = d, where m ≥ 2.

Proof. (7) ⇒ (4) ⇒ (3) ⇒ (2) and (7)⇒ (6) ⇒ (5)⇒ (2) are obvious.

(1) ⇒ (7). Assume that a1R + . . . + amR = dR. Then ai ∈ dR, i = 1, . . . ,m. Let ai = dti,

i = 1, . . . ,m. Obviously we have dt1x1+. . .+dtmxm = d for some xi ∈ R, i = 1, . . . ,m. It follows
that dg = 0, where g = 1 − (dt1x1 + . . . + dtmxm). Since t1x1 + . . . + tmxm + g = 1 we obtain
that t1R+ . . .+ tmR+ gR = R. Note that R is an exchange ring, so there exist idempotent ei ∈ R,
i = 1, . . . ,m, and idempotent f ∈ R, where ei and f are orthogonal satisfying e1 + . . .+em +f = 1

such that ei = tiyi, i = 1, . . . ,m, and f = gz for some yi, z ∈ R, i = 1, . . . ,m. Let wi = yiei,

i = 1, . . . ,m. Then tiwi = tiyiei = ei and witiwi = yieiei = yiei = wi. Since R is a QB-ring,
we have wi is quasi-unit regular by Theorem 8.4 [2]. It follows from t1w1 + . . . + tmwm + gz =

= e1 + . . .+ em + f = 1 that aw1 + . . .+ amwm = d(t1w1 + . . .+ tmwm + gz) = d.

(2)⇒ (1). Let x = xyx for some y ∈ R. Since yx+(1−yx) = 1, we have yR+(1−yx)R = R.
By assumptions there exists a quasi-unit regular element w ∈ R such that yw + (1 − yx)z = 1 for
some z ∈ R. Hence x = xyx = x(yw + (1− yx)z) = xyw. It follows from Theorem 2.1 that R is
a QB-ring.

Theorem 2.4 is proved.

The following proposition may be viewed as a supplement of Theorem 2.4 in case m = 1, which
also generalizes Theorem 4 [5].

Proposition 2.2. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever aR = bR, there exists a quasi-invertible element u ∈ R such that b = au;

(3) whenever aR = bR, there exists a quasi-unit regular element w ∈ R such that b = aw.

Proof. (1)⇒ (2). Given aR = bR, then a = bx and b = ay for x, y ∈ R. From xy+(1−xy) =

= 1, we have z ∈ R such that x + (1 − xy)z = u ∈ R−1q . It is easy to verify that bxy = b. Then
a = bx = b(x+ (1− xy)z) = bu.

(2)⇒ (3). It is trivial.

(3) ⇒ (1). Let x = xyx for some y ∈ R. Since xR = xyR, we can find a quasi-unit regular
element w ∈ R such that x = xyw. Then x = xyx = xyw. It follows from Theorem 2.1 that R is a
QB-ring.

Proposition 2.2 is proved.
Corollary 2.3. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever ψ : aR ' bR, where a, b ∈ R, there exists a quasi-invertible element u ∈ R such
that ψ(a) = bu;

(3) whenever ψ : aR ' bR, where a, b ∈ R, there exists a quasi-unit regular element w ∈ R such
that ψ(a) = bw.
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Proof. (1) ⇒ (2). If ψ : aR ' bR, then b = ψ(ax) and a = ψ−1(by) for some x, y ∈ R. Then
b = ψ(ax) = ψ(ψ−1(by)x) = byψ(x). Since yψ(x) + (1 − yψ(x)) = 1 and R is a QB-ring, we
have y + (1− yψ(x))z = u ∈ R−1q . Hence ψ(a) = by = b(y + (1− yψ(x))z) = bu.

(2) ⇒ (3). It is trivial.

(3) ⇒ (1). It follows from Proposition 2.2.

Corollary 2.3 is proved.

The ideas of the following result come from Lemma 1.2 [3].
Proposition 2.3. Let R be an exchange ring. Then the following are equivalent:

(1) R is a QB-ring;

(2) whenever x = xyx, there exists a ∈ R such that y − a is quasi-invertible and 1 − xa is
invertible;

(3) whenever x = xyx, there exists a ∈ R such that x − a is quasi-unit regular and 1 − ya is
invertible.

Proof. (1)⇒ (2). Let x = xyx for some y ∈ R. Since yx+(1−yx) = 1 and R is a QB-ring, we
have there exists some z ∈ R such that u : = y+ (1− yx)z is quasi-invertible. Let a = −(1− yx)z.
Then y − a = u. Moreover, since x = xyx, we have 1− xa = 1 + x(1− yx)z = 1 is invertible.

(2) ⇒ (3). Assume x = xyx. Let z = yxy. Obviously, x = xzx and z = zxz. By assumption,
there exists a′ ∈ R such that u := x− a′ is quasi-invertible and 1− za′ is invertible. Let a = xya′.
Then

1− ya = 1− yxya′ = 1− za′, x− a = xyx− xya′ = xy(x− a′) = eu,

where e = xy is an idempotent and u ∈ R−1q . Hence x− a is quasi-unit regular by Corollary 2.1.

(3) ⇒ (1). For any x = xyx in R, we have x = xzx and z = zxz with z = yxy. Then there
exists a′ ∈ R such that w := x− a′ is quasi-unit regular and u := 1− za′ is invertible. Hence

xyw = xy(x− a′) = x− xya′ = x− xyxya′ = x− xza′ = x(1− za′) = xu.

It follows that x = xywu−1 = xyw′ where w′ = wu−1. Assume that w = wpw, where p is the
quasi-invertible in R. Then

w′ = wu−1 = wpwu−1 = (wu−1)(up)(wu−1) = w′(up)w′,

where up ∈ R−1R−1q = R−1q . Therefore, we have x = xyx = xyw′ with w′ is quasi-unit regular. It
follows from Theorem 2.1 that R is a QB-ring.

Proposition 2.3 is proved.

3. Pseudo-unit regular. Recall that two elements x, y ∈ R are centrally orthogonal, denoted by
x⊥y, if xRy = 0 = yRx. We say that two elements x, y ∈ R are pseudo-orthogonal, denoted by
x\y, if RxRyR is nilpotent. Let R−1∞ =

{
u ∈ R | ∃ a, b ∈ R such that (1 − ua)\(1 − bu)

}
. It is

also easily checked that R−1R−1∞ = R−1∞ and R−1∞ R−1 = R−1∞ .

A ring R is a QB∞-ring provided that aR + bR = R implies that there exists y ∈ R such that
a+ by ∈ R−1∞ . Obviously, every QB-ring is a QB∞-ring.

Definition 3.1. Let R be a ring. An element x ∈ R is pseudo-unit regular if there exists
u ∈ R−1∞ such that x = xux. A ring R is pseudo-unit regular if every element in R is pseudo-unit
regular.
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Lemma 3.1. Let R be a ring and x ∈ R. Then the following are equivalent:

(1) x is pseudo-unit regular;

(2) x = xyx = xyu, where u, y ∈ R and u ∈ R−1∞ ;

(2′) x = xyx = uyx, where u, y ∈ R and u ∈ R−1∞ ;

(3) x = xyx = xyw, where w, y ∈ R and w is pseudo-unit regular;

(3′) x = xyx = wyx, where w, y ∈ R and w is pseudo-unit regular.

Proof. (1) ⇒ (2). Since x is pseudo-unit regular, there exists u ∈ R−1∞ such that x = xux. Let
ux = e and 1 − xu = f . Then e2 = uxux = ux = e and f2 = (1 − xu)(1 − xu) = 1 − xu = f .
Hence euxu+ uf = uxuxu+ u(1− xu) = u and e(uxu+ uf) + (1− e)uf = u. Since u ∈ R−1∞ ,

there exists v ∈ R such that (1 − uv)\(1 − vu) and (R(u − uvu)R)m = 0 = (R(v − vuv)R)m for
some m ∈ N by Lemma 2.1 [6]. Let g = (1 − e)ufv(1 − e). Since (1 − e)uf = (1 − e)u, we see
that

(1− e)ufv(1− e))u = (1− e)uvu− (1− e)uveu = (1− e)uvu− (1− e)uvuxu =

= (1− e)uvu+ (1− e)(u− uvu)xu− (1− e)uxu =

= (1− e)uvu− (1− e)(u− uvu) + (1− e)(u− uvu)xu.

As a result, (1− e)u ≡ (1− e)ufv(1− e)u ≡ gu (mod R(u− uvu)R). Similarly, we have

g2 ≡ (1− e)ufv(1− e)ufv(1− e) ≡ (1− e)ufv(1− e) ≡ g (mod R(u− uvu)R).

Then

u(x+ fv(1− e))(1− eufv(1− e))u = (ux+ ufv(1− e))(1− eufv(1− e))u =

= (e+ ufv(1− e))(1− eufv(1− e))u = (e(1− eufv(1− e)) + ufv(1− e))u =

= (e+ (1− e)ufv(1− e))u = (e+ g)u ≡ u(modR(u− uvu)R).

Let p = x+ fv(1− e) and q = (1− eufv(1− e))u = (1 + eufv(1− e))−1u. Then qpq = q. Since
R−1R−1∞ = R−1∞ and R−1∞ R−1 = R−1∞ , we have q ∈ R−1q . Hence q̄p̄q̄ = q̄ in R/R(u−uvu)R. Since
q̄ ∈ (R/R(u− uvu)R)−1∞ , there exist ā, b̄ ∈ R/R(u− uvu)R such that (1̄− q̄ā)\(1̄− b̄q̄). It follows
from (1̄ − q̄p̄) = (1̄ − q̄p̄)(1̄ − q̄ā) and (1̄ − p̄q̄) = (1̄ − b̄q̄)(1̄ − b̄p̄) that (1̄ − q̄p̄)\(1̄ − p̄q̄). Then
p̄ ∈ (R/R(u− uvu)R)−1∞ . By Lemma 2.5 [6], p ∈ R−1∞ . Hence x = xux = xu(x+ fu−1q (1− e)) =

= xup.

(2) ⇒ (1). Suppose that x = xyx = xyu where u ∈ R−1∞ . Let z = yxy. Then x = xzx = xzu

and z = zxz. Hence z = z(x+(1−xz)u)z where x+(1−xz)u = u ∈ R−1∞ . z is pseudo-unit regular.
It follows from (1)⇒ (2) that there exists a p ∈ R−1∞ such that z = zuz = zup. Let e = 1− zx and
f = zu. Then e2 = e and f2 = f . It is easily checked that

fpx(1− f) + e(1− f) = 1− f and (1− f)e(1− f) = 1− f.

Then

z + e(1− f)p = fp+ e(1− f)p = (1 + fwx(1− f))−1p ∈ R−1∞ .

It is clear that x = x(z+ e(1−f)p)x with z+ e(1−f)p ∈ R−1∞ . Therefore, x is pseudo-unit regular.

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3



424 XIAOQING SUN, SHANGPING WANG, XIAOQIN SHEN, JIANGHUA LI

(2) ⇒ (3). It is trivial.

(3) ⇒ (2). Let x = xyx = xyw where w is quasi-unit regular. It follows from (1) ⇒ (2), we
have w = ep where e2 = e and p ∈ R−1∞ . It follows from the equation xy + (1− xy) = 1 we obtain
xyw+ (1−xy)w = w. Since x = xyw, we have x+ (1−xy)w = w. Then xy+ (1−xy)wy = wy.
Hence wy + (1− xy)(1−wy) = 1. It follows that ewy(1− e) + (1− xy)(1−wy)(1− e) = 1− e.
Consequently,

e+ (1− xy)(1− wy)(1− e) = 1− ewy(1− e) = (1 + ewy(1− e))−1

is invertible in R. Let

u = w + (1− xy)(1− wy)(1− e)p = (e+ (1− xy)(1− wy)(1− e))p.

Since R−1R−1∞ = R−1∞ and R−1∞ R−1 = R−1∞ , we have u ∈ R−1∞ . It is easy to check that
x = xyx = xyw = xyu where u ∈ R−1∞ .

Similarly, we can prove equivalences of (1), (2′), (3′).

Lemme 3.1 is proved.
Corollary 3.1. Let R be a ring and x ∈ R be regular. Then the following are equivalent:

(1) x is pseudo-unit regular;

(2) there exist some idempotent e ∈ R and some u ∈ R−1∞ such that x = eu;

(2′) there exist some idempotent e ∈ R and some u ∈ R−1∞ such that x = ue;

(3) there exist some idempotent e ∈ R and some pseudo-unit regular element w ∈ R such that
x = ew;

(3′) there exist some idempotent e ∈ R and some pseudo-unit regular element w ∈ R such that
x = we.

Proof. (1) ⇒ (2). It follows from (1)⇒ (2) of Lemma 3.1.

(2)⇒ (3). It is obvious.

(3) ⇒ (1). Assume x = xyx = ew, where e ∈ R is an idempotent and w is pseudo-unit regular.
Let w = wuw where u ∈ R−1∞ . Since xy + (1− xy) = 1, we have ewy + (1− xy) = 1. It follows
that ewy(1− e) + (1− xy)(1− e) = 1− e. Then

v := e+ (1− xy)(1− e) = 1− ewy(1− e) = (1 + ewy(1− e))−1

is a unit in R. Let

p = x+ (1− xy)(1− e)w = (e+ (1− xy)(1− e))w = vw = vwuw = vw(uv−1)vw.

Since R−1R−1∞ = R−1∞ and R−1∞ R−1 = R−1∞ , we have uv−1 ∈ R−1∞ . Then q is pseudo-unit regular.
It is easy to check that x = xyx = xy(x + (1 − xy)(1 − e)w) = xyp. The result follows from
Lemma 3.1.

Similarly, we can prove equivalences of (1), (2′), (3′).

Corollary 3.1 is proved.

By the result of Theorem 2.1 [7], an exchange ring R is a QB∞-ring if and only if every regular
element in R is pseudo-unit regular. It follows from Lemma 3.1 and Corollary 3.1, we immediately
have the following characterizations of exchange QB∞-ring.
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Theorem 3.1. Let R be an exchange ring. Then the following are equivalent:
(1) R is a QB∞-ring;
(2) whenever x ∈ R is regular, there exists a u ∈ R−1∞ such that x = xyx = xyu for some

y ∈ R;

(2′) whenever x ∈ R is regular, there exists a u ∈ R−1∞ such that x = xyx = uyx for some
y ∈ R;

(3) whenever x ∈ R is regular, there exists a pseudo-unit regular element w ∈ R such that
x = xyx = xyw for some y ∈ R;

(3′) whenever x ∈ R is regular, there exists a pseudo-unit regular element w ∈ R such that
x = xyx = wyx for some y ∈ R.

By Lemma 3.1 and Theorem 3.1, the proof of Theorems 2.2, 2.3 and 2.4, Propositions 2.1, 2.2
and 2.3 could be similarly extended to QB∞-ring.
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