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SINGULARLY PERTURBED STOCHASTIC SYSTEMS

CUHIYJIAPHO 3BYPEHI

CTOXACTUYHI CUCTEMMU

Problems of singular perturbation of reducible invertible operators are classified and their applications to the
analysis of stochastic Markov systems represented by random evolutions are considered. The phase merging,
averaging, and diffusion approximation schemes are discussed for dynamical systems with rapid Markov
switchings.

PosrnanyTo npobremMu cuErynapHoro 36ypenus o6opoTHMX omepaTopie Ta ix sacTocy-
BaHHA MO aHami3y CTOXaCTHUHMX MADKOBCBKMX CHMCTEM, IO 3alalOThHCH BHNIAJKOBMMM

epomoniamMu. Oxemu (pasoporo yKpynHeHH#A, ycepeiHeHHs Ta Oudysifinol anpoxcumanil
2aCTOCOBYHOTHBCH OO ,U.PI‘I-I&Mi‘-IHHJE CHCTEM Bi IIBMIOKHMMM M&PKGBCBKMMH HGPGKJ'IIO‘-IQHH_HMM.

1. Preamble. Stochastic models of systems are considered in a random medium, i.e.,
the evolution of a stochastic system is developed under the influence of random factors.
The specific feature of an interaction between a system and a random medium is a
unilateral effect of a random medium. The local characteristics of a system change
with the change of states of a random medium. This particular feature of interaction
allows us to apply a unified mathematical approach based on the efficient mathematical
methods of analysis in the problems of singular perturbation for reducible invertible
operators. ’

Stochastic models of systems are determined by two processes, namely, a switched
process describing the evolution of a system, and a switching process describing the
changes of a random medium [1, 2].

It is assumed that the evolution of a system possesses a semigroup property and
the random medium has an ergodic property.

The mentioned properties of stochastic systems select the class of systems rep-
resented by random evolution regarded as an operator-valued stochastic process in a
Banach space [3—13]. )

Efficient mathematical tools of analysis are based on the problems of singular per-
turbation for reducible invertible operators and on the martingale characterization of
Markov processes [14—19].

Stochastic systems are considered in the series scheme with a small series parameter
£ > 0 and with two scales of time: real time for a system and rapid time for a switching
Process.

This approach is the main idea of various investigations of deterministic and stochas-
tic models of systems. The systematic analysis of deterministic evolution systems with
two scales of time was realized by the prominent school in nonlinear mechanics created
by N. N. Bogolyubov and A. N. Krylov (see the monograph of N. N. Bogolyubov and
Yu. A. Mitropol’skii [20]) and developed by Yu. A. Mitropol’skii and A. M. Samoilenko
[21], L. I. Gikhman [22], E. R Tsar’kov [23] and their students.

The stochastic model of a system determined by two processes, namely, by a
switched process in real time and a switching process in rapid time, was thoroughly
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investigated by N. N. Krasovskii and I. Ya. Kac [24], by H. J. Kushner [15], R. Z. Khas-
minskii [25, 26], A. V. Skorokhod [27, 28], etc.

The random evolution as an operator-valued model of a stochastic system was real-
ized by R. J. Griego and R. Herch [4-6] and many others (see references in [18]).

There’ are many methods for asymptotic analysis of stochastic systems. The most
efficient of these methods is based on studying singular perturbations of reducible in-
vertible operators. '

The aim of this paper is to order the main schemes of asymptotic analysis of stochas-
tic systems with two scales of time. In order to focus attention on the problem of singular
pertﬁrbation, we deliberately simplify the considered stochastic model, which illustrates
the action of the method.

Certainly, the class of stochastic systems in asymptotic analysis can be substantially
extended, but the clarity of the idea of analysis would be lost (see, e.g., the analysis of
a dynamical system with rapid switchings by a stationary process in [11]).

2. Dynamical system with rapid Markov switchings. Let us consider, for defi-
niteness, a rather general and, at the same time, extremely simple model of a stochastic
system given by the evolution differential equation with rapid Markov switchings

dU=(t)
dt
where z(t) is an ergodic Markov process on a measurable space (X, &) is given by
the generator ) defined on the Banach space B of real-valued functions ¢(z) with the
supremum norm

= C(U*(t),z(t/e)), (1)

_Iiso(ﬁ)ll = le(z)].

The velocity function C(u,z), v € R%, 2 € X is supposed to be such that the
evolution equations

d%f*) = CUa(t)yz), zEX, Us(l)=u (2)

have the unique solution on every finite time interval, ¢ € [0, T, for every fixed z € X.
Equation (2) can be considered in the equivalent operator form
5}
) _ o)), folw) = F(u)
for evolution fi(u) := f(Uz(t)), Uz(0) = u, with the generator of semigroup
C(z)f(u) == C(u,z)f'(u). (3)

The main idea of asymptotic analysis as ¢ — 0 of the dynamical system with rapid
Markoy switchings (1) is to consider the couple Markov process U® (1), z°(t) := z(t/e),
t > 0, determined by the generator

Lp(u,2) = [71Q + Clo)]p(u, 2). (4)

The uniformity of the ergodic property of a switching Markov process z(¢) means that
the generator  of the Markov process z(t) possesses the reducible invertible property
[17, 18], i.e., the Banach space B can be represented as the direct sum

B =Ng®Rg - (5)
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of the null space Ng = {¢ : Qp = 0} and the range space Rg = {¢ Qv = p}.
Decomposition (5) means that there exists the projector II onto the null space Ng and
the potential operator R defined by the relation

Ro :=[Q+ 1! —-]I_ (6)
and satisfying the following properties:
QRo=RoQ=I-1, HRy=ReI =19

(i.e., the potential Ry is a reducible inverse operator to the operator ¢}). The general
solution of the equation

Q=1
can be represented as follows:

w=Ro¥+po, o€ Ng.

In what follows, for simplicity, we assume that the operator ¢} and its potential Rg
are bounded. The case where this is not true requires some additional refinement in the
asymptotic analysis of singular perturbation problems [16].

3. Problems of singular perturbation. Various schemes of asymptotic analysis of
stochastic systems can be reduced to the problem of singular perturbation of a reducible
invertible operator, which can be formulated in the following way: For a given vector
1 € B, the asymptotic solution

" =p+ep

of the equation
[E7'Q+ Qulp =9+ 6°
is constructed with the asymptotically negligible term 6%, i.e.,
|6°]| =0 as e—0.
Such a problem arises due to the asymptotic inversion of a singular operator:
E1Q+Q 7 =Q" +eQ +....

There are many situations that cannot be classified (see, e.g., [16]). At the same
time, it is possible to select some logically complete cases [17, 18].

The classification of problems of singular perturbation is based on the properties of
a contracted operator Q1 defined by the relation

Q11 = IQ, II. (7)

The contracted operator @1 acts on the contracted null space Ng.

Example [16]. Let @ be a generator of a Markov ergodic process with finitely
many ergodic classes, let X = UL _, X}, and let mp(dz), 1 < k < N, be stationary
distributions on X3, 1 < k < N. The projector II onto the null space Ng acts as
follows: '

N ’
Wp(e) = 3o Pala(a), = 1. ple)m(do);

here, .
- 1, 2e X,
B = { 0, ¢ Xy
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The contracted null space Ng is the N-dimensional Buclidean space of vectors ¢ =
(@1, 1<ESN).
Assume that a perturbation operator ()1 acts as follows:

Quip(z) = fx Qi(z,dy)p(y), =€ X.

Then the contracted operator @1 on ﬁQ is defined according to relation (7) by the

matrix
Q1=[qer: 1< k,» <NJ,

where

= 7 (d T
qk /» k(de)Qy (2, X;)
and

N
Qg = (qursar,l <k< N).

=1

There are three logically complete possibilities:
(@) @, is invertible, i.e., there exists Qfl;
(ii) Ql is the zero operator, i.e., ngﬁ =0 forall ¢ € ﬁg;

(iii) Ql is reducible invertible, i.e., there exists a null space N 6, C NQ such that

HNg =Ng, DRy,
There also exists the potential operator [Ql —I-H]“ ﬁ , where 11 is the projector
onto .!\fQ1 defined by relation
g =¢l, ¢elNg,.
Here, 1 is the unit vector in N 5
The solutions of singular perturbation problems in these three cases are given by
the following three propositions (see [16—19]):

Proposition 1. Let the contracted operator Qy be invertible, i.e., 3 ti)l_l. Then the
asymptotic representation

ET'Q+ Qul(p +epr) = ¥+ 6°
can be realized by the following relations:
Qg =1,
01 = Ro(¥ — Q1)
6° = eQiRo(¥ — Q1)

Proposition 2. Let the contracted operator Q1 be the zero operator, ie, Q16=0
Vo € NQ Also assume that, after contmct;on to the space NQ the operator @y =

Qs — Q1RoQ1 has the inverse operator Qc ;
Then the asymptotic representation

E72Q +e7'Q1 + Q) + g1 +e%pa) = P + 6°
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can be realized by the following relations:

. Q‘:ﬂ!ﬁ: 2IZ'I
. 1 =—RoQ1,
P = RD(":{) - QU‘P):

6° = g[Qap1 + [Q1 + £Q2]2].

Proposition 3. Let the contracted operator Q1 be reducible invertible with the null
space N 8, C P?Q defined by the projector 1. Let the twice contracted operator Qz on
NQ; defined by the relation

LI = 11Q,1, Q.11 = I1Q,1I,

O

be invertible, i.e, 3Q, .
Then the asymptotic representation

[€72Q + e Q1 + Qa( + ep1 + €2p3) = b + 6°

can be realized by the following relations:

ézﬁbf- %a,
G1 = Ro(4h — Q2),
2 = Ro(¥ — Qap — Q11),
0° = e[Qatp1 + [Q1 + £Q2)ip2] -

The remarkable fact is that every solution of a singular perturbation problem has a
corresponding interpretation in the analysis of stochastic systems.

4. Analysis of stochastic systems. Let us start with a rather simple example.

4.1. Sojourn time in a subset of states [17]. Let z5,, n > 0, be a Markov chain on a
measurable space (X, ') with unique absorbing state 0 such that X = X + {0}. The
transition probabilities are represented as follows:

P.(z,B) = P(z,B) —eP;i(z, B),
where the stochastic kernel P(z, B) is the transition probabilities of the support ergodic
Markov chain z,, n > 0, on the subset X with stationary distribution w(dz). The
perturbing kernel Pj(z,B) provides the absorption of the initial Markov chain %,
n > 0, with probabilities

Pe(z,{0}) = ePi(z, Xo) =: e9p(z).
Introduce the sojourn time in the subset of states

75 ==min{n : 2§ = 0/2f =z € X}

The generating function . (z, s) 1= Ee~**"= is determined by the solution of a singular
perturbed problem of the following form [16]:

E71Q + Q1+ 6% = ¥,
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where @) := I — P, @1 := sl + P;, and the operator §° satisfies the negligibility
condition

[|6°]] =0 as e—0.

By assumption, the contracted null space KTQ' is a one-dimensional Euclidean space,
i.e., the real line. The contracted operator ¢ acts as follows:

Qp=(s+Pp b= [ a(e)(e)
By Proposition 1, we obtain

pe(2,5) = () = P/(s+9) as e—0.

Thus, i
Plers >t} —e ¥ as e—0.

4.2. Phase merging scheme [17]. Let z.(t), t > 0, be a Markov jump process on a
measurable split space (X, X),

X=UevXy;, HNXp=0 vbd (8)
given by the generator
@y(e) = a(z) |_Pele,di) ply) — (o). (9)
The stochastic kernel P.(z,dy) is represented as follows:
P.(z, B) = P(z, B) + Py (=, B), (10)

where the stochastic kernel P(z, B) is coordinated with the splitting of the phase space

(8) as follows: y
_ _1; zEe Xm
P(m,X,,.)_.{ 0, z¢&X,.

We also assume that the support Markov chain z,,, n > 0, with the transition probabili-
ties P(z, B) is uniformly ergodic in every class X,, v € V, with stationary distribution
my(de), v € V. For sufficiently small enough € > 0, the Markov process z.(t), t > 0,
stays for a long time in every class X,, v € V, and, provided that

Py = / my(dze)Pi(z,X,) >0, veV,
Xy

sooner or later leaves each class X, of ergodicity of the support Markov process
z(t), t > 0, defined by the generator

Qu(z) = (=) A P(z, dy) [p(y) - o(z)). (11)

The asymptotic behavior of the Markov process (t), t > 0, as € -— 0 can be investi-
gated by using the martingale characterization of the Markov process z*(t) := z.(t/e)
in the following form [16]:

e = (et (®) - [ (e (a)ds,

Lip(z) = [67'Q + Qilp(z),
where

Qup(z) = o(x) jx Pu(e, dy)oly). S @
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SINGULARLY PERTURBED STOCHASTIC SYSTEMS 31

The phase merging effect is realized by Proposition 1 for the test functions
¢ (z) = p(v(2)) + ep1(2),

where v(z) = v, & € X,, is the merging function on X corresponding to splitting (8).
The martingale characterization for the limit Markov process

2(t) = P‘}i.‘fé v(zf(2))

on the merged phase space (V, V) is given by the relation

b= (60) ~ [ Qui(als))ds
with the generator
Qup(v) = (0) [ B0, [5() ~ 90, (13)
where
P(o,T) = /X mo(d2)Pi(2, Xr), Xp = UperXo,
@(v) = qv * P,

gt ::/ Ty (dz)/q(z). (14)

4.3. Phase averaging scheme [18]. Now let us consider a dynamical system with
rapid Markov switching (see Section 2) The corresponding problem of singular pertur-
bation is formulated for the martingale characterization of the coupled Markov process
Ue(t), ==(t) = =(t/e), t > 0,

3
pE = o (US(8),2° () — f Lfg (US(s),2%(s))ds (15)

on the test functions
(pe(u) ."L‘) = ‘P(u) + &1 (ua m)
According to (3) and (4), the generator
Lf =e71Q 4 C(=), (16)

where
C)p(u) = Clu, 2)¢'(u).

Under the conditions of uniform ergodicity of the switching Markov process z(t) with
stationary distribution w(dz), the phase averaging effect is realized by Proposition 1 for
martingale (15) with generator (16) in the following form:

e =)~ [ CoU(s)ds+ 5, (17)
where the averaged operator
Colw) = Cup' (W, C) = [ n(de)Clw2)

and the negligible term
Elf;| —+0 as &—0. (18)
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The limit average system is determined by the equation

1
P(U0)~ [ Co(U(e)ds =0
or, in the equivalent form for the averaged dynamical system,

dU@) s
— = Cc(U(t)).

4.4. Diffusion approximation [18]. Consider a dynamical system with accelerated
Markov switching
) — o (ue(a),a(t/e?)
and the velocity depending on the series parameter € as follows:
C*(u,z) = e C(u,z) + C1(u,z).

Now consider the problem of singular perturbation for the martingale

t
M= go‘(U‘(t),m‘(t)) —A L‘go'(U*(s),a:‘(s))ds (19)
on the test functions
¢ (u,2) = p(u) + ep1(u, 2) + *pa(u, 2).

The generator of the coupled Markov process U®(t), 2°(t) := z(t/e?), t > 0, is given
by the following relation:
Lop(u,z) = [72Q + £71C(z) + Cu(=)] w(u, z),
where, as usual,
C(z)p(u) = Clu, z)¢' ().
Under the condition of uniform ergodicity of the switching Markov process z(t)

with stationary distribution 7(dz) and the additional balance condition on the velocity
function C(u, z)

Clu) = /X 7(dz)C(u,z) =0,

which guarantees the existence of the limit diffusion, by Proposition 2, martingale (19)
is reduced to the form

1
uE = (U= () - fu L% (U* (5))ds + 65
with negligible term 65 satisfying condition (18). The limit generator L° is determined
by the formulas (see Proposition 2)
L%:=Qo, Qoll=IQoH, Qo:=Ci— CReC.
Note that
CRoCp(u) = C(u, 2)ReC(u, 2)¢" (u) + C(u, x)ROC;(u,z)ga"(u).
It is now easy to verify that
L%(u) = o*(u)y"(w) + a(u)y (u),

where
o?(u) :=] C(u,z)RoC(u, z)w(dz)
P
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and

alii) e /X [Glu, 2)RaCl.(x, 2) + Ci(w, 2)] #(dz).

The limit diffusion process U(t), t > 0, is determined by the martingale character-
ization i
pe=pUE) ~ [ L((e)s

4.5. Double averaging scheme [17]. Combining the phase merging and averaging
schemes, we consider a dynamical system with accelerated Markov switchings in a
splittable phase space

dU=(t ;
") G0 et/
where the Markoy process z.(t) is considered, as in Sec. 4.2, on a split phase space
X = Uyev X, with generator (9)—(10). The generator of the coupled Markov process
U=(2), 2%(t) := ze(t/e?), t > 0, is determined by the relation

Lop(u,2) = [e72Q +£71Q1 + C(2)]p(w2), (20)

where @ and @, are given by relations (11) and (12).
Now consider the problem of singular perturbation for the martingale

b=t UF 0 @) = [ Bt (U(e), 2 (e))ds (21)
on the test functions
i (,2) = p(e) + 1, 9(2)) + o, 2),

where v(z) = z, z € X, is a merging function on X, corresponding to the split of the
phase space (8).

The singularity of the perturbed operator (20) is guaranteed by the reducible invert-
ible operator Q1 determined by (13)—(14). The double averaging effect is realized by
Proposition 3 under the additional condition of the uniform ergodicity of the merged
limit Markov process #(t), ¢ > 0, on the merged phase space (V,))) defined by the
generator Q1 (see Sec. 4.2). According to Proposition 3, martingale (21) is reduced to
the form

t g
pi = p(US(¥)) — d Co(U*(s))ds + 65

with negligible term 5. The double averaged operator C is determined by the following

formulas: 5 )
Go(u) = Clu)e' (u),

B = fv Bl vyl

Clu,) = / Clu, z)mw(dz).
X\r
Here, #(dv) is the stationary distribution of the merged limit Markov process &(t).
The double averaged limit dynamical system is defined by the equation

dU(t)
Tdt

= &(0(1)).
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