UDC 517.5

Si Duc Quang (Hanoi Univ. Education, Vietnam)

EXTENSION OF HOLOMORPHIC MAPPINGS FOR FEW MOVING HYPERSURFACES*

ПРОДОВЖЕННЯ ГОЛОМОРФНИХ ВІДОБРАЖЕНЬ Для декількох гіперповерхонь, що рухаються

We prove the big Picard theorem for holomorphic curves from a punctured disc into $\mathbf{P}^{n}(\mathbf{C})$ with n + 2 hypersurfaces. We also prove a theorem on the extension of holomorphic mappings in several complex variables into a submanifold of $\mathbf{P}^{n}(\mathbf{C})$ with several moving hypersurfaces.

Доведено велику теорему Пікара для голоморфних кривих із проколотого круга в $\mathbf{P}^{n}(\mathbf{C})$ із n + 2 гіперповерхнями. Також доведено теорему про продовження голоморфних відображень від декількох комплексних змінних у підбагатовид $\mathbf{P}^{n}(\mathbf{C})$ з декількома гіперповерхнями, що рухаються.

1. Introduction. Picard proved the following theorems for meromorphic functions in one complex variable.

Theorem A (Little Picard theorem). Let f(z) be a meromorphic function on the complex plane. If there exist three mutually distinct points w_1 , w_2 , and w_3 on the Riemann sphere such that $f(z)-w_i$, i = 1, 2, 3, has no zero on the complex plane, then f is a constant.

Theorem B (Big Picard theorem). Let f(z) be a meromorphic function on $\Delta^* = \{z \in \mathbb{C} : 1 \le \le |z| < +\infty\}$. If there exist three mutually distinct points w_1 , w_2 and w_3 on the Riemann sphere such that $f(z) - w_i$, i = 1, 2, 3, has no zero on Δ^* , then f does not have an essential singularity at ∞ .

In the case of higher dimension, H. Fujimoto [3] gave a Big Picard's theorem for holomorphic mappings from a complex manifold into $\mathbf{P}^{n}(\mathbf{C})$ as follows.

Theorem C (Theorem A [3]). Let M be a complex manifold and let S be a regular thin analytic subset of M and let f be a holomorphic map of $M \setminus S$ into the n-dimensional complex projective space $\mathbf{P}^n(\mathbf{C})$. If f is of rank r somewhere and if f(M-S) omits 2n - r + 2 hyperplanes in general position, then f can be extended to a holomorphic map of M into $\mathbf{P}^n(\mathbf{C})$, where the rank of f at a point $x \in M \setminus S$ means the rank of the Jacobian matrix of f at x.

By using a criterion on normality and by applying little Picard theorems for holomorphic mappings, Z. H. Tu generalized the above theorems to the case of moving hyperplanes as follows.

Theorem D (Theorem 2.2 [11]). Let S be an analytic subset of a domain D in \mathbb{C}^n with codimension one, whose singularities are normal crossings. Let f be a holomorphic mapping from $D \setminus S$ into $\mathbb{P}^n(\mathbb{C})$. Let $a_1(z), \ldots, a_q(z)$ ($z \in D$) be q ($q \ge 2n + 1$) moving hyperplanes in $\mathbb{P}^n(\mathbb{C})$ located in pointwise general position such that f(z) intersects $a_j(z)$ on $D \setminus S$ with multiplicity at least m_j , $j = 1, \ldots, q$, where m_1, \ldots, m_q are positive integers and may be $+\infty$, with

$$\sum_{j=1}^{q} \frac{1}{m_j} < \frac{q - (n+1)}{n}.$$

Then f extends to a holomorphic mapping from D into $\mathbf{P}^{n}(\mathbf{C})$.

^{*}This work was supported by a NAFOSTED grant of Vietnam.

We would like to note that in Theorem D, the number of hyperplanes is assumed to be at least 2n+1 and this assumption plays a very essential role in the proof. Then, the following question arises naturally: "Are there any Big Picard's theorems which are analogous to Theorem C or Theorem D in the case where the moving hyperplanes are replaced by moving hypersurfaces and the number q is replaced by a smaller one ?"

In the present paper we will give some positive answers for this question. First of all, let us recall some following.

Denote by \mathcal{H}_D the ring of all holomorphic functions on a domain D in \mathbb{C}^m . Let Q be a homogeneous polynomial in $\mathcal{H}_D[x_0, \ldots, x_n]$ of degree $d \ge 1$. Denote by Q(z) the homogeneous polynomial over \mathbb{C} obtained by substituting a specific point $z \in D$ into the coefficients of Q. We also call a moving hypersurface in $\mathbb{P}^n(\mathbb{C})$ on D each homogeneous polynomial $Q \in \mathcal{H}_D[x_0, \ldots, x_n]$ such that the coefficients of Q have no common zero point.

Let Q_1, \ldots, Q_q be q moving hypersurfaces of $\mathbf{P}^n(\mathbf{C})$ on D. Set

$$\mathcal{T}_d := \{ (i_0, \dots, i_n) \in N^{n+1} \mid i_0 + i_1 + \dots + i_n = d \}.$$

Assume that

$$Q_j(z) = \sum_{I \in \mathcal{T}_{d_j}} a_{jI}(z) x^I,$$

where a_{jI} are holomorphic functions on D without common zeros, $x^{I} = x_{0}^{i_{0}} \dots x_{n}^{i_{n}}$ for $x = (x_{0}, \dots, x_{n})$ and $I = (i_{0}, \dots, i_{n}) \in \mathcal{T}_{d_{j}}, d_{j} = \deg(Q_{j})$.

Denote by $\mathcal{R}\{Q_j\}$ the smallest field which contains C and all functions $\frac{a_{jI}}{a_{jJ}}$ with $a_{iJ} \neq 0$. Sometime we write \mathcal{R} for $\mathcal{R}\{Q_j\}$ if there is no confusion.

We say that moving hypersurfaces $\{Q_j\}_{j=1}^q$ in $\mathbf{P}^n(\mathbf{C})$ are located in general position (resp. in pointwise general position) on a subset $\Omega \subset D$ if there exists $z \in \Omega$ (resp. for all $z \in \Omega$) such that for any $1 \leq j_0 < \ldots < j_n \leq q$ the system of equations

$$Q_{j_i}(z)(w_0,\ldots,w_n) = 0, \quad 0 \le i \le n,$$

has only the trivial solution w = (0, ..., 0) in \mathbb{C}^{n+1} .

Let f be a meromorphic mapping of D into $\mathbf{P}^n(\mathbf{C})$ and let Q be a moving hypersurface of $\mathbf{P}^n(\mathbf{C})$ on D defined by $Q(z) = \sum_{I \in \mathcal{T}_d} a_{jI}(z)x^I$, where d is the degree of homogeneous polynomial Q. For $z_0 \in D$, take a reduced representation $f = (f_0 : \ldots : f_n)$ of f on a neighborhood U_{z_0} of z_0 and set $Q(f)(z) = Q(z)(f_0(z), \ldots, f_n(z))$ on U_{z_0} . We define $\operatorname{div}Q(f)(z) = \operatorname{div}(Q(f_0, \ldots, f_n))(z)$ if $Q(f) \neq 0$ and $\operatorname{div}Q(f)(z) = \infty$ if $Q(f) \equiv 0$. Thus, $\operatorname{div}Q(f)$ is well-defined on D independently of the choice of reduced representations of f. If $\operatorname{div}Q(f)(z) \geq m_j$ for all $z \in D$, we say that f intersects Q on D with multiplicity at least m_j .

We set punctured discs on $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ around ∞ by

$$\Delta^* = \{ z \in \mathbf{C} \colon |z| \ge 1 \},$$
$$\Delta^*(t) = \{ z \in \mathbf{C} \colon |z| \ge t \}, \quad 1 \le t \le \infty,$$

and set $\Delta = \Delta^* \cup \{\infty\}$. For a moving hypersurface Q in $\mathbf{P}^n(\mathbf{C})$ on Δ^* defined by $Q(z) = \sum_{I \in \mathcal{T}_d} a_{jI}(z) x^I$, we say that Q is a moving hypersurface in $\mathbf{P}^n(\mathbf{C})$ on Δ if all coefficients a_{jI} are extendable over Δ .

Our first aim of this paper is to show a Big Picard's theorem for holomorphic curve from a punctured disc with only n + 2 hypersurfaces. Namely, we will prove the following theorem.

Theorem 1. Let f be a holomorphic curve from the punctured disc Δ^* into $\mathbf{P}^n(\mathbf{C})$, and let Q_1, \ldots, Q_{n+2} be n+2 hypersurfaces in $\mathbf{P}^n(\mathbf{C})$ on Δ located in general position such that f is algebraically nondegenerate over $\mathcal{R}\{Q_i\}$. Assume that f intersects each Q_i on Δ^* with multiplicity at least m_i , where m_1, \ldots, m_{n+2} are fixed positive integers and may be $+\infty$, with

$$\sum_{i=1}^n \frac{1}{m_i} < \frac{1}{M},$$

where $M = (nd + [(n+1)^2(2^n - 1)(d\epsilon)^{-1}]d)^n$. Then f extends at ∞ to a holomorphic curve \tilde{f} from $\Delta = \Delta^* \cup \{\infty\}$ to $\mathbf{P}^n(\mathbf{C})$.

In the case of moving hypersurfaces and an arbitrary meromorphic mapping from a domain in \mathbb{C}^m into a subvariety V of $\mathbb{P}^n(\mathbb{C})$, we shall prove the following, which is a generalization of the above result of H. Fujimoto.

Theorem 2. Let f be a holomorphic mapping of a domain $D \setminus S$ into X, where D is a domain in \mathbb{C}^m , S is an analytic subset of co-dimension one of D, whose singularities are only normal crossings, and X is an irreducible subvariety of $\mathbb{P}^n(\mathbb{C})$. Let Q_0, \ldots, Q_{q-1} be q moving hypersurfaces of $\mathbb{P}^n(\mathbb{C})$ on D located in pointwise subgeneral position with respect to X. Assume that f does not intersect each Q_i on $D \setminus S$ for all $1 \le i \le q-1$. If $q \ge 2 \dim X + 1$. Then f extends to a holomorphic mapping \tilde{f} from D into $\mathbb{P}^n(\mathbb{C})$.

2. Notations. (a) We set punctured discs on $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ around ∞ by

$$\Delta^* = \{ z \in \mathbf{C} \colon |z| \ge 1 \},$$
$$\Delta^*(t) = \{ z \in \mathbf{C} \colon |z| \ge t \}, \quad t \ge 1,$$

and set

$$\Gamma(r) = \{ z \in \mathbf{C} \colon |z| = t \}, \quad t \ge 1.$$

In this paper, we always assume that functions on Δ^* and mappings from Δ^* are defined on a neighborhood of Δ^* in C. Let ξ be a function on Δ^* satisfying that

(i) ξ is differentiable outside a discrete set of points,

(ii) ξ is locally written as a difference of two subharmonic functions.

Then by [5] (§1), we have

$$\int_{1}^{\circ} \frac{dt}{t} \int_{\Delta^{*}(t)} dd^{c}\xi = \frac{1}{4\pi} \int_{\Gamma(r)} \xi(re^{i\theta})d\theta - \frac{1}{4\pi} \int_{\Gamma(1)} \xi(re^{i\theta})d\theta - (\log r) \int_{\Gamma(1)} d^{c}\xi,$$
(2.1)

where $dd^c\xi$ is taken in the sense of current.

(b) A divisor E on Δ^* is given by a formal sum $E = \sum \mu_{\nu} p_{\nu}$, with $\{p_{\nu}\}$ is a locally finite family of distinct points in Δ^* and $\mu_{\nu} \in \mathbb{Z}$. We define the support of E by $\text{Supp}(E) = \bigcup_{\nu \neq 0} p_{\nu}$. Let k be a positive integer or $+\infty$. We define the divisor $E^{(k)}$ by

$$E^{(k)} := \sum \min\{\mu_{\nu}, k\} p_{\nu},$$

and define the truncated counting function to level k of E by

$$N^{(k)}(r,E) := \int_{1}^{r} \frac{n^{(k)}(t,E)}{t} dt, \quad 1 < r < +\infty,$$

where

$$n^{(k)}(t, E) = \sum_{|z| \le t} E^{(k)}(z).$$

We simply write N(r, E) for $N^{(+\infty)}(r, E)$.

(c) Let $f: \Delta^* \to \mathbf{P}^n(\mathbf{C})$ be a holomorphic curve. For an arbitrary fixed homogeneous coordinates $(w_0: \ldots: w_n)$ of $\mathbf{P}^n(\mathbf{C})$, it is easy to see that there exist a neighborhood U of Δ^* in \mathbf{C}^m and a reduced representation $(f_0: \ldots: f_n)$ on U of f, which means that f_0, \ldots, f_n are holomorphic functions on U without common zeros. We set $||f||: = (|f_0|^2 + \ldots + |f_n|^2)^{\frac{1}{2}}$.

Denote by Ω the Fubibi-Study form of $\mathbf{P}^n(\mathbf{C})$. The order function or characteristic function of f with respect to Ω is defined by

$$T_f(r) := T_f(r; \Omega) = \int_1^r \frac{dt}{t} \int_{\Delta^*(t)} f^*\Omega, \quad r > 1.$$
(2.2)

Applying (2.1) to $\xi = \log ||f||$, we obtain the following:

$$T_{f}(r) = \frac{1}{2\pi} \int_{\Gamma(r)} \log \|f(re^{i\theta})\| d\theta - \frac{1}{2\pi} \int_{\Gamma(1)} \log \|f(e^{i\theta})\| d\theta - (\log r) \int_{\Gamma(1)} d^{c} \log \|f\|.$$
(2.3)

Let Q be a hypersurface in $\mathbf{P}^n(\mathbf{C})$ given by $Q(x) = \sum_{I \in \mathcal{T}_d} a_I x^I$, where the constants a_I are not all zeros and d is the degree of Q. We set $Q(f) = \sum_{i \in \mathcal{T}_d}^n a_I f^I$, where $f^I = f_0^{i_0} \dots f_n^{i_n}$ for $I = (i_0, \dots, i_n) \in \mathcal{T}_d$. Assume that $Q(f) \neq 0$, we define the *proximity function* of f with respect to Q by

$$m_f(r,Q) = \frac{1}{2\pi} \int_{\Gamma(r)} \log \frac{\|f\|^d}{|Q(f)|} d\theta - \frac{1}{2\pi} \int_{\Gamma(1)} \log \frac{\|f\|^d}{|Q(f)|} d\theta.$$

Applying (2.1) to $\xi = \log |Q(f)|$, we have

$$N(r, \operatorname{div}Q(f)) = \frac{1}{2\pi} \int_{\Gamma(r)} \log |Q(f)| d\theta - \frac{1}{2\pi} \int_{\Gamma(1)} \log |Q(f)| \theta - (\log r) \int_{\Gamma(1)} d^c \log |Q(f)|.$$
(2.4)

Combining (2.2) and (2.4), we have the First Main Theorem as follows:

SI DUC QUANG

$$dT_f(r) = N(r, \operatorname{div}Q(f)) + m_f(r, Q) + (\log r) \int_{\Gamma(1)} d^c \log\left(\frac{\|f\|^d}{|Q(f)|}\right).$$
(2.5)

(d) For a meromorphic function φ on Δ^* , applying (2.1) to $\xi = \log |\varphi|$, we obtain

$$\begin{split} N(r, \operatorname{div}_0(\varphi)) + N(r, \operatorname{div}_{\infty}(\varphi)) = \\ = \frac{1}{2\pi} \int\limits_{\Gamma(r)} \log |\varphi| d\theta - \frac{1}{2\pi} \int\limits_{\Gamma(1)} \log |\varphi| d\theta - (\log r) \int\limits_{\Gamma(1)} d^c \log |\varphi| \end{split}$$

The proximity function $m(r, \varphi)$ is defined by

$$m(r,\varphi) = \frac{1}{2\pi} \int\limits_{\Gamma(r)} \log^+ |\varphi| d\theta,$$

where $\log^+ x = \max \{\log x, 0\}$ for $x \ge 0$. The Nevanlinna's characteristic function is defined by

$$T(r,\varphi) = N(r, \operatorname{div}_{\infty}(\varphi)) + m(r,\varphi).$$

We regard φ as a meromorphic mapping from C into $\mathbf{P}^1(\mathbf{C})$, there is a fact that

$$T_{\varphi}(r) = T(r, \varphi) + \mathcal{O}(\log r).$$

Theorem 3 (lemma on logarithmic derivative [5]). Let φ be a nonzero meromorphic function on Δ^* . Then

$$\left\| m\left(r,\frac{\varphi'}{\varphi}\right) = O(\log^+ T_{\varphi}(r)) + C\log r, \right\|$$
(2.6)

where C is a positive constant which does not depend on φ .

As usual, by the notation "||P" we mean the assertion P holds for all $r \in (1, +\infty)$ excluding a finite Lebesgue measure subset E of $(1, +\infty)$.

3. Second main theorem for holomorphic curves from a punctured disc. Firstly, we prove a Second Main Theorem for holomorphic curves from the punctured disc Δ^* into $\mathbf{P}^n(\mathbf{C})$ for hypersurfaces with truncated multiplicities as follows.

Theorem 4. Let f be an algebraically nondegenerate holomorphic curve from the punctured disc Δ^* into $\mathbf{P}^n(\mathbf{C})$ and let Q_i , $1 \le i \le q$, be q hypersurfaces of $\mathbf{P}^n(\mathbf{C})$ of degree d_i on Δ^* located in general position, $q \ge n + 2$. Then for every $\epsilon > 0$, the following holds

$$\| (q - n - 1 - \epsilon) T_f(r) \le \sum_{i=1}^q \frac{1}{d_i} N^{(M_0)} (r, \operatorname{div}(Q_i(f))) + O(\log r),$$

where $M_0 = (nd + [(n+1)^2(2^n - 1)(d\epsilon)^{-1}]d)^n$ with d is the least common multiple of the d'_is .

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3

Proof. Take $(\omega_0 : \ldots : \omega_n)$ be a homogeneous coordinates of $\mathbf{P}^n(\mathbf{C})$ and take $(f_0 : \ldots : f_n)$ be a reduced representation of f on a neighborhood of Δ^* in \mathbf{C}^m . Replacing Q_j by Q_j^{d/d_j} if necessary, we may assume that Q_1, \ldots, Q_q have the same degree of d.

Given $z \in \mathbb{C}^m$, there exists a renumbering $\{i_1, \ldots, i_q\}$ of the indices $\{1, \ldots, q\}$ such that

$$|Q_{i_1}(f)(z)| \le |Q_{i_2}(f)(z)| \le \ldots \le |Q_{i_q}(f)(z)|.$$

We denote $\gamma := (Q_{i_1}, \ldots, Q_{i_n})$. Since $\{Q_j\}_{j=1}^q$ are in general position, by Hilbert's Nullstellensatz that for any integer $k, 0 \le k \le n$, there is an integer $m_k \ge d$ such that

$$X_k^{m_k} = \sum_{j=1}^{n+1} b_{jk} Q_{i_j}(X_0, \dots, X_n),$$

where b_{jk} , $1 \le j \le n+1$, $0 \le k \le n$, are homogeneous forms with coefficients in C of degree $m_k - d$. So

$$|f_k(z)|^{m_k} \le c_1 ||f(z)||^{m_k-d} \max\{|Q_{i_1}(f)(z)|, \dots, |Q_{i_{n+1}}(f)(z)|\} = c_1 ||f(z)||^{m_k-d} |Q_{i_{n+1}}(f)(z)|,$$

where c_1 is a positive constant which depends only on the coefficients of Q_i , $1 \le i \le q$. Therefore

$$||f(z)||^{d} \le c_{1}|Q_{i_{n+1}}(f)(z)|.$$
(3.1)

Fix big integer N, which will be chosen later, such that N divisible by d, denote by V_N the space of homogeneous polynomials in $\mathbb{C}[X_0, \ldots, X_n]$ of degree N. Arrange, by the lexicographic order, the n-tuples $(j) = (j_1, \ldots, j_n)$ of nonnegative integers such that $\sigma(j) := \sum_{k=1}^n j_k \leq \frac{N}{d}$. Define the spaces

$$W_{(j)} = \sum_{(e) \ge (j)} Q_{i_1}^{j_1} \dots Q_{i_n}^{j_n} V_{N-d\sigma(e)}.$$

We put $\Delta_{(j)} := \dim \frac{W_{(j)}}{W_{(j')}}$, where (j') follows (j) in the ordering. From Lemma 3 [2], we have

$$\Delta_{(j)} = d^n, \tag{3.2}$$

provided $d\sigma(j) < N - nd$.

Set $M := \dim V_N$. We now chose a suitable basis as follows: We start with the last nonzero $W_{(j)}^{\gamma}$, pick any basic of it. Then we continue inductively as follows, for (j') > (j) such that $d\sigma(j), d\sigma(j') \le \le N$. Assume that we have chosen a basic of $W_{(j')}^{\gamma}$, we pick representatives in $W_{(j)}^{\gamma}$ of the basic of $W_{(j)}^{\gamma}/W_{(j')}^{\gamma}$ which are the form $Q_{i_1}^{j_1} \dots Q_{i_n}^{j_n} q$, where $q \in V_{N-d\sigma(j)}$. We extend the previously constructed basic in $W_{(j')}^{\gamma}$ by adding these representations, then we have a basic of $W_{(j)}^{\gamma}$. If $W_{(j)}^{\gamma} = V_N$ then we stop the process and we obtain a basic of V_N .

 $= V_N \text{ then we stop the process and we obtain a basic of } V_N.$ Now we estimate $\log \prod_{t=1}^{M} |\psi_t^{\gamma}(f)(z)|$. With ψ be an element of the basic constructed with respect to $W_{(j)}^{\gamma}/W_{(j')}^{\gamma}, \psi = Q_{i_1}^{j_1} \dots Q_{i_n}^{j_n} q, q \in V_{N-d\sigma(j)}$. Then we have

$$|\psi(f)(z)| \le C_2 ||f(z)||^{N-d\sigma(j)} |Q_{i_1}(f)(z)|^{j_1} \dots |Q_{i_n}(f)(z)|^{j_n},$$

then

$$\prod_{t=1}^{M} |\psi_t^{\gamma}(f)(z)| \le C_3 ||f(z)||^{\sum_{(j)} \Delta_{(j)}^{\gamma} (N - d\sigma(j))} \prod_{k=1}^{n} |Q_{i_k}(f)(z)|^{\sum_{(j)} \Delta_{(j)}^{\gamma} j_k},$$
(3.3)

where C_2 , C_3 are constants which depend only on N and the coefficients of $\{Q_i\}_{i=1}^q$ (the sum and product are taken over all *n*-tuples (i), such that $\sigma(i) \leq \frac{N}{d}$. We fix ϕ_1, \ldots, ϕ_M , a basic of V_N , $\psi_t^{\gamma}(f) = L_t^{\gamma}(F)$, where L_t^{γ} are linear forms and

$$F = (\phi_1(f) : \ldots : \phi_M(f)).$$

We set

$$b_k^{\gamma} = \sum_{(j)} \Delta_{(j)}^{\gamma} j_k, \quad 1 \le j \le n,$$
$$a^{\gamma} = \sum_{(j)} \Delta_{(j)}^{\gamma} (N - d\sigma(j)),$$

where the sums are taken over all *n*-tuples (j) such that $\sigma(j) \leq N/d$. We note that

$$a^{\gamma} + \sum_{k=1}^{n} db_k^{\gamma} = NM.$$

From (3.3) we have that

$$\log \prod_{t=1}^{M} |L_t^{\gamma}(F)(z)| \le \log \left(\prod_{j=1}^{n} |Q_{i_j}(f)(z)|^{b_j^{\gamma}} \right) + \log ||f(z)||^{a^{\gamma}} + C_4,$$

where C_4 is a constant which depends only on N and the coefficients of $\{Q_i\}_{i=1}^q$.

We set $b = \min_{k,\gamma} b_k^{\gamma}$. Because f is algebraically non degenerate over C,

$$F = (\phi_1(f) : \ldots : \phi_M(f))$$

is linearly non degenerate over C, then we have

$$W(\phi_i(f)) = \det\left(\frac{\partial^i(\phi_j(f))}{\partial z^i}\right)_{1 \le i,j \le M} \neq 0.$$

We also have

$$\log \frac{\|f(z)\|^{(q-n)db} |W(\phi_i(f))(z)|}{(\prod_{j=1}^q |Q_j(f)(z)|^b) \|f(z)\|^{(NM-ndb)}} \le \log \frac{W(\phi_i(f))(z)|}{(\prod_{k=1}^n |Q_{i_k}(f)(z)|^b) \|f(z)\|^{(NM-ndb)}} \le \\ \le \log \frac{W(\phi_i(f))(z)|C_5}{(\prod_{k=1}^n |Q_{i_k}(f)(z)|^{b_k^{\gamma}}) \|f(z)\|^{(NM-d\sum_{k=1}^n b_k^{\gamma})}} \le$$

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3

$$\leq \log \frac{W(\phi_i(f))(z)|C_3C_5}{\prod_{i=1}^M |\psi_i^{\gamma}(f)(z)|} \leq \log \frac{W(\psi_i^{\gamma}(f))(z)|C_6}{\prod_{i=1}^M |\psi_i^{\gamma}(f)(z)|},$$
(3.4)

where C_5 , C_6 are constants, which are depend only on N and $\{Q_i\}_{i=1}^q$.

From (3.4), for all $z \in \mathbf{C} \setminus I(f)$, which are not zero of $Q_i(f)$, $1 \le i \le q$, we have

$$\log \frac{\|f(z)\|^{(q-n)db} |W^{\alpha}(\phi_{i}^{\gamma}(f))(z)|}{\left(\prod_{j=1}^{q} |Q_{j}(f)(z)|^{b}\right) \|f(z)\|^{(NM-ndb)}} \leq \sum_{\gamma} \log^{+} \left(\frac{W^{\alpha}(\psi_{i}^{\gamma}(f))(z)|C_{6}}{\prod_{i=1}^{M} |\psi_{i}^{\gamma}(f)(z)|}\right)$$

Integrating both sides of the above inequality over $\Gamma(r)$, we obtain

$$\left\| \left(q - \frac{NM}{db} \right) T_f(r) \le \right\|$$

$$\leq \sum_{j=1}^{q} \frac{1}{d} N(r, \operatorname{div}Q_{j}(f)) - \frac{1}{db} N(r, \operatorname{div}(W^{\alpha}(\phi_{i}(f)))) + O(\log^{+}(T_{f}(r))) + C\log r,$$
(3.5)

where C is a positive constant (may be depend on f and Q_i).

We now have some estimates. First,

$$M = \binom{N+n}{n} = \frac{(N+1)\dots(N+n)}{1\dots n}$$

Second, since the number of nonnegative integer p-tuples with summation $\leq T$ is equal to the number of nonnegative integer (p+1)-tuples with summation exactly equal $T \in \mathbb{Z}$, which is $\binom{T+m}{m}$, since the sum below is independent of k, we have that

$$b_k^{\gamma} = \sum_{\sigma(j) l \in N/d} \Delta_{(j)} j_k \ge \sum_{\sigma(j) \le N/d-n} \Delta_{(j)} j_k =$$
$$= \sum_{\sigma(j) \le N/d-n} d^n j_k = \frac{d^n}{n+1} \sum_{\sigma(j) \le N/d-n} \sum_{k=1}^{n+1} j_k =$$
$$= \frac{d^n}{n+1} \sum_{\sigma(j) \le N/d-n} \frac{N}{d} = \frac{d^n N}{(n+1)d} \binom{N/d}{n} = \frac{d^n N(N/d-1)\dots(N/d-n)}{1\dots(n+1)d}$$

This implies that

$$\frac{NM}{db} \le (n+1)\frac{(N+1)\cdots(N+n)}{(N-d)\cdots(N-nd)} \le$$
$$\le (n+1)\prod_{k=1}^n \frac{n+k}{N-(n+1)d+kd} \le (n+1)\left(\frac{N+1}{N-nd}\right)^n$$

We chose

$$N \ge nd + \left[\frac{n+1/d}{(1+\epsilon/(n+1))^{1/n}-1}\right]d.$$

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3

Then N divisible by d and one gets

$$N \ge nd + \left[(n+1)^2 (2^n - 1)(d\epsilon)^{-1} \right] d$$
 and $\left(q - \frac{NM}{db} \right) \ge (q - n - 1 - \epsilon).$

Thus, from (3.5) we obtain

$$\|(q-n-1-\epsilon)T_f(r)\| \le$$

$$\leq \sum_{j=1}^{q} \frac{1}{d} N(r, \operatorname{div}Q_{j}(f)) - \frac{1}{db} N(r, \operatorname{div}(W^{\alpha}(\phi_{i}(f)))) + O(\log^{+}(T_{f}(r))).$$
(3.6)

We now estimate $\left(\sum_{j=1}^{q} \operatorname{div}(Q_j(f)) - \frac{1}{b} \operatorname{div}(W(\phi_i(f)))\right)$. Fix $z \in \mathbb{C}^m$, we may assume that $\operatorname{div}(Q_{j_1}(f))(z) \ge \ldots \ge \operatorname{div}(Q_{j_k}(f))(z) > 0 = \operatorname{div}(Q_{j_{k+1}}(f))(z) = \ldots = \operatorname{div}(Q_{j_n}(f))(z)$,

$$\operatorname{div}(Q_{j_1}(f))(z) \ge \ldots \ge \operatorname{div}(Q_{j_k}(f))(z) > 0 = \operatorname{div}(Q_{j_{k+1}}(f))(z) = \ldots = \operatorname{div}(Q_{j_q}(f))(z),$$

where $0 \le k \le n$ (k may be zero). Put $\gamma = (Q_{j_1}, \ldots, Q_{j_n})$, then we have

$$\operatorname{div}(W(\phi_i(f)))(z) = \operatorname{div}(W(\psi_i^{\gamma}(f)))(z) \ge \sum_{t=1}^M \max\{\operatorname{div}(\psi_t^{\gamma}(f))(z) - M, 0\}.$$

For $\psi = Q_{j_1}^{i_1} \dots Q_{j_n}^{i_n} q \in \{\psi_t^{\gamma}\}_{t=1}^M$, we have

$$\psi(f)(z) = Q_{j_1}^{i_1}(f)(z) \dots Q_{j_n}^{i_n}(f)(z).q(f)(z).$$

Hence

$$\max\{\operatorname{div}(\psi(f))(z) - M, 0\} \ge \sum_{k=1}^{n} \max\{\operatorname{div}(Q_{j_{k}}^{i_{k}}(f))(z) - M, 0\} \ge$$
$$\ge \sum_{k=1}^{n} i_{k} \max\{\operatorname{div}(Q_{j_{k}}(f))(z) - M, 0\}.$$

This implies that

$$\sum_{t=1}^{M} \max\{\operatorname{div}(\psi_{t}(f))(z) - M, 0\} \ge \sum_{(i)} \Delta_{(i)}^{\gamma} \sum_{k=1}^{n} i_{k} \max\{\operatorname{div}(Q_{j_{k}}(f))(z) - M, 0\} =$$
$$= \sum_{k=1}^{n} b_{k}^{\gamma} \max\{\operatorname{div}(Q_{j_{k}}(f))(z) - M, 0\} \ge$$
$$\ge \sum_{k=1}^{n} b \max\{\operatorname{div}(Q_{j_{k}}(f))(z) - M, 0\}.$$

Hence

$$\sum_{j=1}^{q} \operatorname{div} Q_j(f)(z) - \frac{1}{b} \operatorname{div} W^{\alpha}(\phi_j(f))(z) \le$$

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3

$$\leq \sum_{j=1}^{q} (\operatorname{div}Q_{j}(f)(z) - \max\{\operatorname{div}Q_{j}(f)(z) - M, 0\}) =$$
$$= \sum_{j=1}^{q} \operatorname{div}Q_{j}(f)^{[M]}(z).$$
(3.7)

From (3.7) we obtain

$$\sum_{j=1}^{q} N(r, \operatorname{div}Q_j(f)) - \frac{1}{b} N(r, \operatorname{div}(W^{\alpha}(\phi_j(f)))) \le \sum_{j=1}^{q} N^{(M)}(r, Q_j(f)).$$
(3.8)

Combining (3.6) and (3.8), we have

$$\left\| (q-n-1-\epsilon)T_f(r) \le \sum_{j=1}^q \frac{1}{d} N^{(M)}(r, Q_j(f)) + O(\log^+(T_f(r))). \right\|$$

One can be estimated that

$$M \le \binom{N+n}{N} \le N^n \le \left(nd + \left[(n+1)^2(2^n-1)(d\epsilon)^{-1}\right]d\right)^n \le M_0.$$

Theorem 4 is proved.

4. Proof of Theorem 1. Let $f: \Delta^* \to V$ be a holomorphic curve into a complex projective algebraic variety V. We know the following characterization of a removable singularity (see [5]).

Lemma 1. Let $f: \Delta^* \to V$ be as above and let $T_f(r)$ be a characteristic function with respect an ample line bundle over V. Then f extends at ∞ to a holomorphic curve \tilde{f} from $\Delta = \Delta^* \cup \{\infty\}$ into V if and only if

$$\liminf_{r \to \infty} T_f(r) / (\log r) < \infty.$$

Proof of Theorem 1. For $0 < \epsilon < 1 - \sum_{i=1}^{n+2} \frac{M}{m_i d_i}$, it follows from Theorem 4 and the assumption that

$$\|(1-\epsilon)T_f(r) \le \sum_{j=1}^{n+2} \frac{1}{d_i} N^{(M)}(r, \operatorname{div}(Q_i(f))) + O(\log T_f(r)) + O(\log r) \le$$
$$\le \sum_{j=1}^{n+2} \frac{M}{m_i d_i} N(r, \operatorname{div}(Q_i(f))) + O(\log T_f(r)) + O(\log r) \le$$
$$\le \left(\sum_{j=1}^{n+2} \frac{M}{m_i d_i}\right) T_f(r) + O(\log T_f(r)) + O(\log r).$$

This implies that

$$||T_f(r)| = O(\log T_f(r)) + O(\log r).$$

Therefore

$$\liminf_{r \to +\infty} T_f(r) / (\log r) < +\infty.$$

By Lemma 1 we have the required extension of f.

Theorem 1 is proved.

5. Proof of Theorem 2. In order to prove Theorem 2, we need some following.

Definition 1 (Definition 3.1 [11]). Let Ω be a hyperbolic domain and let M be a complete complex Hermitian manifold with metric ds_M^2 . A holomorphic mapping f(z) from Ω into M is said to be a normal holomorphic mapping from Ω into M if and only if there exists a positive constant C such that for all $z \in \Omega$ and all $\xi \in T_z(\Omega)$,

$$ds_M^2(f(z), df(z)(\xi)) \le CK_{\Omega}(z, \xi),$$

where df(z) is the mapping from $T_z(\Omega)$ into $T_{f(z)}(M)$ induced by f and K_{Ω} denotes the infinitesimal Kobayashi metric on Ω .

Lemma 2 (see [11]). Let f be a holomorphic mapping from a bounded domain Ω in \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$ such that for every sequence of holomorphic mappings $\varphi_k(z)$ from the unit disc U in \mathbb{C} into Ω , the sequence $\{f \circ \varphi_k(z)\}_{k=1}^{\infty}$ from U into $\mathbb{P}^n(\mathbb{C})$ is a normal family on U. Then f is a normal holomorphic mapping from Ω into $\mathbb{P}^n(\mathbb{C})$.

Theorem 5 (Theorem 3.1 [1], Theorem 2.5 [10]). Let Ω be a domain in \mathbb{C}^m . Let M be a compact complex Hermitian space. Let $\mathcal{F} \subset \operatorname{Hol}(\Omega, M)$. Then the family \mathcal{F} is not normal if and only if there exist sequences $\{pj\} \in \Omega$ with $\{pj\} \to p_0, (f_j) \subset \mathcal{F}, \{\rho_j\} \subset \mathbb{R}$ with $\rho_j > 0$ and $\{\rho_j\} \to 0$ such that

$$g_j(\xi) := f_j(p_j + \rho_j \xi)$$

converges uniformly on compact subsets of \mathbb{C}^m to a non-constant holomorphic map $g \colon \mathbb{C}^m \to M$.

Proof of Theorem 2. For $z_0 \in S$, we take a relative compact subdomain Ω containing z_0 of D. It suffices to prove that f extends over $\Omega \setminus S$ to a holomorphic mapping.

Firstly, we shall prove that f is normal on $\Omega \setminus S$. Indeed, suppose that f is not normal on $\Omega \setminus S$, then there exists a sequence of holomorphic mappings $\{\varphi_i : U \to \Omega \setminus S\}_{j=1}^{\infty}$ such that $\{f \circ \varphi_j\}$ is not normal, where U denotes the unit disc in \mathbb{C} . By Lemma 2, we may assume that there exist sequences $\{p_j\} \in U, \{r_j\} \in \mathbb{R}$ with $r_j > 0$ and $r_j \searrow 0, p_j \to p_0 \in U$ such that $g_j(\xi) := f \circ \varphi_j(p_j + r_j\xi)$ converges uniformly on compact subsets of \mathbb{C} to a non-constant holomorphic mapping g of \mathbb{C} into $\mathbb{P}^n(\mathbb{C})$. Because $\Omega \setminus S$ is bounded, $\{\varphi_j\}$ is a normal family of holomorphic mappings. Hence, there exists a sub-sequence (again denoted by $\{\varphi_j\}$) of $\{\varphi_j\}$ which converges uniformly on compact subsets of U to a holomorphic mapping $\varphi : U \to \overline{\Omega}$. Then $\lim_{j\to\infty} \varphi_j(p_j + r_j\xi) = \varphi(p_0) \in \overline{\Omega}$. Since f(z) does not intersect $Q_i(z)$, then g does not intersect $Q_i(\varphi(p_0))$ or $g(\mathbb{C})$ is included in $Q_i(\varphi(p_0))$ for all $0 \le i \le q - 1$ by Hurwitz's theorem. Hence, there exists a subset I of $\{1, \ldots, q\}$ such that $g(\mathbb{C}) \subset (\bigcap_{i \in I} Q_i(\varphi(p_0)) \setminus \bigcup_{i \notin I} Q_i(\varphi(p_0))) \cap X$. By Corollary 1.4 [7], we have that the set $\bigcap_{i \in I} Q_i(\varphi(p_0)) \setminus \bigcup_{i \notin I} Q_i(\varphi(p_0))$ is hyperbolic imbedded into X. Then g must be constant. This is a contradiction. Hence, f is normal.

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 3

By the assumption of Theorem 2, $S \cap \Omega$ is an analytic subset of domain Ω with codimension one, whose singularities are normal crossings. Then f extends to a holomorphic mapping from Ω into $\mathbf{P}^{n}(\mathbf{C})$ by Theorem 2.3 in Joseph and Kwack [4].

Theorem 2 is proved.

Remark. Let f be a holomorphic mapping of a domain $D \setminus S$ into X, where D is a domain in \mathbb{C}^m , S is an analytic subset of co-dimension at least two of D and X is an irreducible subvariety of $\mathbb{P}^n(\mathbb{C})$. Let Q be a moving hypersurface of $\mathbb{P}^n(\mathbb{C})$ on D. Assume that f does not intersect Q on D, then f extends to a holomorphic mapping of D into X.

Indeed, by Corollary 3.3.44 [6], f extends to a meromorphic mapping of D into X (denoted again by f). It suffices to show that f is holomorphic on D.

Suppose that f is not holomorphic on D. We denote by I the indeterminancy locus of f which is a non empty analytic subset of codimension two of D.

It is easy to see that $I \subset \text{Supp}(\text{div}Q(f))$. Then Supp(divQ(f)) is a non empty analytic subset of codimension one of D. Therefore $\text{Supp}(\text{div}Q(f)) \cap (D \setminus S) \neq \emptyset$. This contradicts to the assumption that f does not intersect Q on $D \setminus S$. Hence f is holomorphic on D.

Acknowledgements. The author would like to thank Professors Junjiro Noguchi and Do Duc Thai for their valuable advice and suggestions concerning this material.

- 1. Aladro G., Krantz S. G. A criterion for normality in Cⁿ // J. Math. Anal. and Appl. 1991. 161. P. 1-8.
- An T. T. H., Phuong H. T. An explicit estimate on multiplicity truncation in the second main theorem for holomorphic curves encountering hypersurfaces in general position in projective space // Houston J. Math. 2009. 35. P. 775–786.
- 3. Fujimoto H. Extensions of the big Picard's theorem // Tohoku Math. J. 1972. 24. P. 415-422.
- 4. Joseph J., Kwack M. H. Extension and convergence theorems for families of normal maps in several complex variables // Proc. Amer. Math. Soc. 1997. 125. P. 1675-1684.
- Noguchi J. Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties // Nagoya Math. J. 1981. – 83. – P. 213–233.
- Noguchi J., Ochiai T. Introduction to geometric function theory in several complex variables // Trans. Math. Monogr. – Providence, Rhode Island: Amer. Math. Soc., 1990. – 80.
- Noguchi J., Winkelmann J. Holomorphic curves and integral points off divisors // Math. Z. 2002. 239. -P. 593-610.
- Ru M. A defect relation for holomorphic curves intersecting hypersurfaces // Amer. J. Math. 2004. 126. -P. 215-226.
- 9. Stoll W. Normal families of non-negative divisors // Math. Z. 1964. 84. P. 154-218.
- 10. *Thai D. D., Trang P. N. T., Huong P. D.* Families of normal maps in several complex variables and hyperbolicity of complex spaces // Complex Variables and Elliptic Equat. 2003. **48**. P. 469–482.
- 11. *Tu Z. H., Li P.* Big Picard Theorems for holomorphic mappings of several complex variables into $\mathbf{P}^{N}(\mathbf{C})$ with moving hyperplanes // J. Math. Anal. and Appl. 2006. **324**. P. 629–638.

Received 27.09.11