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NORMALIZATION AND AVERAGING ON COMPACT
LIE GROUPS IN NONLINEAR MECHANICS* '

HOPMAUJIISAIILA TA YCEPE/IHEHHSA
HA KOMITAKTHUX I'PYTIAX JIT

Y HEJITHIMHIN MEXAHIIIT

* We consider the method of normal forms, the Bogolyubov averaging method, and the method of asymptotic
decomposition proposed by Yu. A. Mitropol'skii and the author of this paper. Under certain assumptions
about group-theoretical properties of a system of zero approximation, the results obtained by the method of
asymptotic decomposition coincide with the results obtained by the method of normal forms or the Bogolyubov
averaging method. We develop a new algorithm of asymptotic decomposition by a part of variables and its
partial case — the algorithm of averaging on a compact Lie group. For the first time, it became possible to
consider asymptotic expansions of solutions of differential equations on noncommutative compact groups.

PosrnauyTo meTon HopManbHMX GoOpM, MeTOX ycepelHeHHA 3a DoromoSoBum Ta MeTOX
ACHMINTOTHYHOI Jekomnosunil, sanpononosarmit FO. O. MuTpononsbcbKMM Ta aBTOPOM
uiel crarTi. Axkmo s3pobuTK NeBH]I NPMOYIIEHEA WOLO TEOPETHKO-IPYNOBMX BJIacTMBOCTEHR
cUCTeMM HYIbOBOTO HaGNMKeHHA, TO METOJ ACHMITOTHYHOI JeKOMIO3MIil IPMBOAMTE 10
pesynanLTaTin, 1o 3n06yRaAlOTRCA 3A4 METONOM HOPMANLHEMX (opMm abo 3a MeTomoMm ycepen-
HeHHSA 3a Boromo6osum. Po3smMuyTo HOBMIl METO ACHMMITOTHYHO] AEKOMIO3MII] 3a YacTH-
HOIO 3MIHHMX Ta MOro uacTHMHHMN BUNALOK — AJATOPHUTM YyCepeOHEGHHA Ha KOMIAKTHMX
rpynax Jli. Ille mano smory Buepine oTPUMATH ACHMITOTHUHE NPEACTABJIEHHA PO3B’A3KIB
cucTeMu HediniMEMX mudpepeHNialsHUX PIBHAHE HA KOMIAKTHHX HEKOMYTATHBHMX IPYIax.

The idea of introducing coordinate transformations for the simplification of the analytic
expression of a general problem is a powerful one. Symmetry and differential equations
were close partners since the time of the founding masters, namely, Sophus Lie (1842—
1899) and his disciples. Till now, symmetry plays a very important role. The ideas
of symmetry penetrated deep into various branches of science: mathematical physics,
mechanics, etc.

The role of symmetry in perturbation problems of nonlinear mechanics, which was
already used by many investigators since 70s (J. Mozer, G. Hori, A. Kamel, and
U. Kirchgraber), has been considerably developed in recent years to gain further under-
standing and development of such constructive and powerful methods as the averaging
method and method of normal forms.

Normalization techniques within the framework of the averaging method were con-
sidered in the works of A. M. Molchanov [2], A. D. Bryuno [3], S. N. Chow and
J. Mallet—Paret [4], Yu. A. Mitropol’skii and A. M. Samoilenko [5], and J. A. Sanders
and F. Verhulst [6].

. The group-theoretic approach in the problem of quasiperiodic vibration was used by
J. Mozer [7]. An approach where Lie series in a parameter were used as a transformation
was considered in the works of G. Hori [8, 9], A. Kamel [10], U, Kirchgraber [11],

*The revised talk [1] on the joint seminar “Nonlinear Dynamics” of Freie Universitiit Berlin FBE Mathematik
und Informatik, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin and WeierstraB-Institut fiir Angewandte
Analysis und Stochastik on November the 15 of 1995. The author expresses his hearty gratitude to Bernold
Fieder, Karin Gatermann, and Klaus R. Schneider for encouragement and constructive comments.
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48 A. K. LOPATIN

U. Kirchgraber and E. Stiefel [12], V. N. Bogaevskii and A. Ya. Povzner [13], and -
V. E. Zhuravlev and D. N. Klimov [14]. )

The asymptotic method of nonlinear mechanics developed by N. M. Krylov, N. N. Bo-
golyubov, and Yu. A. Mitropol’skii and known as the KBM method (see, for example,
the monograph of N. N. Bogolyubov and Yu. A. Mitropol’skii [15]) is a powerful tool
for investigation of nonlinear vibrations.

The present paper deals with the development of new normalization procedures and
averaging algorithms in problems of nonlinear vibrations. Namely, we develop asymp-
totic methods of perturbation theory with the wide use of group-theoretic techniques.
Various assumptions about specific group properties are investigated, and it is shown
that they lead to modifications of existing methods (such as the Bogolyubov averaging
method and the Poincaré—Birkhoff normal form) as well as to the formulation of a new
method. We also develop normalization techniques on Lie groups.’

1. Mathematical background. Below, we give a short survey of two methods,
namely, the Bogolyubov averaging method and the method of normal forms.

1.1. The standard system and Bogolyubov averaging. The new normalization tech-
nique was developed by Yu. A. Mitropol’skii and A. K. Lopatin [16, 17] and A. K. Lopa-
tin [18, 19]. In their works, a new method was proposed for the investigation systems
of differential equations with small parameters. It was a further development of the
Bogolyubov averaging method referred to by the authors as “the method of asymptotic
decomposition”. The idea of a new approach originates from the Bogolyubov averag-
ing method [15], but its realization requires essentially new apparatus — the theory of
continuous transformation groups.

Let us explain the idea of the new approach. As is known, the starting point of the
investigation by the averaging method is a system in the standard form

da
E_EX(m,t,e) ; (1)
where z = col[z1,...,2,], X(z,t,€) is an n-dimensional vector, '

System (1), upon averaging

. A fF
%@ﬂ:&ﬁﬁﬂiﬂMJW

and with a special change of variables, is reduced to the averaged system
di
o
which does not explicitly contain the argument %. (To guarantee the existence of
the average we impose special conditions on the functions X;(z,t,€), j = I,n. We
omit the explicit form of these conditions). Let us rewrite the initial system (1) in the
equivalent form '

exM (@) +2xP (@) + ..., (2)

dz dy
Py =eX(z,y,¢), = 1 (3)
and the averaged system (2), correspondingly, in the form
dE _ dij
E‘{ = E.Xg(z), d_f = 1, (4)

where Xo(Z) = Xél)(i) + SXKEZ)(E) + ... . The integration of (4) is simpler than that
of (3) because the variables are separated: The system for slow variables Z does not
contain the fast variable § and is integrated independently.
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NORMALIZATION AND AVERAGING ON COMPACT LIE GROUPS .-.. 49

Everything stated above allows us to interpret the averaging method in the following
way: The averaging method transforms (3) with nonseparated variables into (4) with
separated fast and slow variables.

The described property of the separation of variables with the help of the averaging
method has group-theoretic characteristics: The averaging method transforms (3), which
is not invariant under the action of the one-parameter transformation group generated

by the vector field
a

dy’

associated with the system of zero approximation (3), into the averaged system (4), which
is invariant under the action of the one-parameter transformation group generated by
the vector field

W=

d
= =
9y
associated with the system of zero approximation (4). This statement can easily be

proved.
1.2. The method of normal forms. Consider a system of differential equations with

coefficients analytic in a neighborhood of zero
U1 =auy1+ .4 Gnln+ Y Fmymn YU,
| A YRR - (5)
Un = Gp1¥1 + - - -+ CGral¥n + Zf;:u...m,, y;nl el

Nonlinear terms on the right-hand sides of system (5) are started with terms of order

not lower than two. .
We consider the problem of finding an analytic change of variables

y = f(z), zz[zl,...,zn] (6)
that turns the maximal number of coefficients with nonlinear terms into zero. The
limiting case is the linearization of system (5), i.e., the transformation of it into

2:/{2, A= [ng], i‘:,_f :m, (7)
under the action of the change of variables (G). Since the indicated procedure is ulti-
mately reduced to the solvability of linear inhomogeneous algebraic equations, it turns
out that the reduction

) "= (7) (8)
is not always poss1ble. In the general case, we obtain a system of nonlinear dlffercntlal
equations # = Az + F(z). This system is called a normal form.

We call the corresponding nonlinear term in the equation presented above a res-
onance term. It is clear that only resonance terms remain in the normal form. In
particular, linearization by (8) is possible only if there are no resonance terms (see,
e.g., [14]).

1.3. Generalization of the Bogolyubov averaging method by using the symmetry of
the standard system. The method of asymptotic decomposition is based on the group-
theoretic interpretation of the averaging method. Consider the system of ordinary dif-

ferential equations

dax iz
= = w(z) + ed(z), | (9

where
w(z) = colwi(z), ... ,wn(z)]; @(z) = col[@1(z), ... ,0n(z)].
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50 A. K. LOPATIN

The differential operator associated with the perturbed system (9) can be represented as

Uo=U +eU,
where 9 s 5 9
U:wla_xl+'l'+wn—a?;’ U:wl‘gg+...+wn'6—2‘:;.
By a certain change of variables in the form of a series in €
= p(Z,¢), (10)
system (9) is transformed into a new system
GBS s
= =w(E) + ZE ¥)(z), (11)
which is called a centralized system. For this system, Uy = U + eU where
= ls) a
U=ui@) g+ - Funl@ g
0= iswy N, = a“%aji forpa b(vi(@)iA (12)
’ SR ) N Oy

r=1
‘We impose a condition on the choice of transformations (10) requiring that the central-
ized system (11) should be invariant with respect to the one-parameter transformation
group _
7 = ¢*UE) g, (13)

where %y is the vector of new variables. Therefore, after the change of variables (13),
system (11) turns into '

d_. (=]

=2 = w(E0) + Zl e’ b)(g0),
which coincides with the original one to within notation. This means that we have the
identities [, N,]=0for U, Ny, v=1,2, ....

Below, we present some material that is necessary for understanding the structure
of this paper as a whole. The essential point in realizing the indicated scheme of the
algorithm of asymptotic decomposition is that transformations (10) are chosen in the
form of a series

= efsi, (14)
where
S=5+¢eS5+...,
_, a 0
SJ’ =7j1($)aﬁ g +73“($)5m“

The coefficients of Sj,v;1(Z), ... ,7jn(Z) are unknown functions. They should be

determined by the recurrent sequence of operator equations
U,S,] = F,. (15)
The operator F),, v = 1,2,..., is a known function of U/ and Sy, ... ,S,_1 obtained

at previous steps.

In the case where S depends upon ¢, the Lie series (14) is called a Lie transformation.
Thus, the application of a Lie transformation as a change of variables enables us to use
the technique of continuous transformation groups.
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It is known from. the theory of linear operators that the solvability of the inhomoge-
neous operator equation (15) depends on the properties of solutions of the homogeneous
equation

[U: Sy] = 0. (16)

Operator (12) NN, is the projection of the right-hand side of the equation onto the kernel
of operator (16), which is determined from the condition of solvability in the sense of
the inhomogeneous equation '

[U,Sy]:Fy_'Ny, Vzll?a,-‘-. (17)

Depending on the way of solving equations (15)—(17), various modifications of the
algorithm of the method of asymptotic decomposition are obtained.

The principal conclusion that can be drawn from a comparison of the two methods
is the following: In the method of asymptotic decomposition, the operation of averaging
that is used in the Bogolyubov averaging method is a certain way of constructing the
projection pr F' of the operator F'.

In the method of asymptotic decomposition, the centralized system is a direct analog
of the averaged system of the Bogolyubov averaging method.

The operation of averaging used in the method of asymptotic decomposition for
construction of the projection of an operator onto an algebra of centralizer is called the
‘Bogolyubov projector.

The last statement means the following: Let us apply the method of asymptotic
decomposition to the Bogolyubov system in the standard form (3). Let us write the
operator F, on the right-hand side of (15) as

F, = ful(mxy)aiml G u"f"fun(xry)‘a—i:'
Define the Bogolyubov projection of the operator pr F, as

o
pr F, :(fn(x,y))aimﬂ“*U”"(z’ynﬁ'

where
(for(2,y))=aetfh(2) (18)
are the average values of the coefficients fy,. This notion requires exact definition.
In the Bogolyubov averaging method, the average value is understood as

T
- ;
Tlirlgq?ffyk(w,s)ds:ffk(m)<+oo, ke=1,...,m
i

In our further exposition, definition (18) is understood as the average value on the
group.

We hope that such & preview will make the main part of the paper easier to under-
stand. We illustrate the further exposition of the material in the next two subsections by
two physically motivated examples: nonlinear oscillators in the plane and the motion-
of a point on a sphere. There are classical results for the first example, and one can
compare them with the present approach. The second example is nontrivial as it cannot
be considered by existing methods in a similar way.

2. Examples: models connected with nonlinear oscillator in the plane. L

2.1. Algorithm of the method of asymptotic decomposition in the space of homoge-
neous polynomials (group GL(2)). Along with the linear space V" over P generated by
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52 ' A. K. LOPATIN

elements «1,...,2,, we consider the linear space Vg, over P, which is equal to the
direct product of the spaces V taken » times. The vector row composed of the basis
elements of Vg, is denoted by ému. It is evident that rny = n and .%ml = [m1y5 020l

Let Q be a constant matrix of dimension m, X n with elements ¢ij € P, where
i=1, my,, j=1, n, and let

q=2m,9, ¢=der ||q1, -+ @nll-
For an arbitrary sequence of matrices @, the totality of differential operators

5] g
X=qz—+...+5—, & € Vau,

321 3%,1 !
yields the linear space over P, which is denoted by B(Vg,). The matrix Q is called
the matrix of the operator X.

Consider the system of two equations of the first order

&) = b, iy = —z} +e (1 —2) zh. (19)

The differential operator associated with system (19) is

Ub=U'+el,
where
d 3} ~ ; a
Pt ™ @t 1 — - 2 0 i
U' =z, e zy 3}’ U = (mz Ty zz) 2]

Write these operators in the form
L FY,  F= [0 _1}.

Represent the operator [ as the sum
U =0y +Uhey,  Ubs €B(Ves), i=1, 8,

=11

U=

where
Ty = By Omaa 8, Uks = Finy Qg1 0-
Calculate two approxxmgnons in the transformed operator (12)
Uy =U'+¢e N+ Nj.
Calculate the operators ,51 and S3, which can be obtained from the equatlons
U, $41=0—-mx U, '

05, i) = {~0, 8- 3150 0, 50} - we .- (20)

upon the change of variables (14). Solve these equations in two steps. First, we find Sy.
We have
S1 = Se11 + Ses1, Seir €B(Vei), i=1,3,

where Sgi1 = ::?:‘,,.,i I'1: 0, i = 1;3, and T'y; are the rectangular matrices of dimensions
m; X n which are solutions of the system of independent algebraic equations

Filu—TuF = Qmi1—pt@m1; F=AF, i=13 (21)

At the second step, we find S3. We can see that Sy € B (Vgs) implies the structure of
the right-hand sides of equation (20). We have to find a solution in the form of the sum

5
S2=) Seiz, Seiz=im %8, i=T5,
i=1
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NORMALIZATION AND AVERAGING ON COMPACT LIE GROUPS ... 53

where I'y; are solutions of the system of algebraic equations
Filoi — T F=0Qm;2—prQm,2, i1=1,5.

Let us perform necessary calculations for the first approximation. Consider equation
(21). Here, F1, F3, F3 are the matrices of the representation of the operator U in the
subspaces Vg1, Viga, Vis.

Pass from equations (21) to the equations in the spaces R(mun)  fp(mamn)

G_(;) ft’l — Qm,-,!. — Pr Qﬂm'.',ls
where o
G =rF0&—En®FT, i=1,3,
and Ty;, Qm.-,l are vector columns composed of rows of the matrices I'1;, Qm, 1.

Taking into account that the difference Qm.-,l — Q‘m‘.;l ~ belongs to the image T[ﬁ_f)
of the operator Ggl) and is orthogonal to the kernel of the operator Gg;)T, we obtain
the system of linear algebraic equations for finding pr Qm; 1.

Finally, we get the operator Uy in the first approximation:

Up =U + €Ny,

where
Ny = prU = Ngu1 + Ngis;

) 1/ @ 9
Ng11 = xn.h Om, N0 = 3 («"31 e + 5 B—xg) :

2 1 5] 5]
Ngsi = Zmy Oms1n 0 = —2 (('ﬂf + 3) 71 5o T (22 + z3) z2 6—$2) ;

After similar calculations, we find the centralized systém in the second approxima-
tion p g 1
T orte (35 @l +ad) ) mut

dt 9
1 3 11 2
+et (- +3 (4ad) - g Gl hed)”) o
dzy 1 1
e o ke (§_§ (m?”g)) o

: 1 '3 11 2
2 2 2 2 2
=& (—Z—I—g (ml—f—mz)—ﬁ (31‘1‘:33) ) 1.
We can easily see that, upoﬁ the transformation of the variables according to the formulas

1
Y1 =/ =} + 23, y2 = arclg z3’

the centralized system takes the form

dyp (1 1 , ¢
dt_g(z g ¥ W

dys 2 (1 3 o 11 4
@ T (rgwﬁ%)- |
To pass to the solution of the initial equations (19) in the second approximation, we
have to know the operator Ss. The calculation of S5 is analogous to that of Sj.
2.2. Procedures of normalization in the spaces of representations of the groups
GL(2) and SO(2). Consider the nonlinear oscillator (1). All considerations of Subsection
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54 ‘A, K. LOPATIN

2.1 were based on the invariance property of the subspaces Vg1, Vga,... which are
associated with the system of zero approximation. The fact of invariance is expressed
by the relation

Uy 28mFsy F=13 000
where F; is the matrix of representation of U in the subspace Vg;.

A natural question arises: Are the subspaces Vg1, Vag2,... unique invariant sub-
spaces in the linear space of homogeneous polynomials? ‘It turns out that they are
not.

Consider the linear space T that is the direct sum of the subspaces with the bases

f(mlj = [31: ﬁz],
flma) — [ 22125, 2} — 2 ], (22)
Fme) = [ 3 (2} + 23)z; — 4:.'1:?, 423 — 3 (22 +23)z, ],

It is easy to verify that each subspace Tig; turns into itself under the action of U, e.g., is
invariant with respect to it. To do so, it is sufficient to find the matrices of representation
of U/ in these subspaces
: ; 0 =3
Ui =g, F= [j 0 } |
For a better understanding of the structure of the space Tig, let us introduce new variables
p and ¢ by the formula

1 = psinep, 2y = pCos .
In new variables, the basis vectors (22) are written as follows:
Bm, = [PPsinky, pFeosky], k=1,2,....
So, passing to the space Tg C T'(V') means passing from the space of homogeneous
polynomials in two variables to the space of trigonometric functions (Fourier series).
The described process of choosing a new representation space for the operator U

has deep group-theoretic background. Let us consider this process in detail.
Consider the set of four linearly independent operators

5] 8
Viy = Voy = $2'é;‘1', Vas = ﬂ?za—mz; (23)

B Viz =z, B2y’
which generate a complete linear finite-dimensional Lie algebra gi(2) of order four.
From (23), a general linear group G'L(2) is restored. To write the elements of this
group in explicit form, let us write its general element in terms of a Lie series

!

z' =exp Va, (24)
where
V =511 Vi1 + s13Vig + 591 Va1 + 592 Vs,

and s11, S13, 521, Sg2 are group parameters which range in a neighborhood of zero.
We write the series (24) in the finite form

o = ge®1(9),
The matrix G(s) = e”2(*), where F; is the representation matrix of V in the subspace
Vg1, determines the general element of GL(2).
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NORMALIZATION AND AVERAGING ON COMPACT LIE GROUPS . .. . 55

In view of the above considerations, we can say that the linear space of homo-
geneous polynomials T'(V') is the representation space for the general linear group
GL(n), n=2

The operator U of the system of zero approximation generates the rotation group
S0O(2) in the plane. To find the explicit form of the elements of this group, we also
use a Lie series

. 2’ = exp (pU)z.
After the corresponding computations, we arrive at the result

gy | _ | cosp sinp] [
zh —sing cosp| 22|’

Thus, the linear space of trigonometric functions T is the representation space for
the rotation group SO(2) in the plane. Let us denote this space by Tso(2).

In the method of normal forms, the representation space for the general linear group
GL(n) is chosen as a representation space. In the method of asymptotic decomposition,
the representation space for the subgroup of the same group GL(n) is chosen as a
representation space.

So, the method of normal forms, which uses the universal representation space of
the general linear group, does not consider the true algebraic structure of the system of
zero approximation.

Contrary to this, the method of asymptotic decomposmon is essentially based on the
deep connection between the representation theory for continuous groups and special
functions of mathematical physics. This theory has been extensively developed for the
last decades (see Vilenkin N. Ya. [20] and Barut A. and Roczka R. [21]).

2.3. Algorithm of asymptotic decomposition for a perturbed motion on SO(2). Let
us consider the Van der Pol system

B =3 Ty = -31-1-6(1—«"‘;%) Ta. (25)

as perturbed motion on SO(2) (see Section 3). The system of zero approximation (25)
yields the group SO(2). Pass to the polar coordinates in (25)

z; = p’sing’, zy = p' cosy’. (26)
Finally, we obtain

dp’ P o T /
To=sy 1-— T-&-cos?.qo + Tcos*igo ;

de’ i Al g e s /
— . . - - 2
g 1 €3 (sm 2 - sin 2¢" + ) sin 4y (27)

Write the operator U’ associated with system (27)
o= U"l -}-6[7;,

where 5
UID:(Z?_(p“ U =bi(p, 90) -+ ba(p, ‘P)
12 . /2
b1(p, ") = % (1 - pT+ cos 2¢’ + -Pz cos4<p’) ;
A & ;P el g
bz(p,go)zl—si sm2(,o—w-§—sm2<p +-—‘—4—Sln4(p . (28)
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il

(a) (b)

Fig. 1. The sclution in the phase plane for the Van der Pol system (solid lines corre-
spond to the exact solution; dotted lines correspond to the approximate solution
(a centralized system of the first approximation)): £ = 1 (a), £ = 0.5 (b).

The operator U has the representation matrix Fp,  in the subspace Tg,. This matrix
can be calculated by

n

n 0

Let us illustrate the application of the method of asymptotic decomposition to system
(1) in the representation space of Tig. Calculate only the first approximation. Let the
single term S5 be in transformation (14) and let the transformed operator be represented
by the sum

U™ = fME, | F, =[0 ‘”}. |

Ug=U+eN;.
According to the general theory, we should consider the equation
U, Si]l=F, Fi=al. (29)
After the change of variables (26), -{,}?—i—, _B“i“ turn into Ly, L, respectively, where
1 2
. 8 cosp 8 d sing 8
Ly = e e— Lin = —— ——
LR T T By 2T T T e

Rewrite U, T in the new variables by using Ly and Ly. We have

U= 50;—5 = [psin g, pcosgo]./’-‘L,_
U = [psing, pcosp] Q1L + [0®sin 3¢, p° cos 3] Qa1 L.
Write the operator of the transformation 53, following the structure of the right-hand
side of equation (29), in the form :
Sy = 811 + Sa1,
where
Si1 = [psiney, pcosp] 1L, Sa1 = [p°sin 3¢, p®cos3p] a1 L,

and I'y;,T's; are unknown second-order square matrices. In the general case, they
depend on the variable p. -

Substituting U, T and S into equation (29), we obtain two independent subsystems
of linear algebraic equations

Filjs —TpnF=0Q;5, j=1,2
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NORMALIZATION AND AVERAGING ON COMPACT LIE GROUPS ... 57

All further calculations are similar to those in the previous subsection. We give only
final results.
Thus, the operator Ny defined by the matrix can be written in the final form

1 1 . 11 1 1 3
Ny=(z—=p? L S ZpP =
: (2 sp)psm”" 1+(2 8“’)”’”39”‘53 p(z 8"’)6,0

By the operator Uy = U + &Ny, we restore the centralized system of the first approxi-

mation .
£
A Jeit,
F 2( 4’0)[)’ p=1

The comparison of the algorithm of asymptotic decomposition in the representation
space Tg of trigonometric functions described in this subsection with an analogous
algorithm in the space of polynomials 7'(V) considered in the previous subsection
shows a substantial decrease in calculating efforts. This fact is explained by lowering
the order of the representation matrices F; of the operator U in the subspaces Tg; as
compared with the subspace Vig;. Indeed, in the first case, the order of the matrices F;
is equal to 2 and does not change. In the second case, it grows proportionally to the
index j. '

Finally, let us compare the algorithm of asymptotic decomposition with existing
methods. If the representation space Ty of the group SO(2) is chosen, then we obtain
the results of the Krylov—Bogolyubov asymptotic method. If the representation space Vg
of the general linear group G'L(2) (the space of homogeneous polynomials) is chosen,
then we obtain the results of the method of normal forms.

3. Averaging on compact Lie groups.

3.1. The construction of a quadratic-form integral of a linear system. Let us consider
a linear system with constant coefficients

dy

= =4, (30)

where y = [y1, ..., yn]T, (T denotes transposition), A = const, A € My (R) (Mn(R)
is the set of all real n x n mafrices). We want to know when system (30) has the
quadratic-form integral

F(y)=y"Vy, Y€ Ma(R). (31)
By (30), the derivative of the integral F'(y) =¢
dldg‘%l =T (ATY + YAy =0, (32)
is identically equal to zero. This implies the maftrix equation
ATy +yA=0. (33)
It is equivalent to R
GY =0, (34)

where § = AT @ £ + £® AT, ® is the sign of direct product of matrices, and ¥ is the
vector formed of the rows of V.

The matrix equation (33) (or (34)) has a zero solution if and only if the matrices
A and —.A have common eigenvalues. Matrices with at least two purely imaginary
eigenvalues form the most important class of solutions of (33). It is clear that this class
of matrices is the most important for vibration theory.

Suppose that (33) has a solution )V = B, where B is a nonsingular symmetric matrix
which can be reduced by a nonsingular matrix @ to the diagonal form QTR = ¢&.
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Example 2. Let n = 3 in (39). The linear system of zero approximation
&) = 23,
Ty = 23 — 21, (42)
£y = —T3,

has the integral
F(z) = 212 4 25? + z3®.

o 8 8
li&cl’ azg, 39:3}-

23‘.‘1, 233, 233

Matrix (40) has the form

The base of the algebra so(3) of the rotation plane group SO(3) is formed by the
operators
a a a a g 8
Ul—zaa—ml—-":la—zz: U1—$3E—32E, inﬁa—ﬂsg;l“-
‘We pass to the spherical coordinates in R™
2y =p'sinf!_,...sinfsin 0],
zy=p'sindl,_, ...sinf5 cosby,
........................... (43)

Tn—1 = p'sind, ... cosfl_s,

zn, = p' cosbl,_;.
The variables 61, ... ,60,_; vary within the limits 0 < 8] <27, 0< 8, <, k# L.
The transformations inverse to (43) are given by the relations

71 ! Tn—1
g = — g =
1 1 v 3¥n—1 )
I3 In

P =7, re =1/ai+... 42l

It is easy to show that operators (41) of the base do not contain the derivative E% and

do not depend on p'.
Let us rewrite system (39) in the new variables. We have

dp’

L =01 (¢, 04 . Bhy), (44)
de’ .
\ E = f(&-’) +‘-‘—’( 1)(:0;: 8;.: naED '9;1—1)1
where 6/ = [6], ... ,9:;—1]T= f=1fa.ofal" and @D = [@g, ... @) are

known vectors.
The operator associated with (44) is

UL = U +el’, (45)

where

3}
agn—l ’

U= 120 gy + -+ Fams(0)

$ . o . 9 . 9
U._W]_(P:e)'g;;+w3(p’9)3_81+‘.l+wn(p}g)'é-a:‘—_l.
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According to the algorithm of asymptotic decomposition (see Section 1), we change
the variables
P =exp(eS)U'p, 0" =4,

where
exp(eS) =1+7 S—I— 2|S'2+ ;
d ;
S=54+eS+..., S_;:fy_.,-(p,ﬂj—a—p, G2 1,2 e a

in system (45).

Here, unlike the general algorithm of asymptotic decomposition, only the variable
p, which is slow for system (44), is transformed.

According to the Campbell-Hausdorff formula, we have

Uo=U+e(-[U,S1)+F)+...+e™(~[U,Sa] + Fa) + ...,

where i
h=U= fn-a% +§flj‘é%_‘:
1 g L. 8
Fy==[F,5] - 550051 = fma—p +JZ=?1’ fnja_gj-
The operator S; is determined by the sequence of recurrent operat-br equations
U, .5'_,] F; — prF;, (46)
where f}, = fjlé%, R —g T N
Let us consider the equation
[U,8] = F — prF, (47)

which is called the representative equation of system (45), to show the technique of its
solving.

By virtue of the commutativity of U, %, the operator equation (47) is reduced to
the differential equation )

Uy = £(p,0)— F, (48)
where f is an unknown function.

The differential equation (48) is easily reduced to an infinite sequence of finite-
dimensional linear algebraic equations by using the right-hand sides of the Fourier
expansion of (48) in the Hilbert space H = L?(G) = H; ® H3 @ ..., where H; are
the subspaces of irreducible representations of the group SO(n) of weight [.

- The function f(p,f) can be written as a uniformly convergent series

fos Zb )7 (). (49)

IJ!
The solution ¢ and undefined function f are found as the series

= ip)r;0), F= Z"’ (p)7i; (50)
14, Lji
The free term of expansion (49)
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is equal to the average value of the function f(p,8) on the group. It should take
580 = b3,. After the substitution of series (49) and (50) in equation (48), we arrive at
the sequence of systems of linear algebraic equations
' Fi = by — prby, (51)

where 77 is the matrix of representation of the operator U in the subspace H; and 7y, by,
b; are the vectors of the coefficients of components of expansions in the subspace Hj.
The vector b; should be taken from the condition of solvability of the matrix equation
(51) (see [17], Appendix).

If we determine S; from system (46) by the algorithm described above, then the
operator Uy turns into

Uo=U +e(prFy + (Fr — Fy))+ ...+ (ke + (Fe — F)) + ...,

where

R ) 5 8
prfy + (Fr— F) =) Friggos
j=2 J

and system (44), correspondingly, turns into

i—i = &(880(p) + f12(p, 0)) + €% (bbo(p) + Far(,0)) + .., (b3

Y 1O+ 0.0) + 2 (0. 0) + ...

The algorithm described above is called the algorithm of asymptotic decomposition by
a part of variables. It is worthy to know when the first equation in system (52) does
not depend upon the variable 6, i.e.,

% = eBo(p) + ¥Hho(p) + .

In this case, the algorithm of asymptotic decomposition by a part of variables is
called the algorithm of averaging on a group SO(n). Below, we show that, for the
group SO(2), the algorithm of averaging on a group is the only way of realization of
the algorithm of asymptotic decomposition by a part of variables. This is not true for
the noncommutative group SO(3).

4. Examples: Models connected with nonlinear oscillator in the plane. II.

4.1. Partial group averaging for perturbed motion on SO(2). Let us return to the
consideration of the perturbed system (27). We change the algorithm for the solution
of the operator equation (54). In (14), we set

a .
Sj = Tj(P:‘P‘)%: =100
The operator equation (54) can be written in the form
8 5]
[U,51] = bi(p, ‘P)BTO' — (b1(p, ‘P)}'é;:

where S1 = v1(p,©)8/8p. Hence, only the variable p is transformed. Obviously,

(b1(p, ) = -g- g

On calculations, the centralized system of the first approximation reduces to

. _E 1,
P‘z(l"z")"”
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N /. P . Pt .
$p=1——(sin2p — —sin2¢ + ~—sindp | . (53)
2 2 4
For finding 71 (p, ¢), we have the differential equation

%‘;r: b1(p, ) — (b1(p, ),

which is easy to solve:

71(p, ) = —sm(ﬁtp) 3—25111(4@)

*It is important that the analysis of the first equation in system (53) displays the
existence of a stable limit cycle. One can also illustrate this fact graphically. The
comparison of the solution of the initial perturbed system (27) and the centralized
system of the first approximation (53) (prewously reduced to the initial variables z;
and z3) is shown in Fig. 1.

The advantage of the partial group averaging lies in the fact that it enables us to
obtain approximate equations with much less calculation efforts. Nevertheless, these
equations help us to perform qualitative analysis of the initial nonlinear system.

4.2. Group averaging for perturbed motion on SO(2). In the case of commutative
groups, one can transform all variables, i.e., the algorithm of asymptotic decomposition
is applicable. Let us apply it to system (27) with averaging on the group SO(2) defined

as
2r

1
=— de.
(oo =5 | Flere)de
We restrict ourselves to the first approximation and consider the operator equation
[U,81] =0 —prT, (54)

where 51 = v1(p, ©)8/0p + v2(p,0)8/8¢p. Let us calculate the average. values of the
coefficients (28). According to the general theory,

il = (2P 'o)@p

Therefore, the centralized (averaged) system in the first approximation takes the form

. (P 13 G
9—5(2 8p>, p=1

The operator equation (54) is replaced.by the system of differential equations
O7; ;

Bp =) +ilp ), =12

Such systems are easily integrated in trigonometric functions.

5. Examples: Motion of a point on a sphere.
5.1. Linear equations. Con31de.r the system of equations (42) of motion of a point

on a sphere.
To show this, note that the system has two integrals
vi(e) = @1 + 23 =c1, (55)
va(z) = 22 + 22 + 22 = cs. (66)

Hence, the motion described by system (42) takes place in the circle which is the
intersection of sphere (56) with radius p = ,/c3 and plane (55); see Fig. 2a.
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Fig. 2. (a) The solution of a linear system of equations of motion of a point on a
sphere.
(b) The solution in the phase plane for angle spherical variables governing the
motion of a point on a sphere.

Fig. 3. The solution of nonlinear equations of motion of a point on a sphere: initial
points of trajectories in the plane z; 4+ z3 = 0.

The motion on a sphere is quite complicated. By introducing spherical coordinates
in system (42) .

z1 = psinf cosp, z3 = psinfsin p, z3 = pcos, p=1/z?+ 2%+l

we can clarify this fact. Systém (42) takes the form
p=0,
6 =sinyp, (57)
= —1+ctglcosep.
The trajectories in the phase plane of the last two equations of system (57) are depicted
in Fig. 2b. .
The fact that the solution of system (42) is an element of SO(3) (see Example 2 in
Subsection 3.4) is important for what follows.
5.2. Nonlinear equations. Now suppose that system (42) is subjected to nonlinear
perturbations:
T
il = I —+ E?IF($),

i = W E%F(m), (58)
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Fig. 4. The solution of nonlinear equations of motion of a point on a sphere: initial
points of trajectories in the plane z;1 + z3 = Zec.

Ty = —aq -+ E%F(z),
hi . .
where i

p=rfel+ei+el,  Fz)=h—p2+ 2 3 m'ﬁ’
. P

and ¢ is a positive parameter.
The nonhnear system (58) has limit cycles. Any trajectories orlgl.natmer in the plane

2y 4+ 25 =10
(points 4, A/, B, B, C, C' in Fig. 3) are winding on a limit cycle. Any trajectories
originating in the plane
: 21 + x3 = ¢, ¢ = const

are either winding on a limit cycle (points A, 4/, B, B in Fig. 4), or unwinding from
a limit cycle (points 4, A’, C, C' in Fig. 4).

5.3. Group averaging for perturbed motion on SO(3). Let us introduce spherical
coordinates in system (58)

zy = p'sinb cos ¢/, zh = p/ cos§'sin ¢/, x5 =p cos .

System (58) takes the form _

p=cef(p',8',¢"), .

6! = sin ¢/, (59)

@' = —1+ctgh cos¢,

h
where 1

[P

F(o',8',9") = h? — p? + (sin g’ — cos ') sin ¢’
For the operator associated with this system, we have
- Uy =U'+ell,

where 5
U'= (- 1+ctg€"costp)——+s cpgé;

U= (6,0 sof)i

: Sl 610, ¥

Now let us apply the algorithm of asymptotic decomposition in the first approximation
to system (59), using partial group averaging on SO(3). Performing the transformations

pl=eSp,  0=0, ¢ =p
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Fig. 5. The solution of nonlinear equations of motion of a point on a sphere (solid lines
correspond to the exact solution; dotted lines correspond to the approximate
solution (a centralized system of the first approximation)); € = 0.5 (a), e = 0.1
(b).

d
S=58= 'Tl(P:g)‘P)'ED':
according to the general theory, we get
[U:S].:[ = ﬁ‘l _prﬁlr

where 9
B = 0, 0)—.
1 f(p (P) 519

Recall that Fy is obtained from Fy by omitting terms with all derivatives but 8/dp.

It now reasonable to use the fact that the coefficients of F"l are functions on the
group SO(3). For expressions in Fourier series, we use basic spherical functions. After
calculation, we get '

f(P:SI(P) — fﬂ + Clyll E c—»lyl_l + CDYID,

where
.fU = hg i p2’
Y= —2://,_gre"*" sin @, Wis 5—:’//%—&"“” siné, Y =v2cosé.
6 = _"’2'”)) ey = __”'2'”', co = V@'_.__"?'”
V3 V3 V3

The free term fp in the expressions for f in Fourier series in basic spherical functions
is equal to the “average of this function on the group SO(3).” It is calculated by the
formula

fo=(F(p,0,9)) =def /:T /: f(p, 8, ) sin 8d8dyp | .
According to the general theory, we have
s = (0.0,0) 5 ) = (F(p 0D 2.
As a result, we obtain the centralized system of the first approximation
p=e(h? - p?),
§ = sin ®, (60)
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@ = —1+ ctgfcos .

For finding the coefficient 71(p, 8, ) in S1, we get the equation

Uy =a¥l 4+ e 1Y 4 ey,

which can easily be solved:

71(p, 0, 9) = A in 6—
g, 0, sm{ps A
2/3 Viel

The first equation in system (60) displays the existence of two limit cycles p = =h.
The trajectories of exact (58) and approximate (60) (reduced to the initial variables)
systems are shown in Fig. 5 for different values of €.
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