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ON THE SPATIAL AND TEMPORAL BEHAVIOUR
IN DYNAMICS OF POROUS ELASTIC MIXTURES *

PO NMPOCTOPOBY 1 YHACOBY TIOBE/ITHKY
B JIMHAMIIII TOPHCTHX IPY XKHUX CYMIIIEH

In this paper, we study the spatial and temporal behaviour of dynamic processes in porous elastic
mixiures. For the spatial behaviour, we use the time-weighted surface power function method in order to
obtain a more precise determination of the domain of influence and establish spatial decay estimates of
the Saini=Yenant type with respect to lime-independent decay rate for the inside of the domain of
influence. For the asymplotic temporal behaviour, we use the Cesdro means associated with the Kinetic
and sirain energies and establish the asymplotic equipartition of the total energy. A uniqueness theorem
is proved for finite and infinite bodies and we note that it is free of any kind of a priori assumptions on
the solutions at infinity.

BunuaeThes possiToR ¥ 4aci | OpocTopl AHHAM IMHHX NPOLEcs ¥ NOPHCTHE NpyaHnX cymiwax. [lns
ARy MPOCTOPOROT NORELINKN BHEOPHCTANG METOI NOBEPXHCRO] YACOBO- IPIRHOLLKCHO] elepre-
ol dhyHKUEE AnA Gk TouHore BHIHAYCHHA ofnacTi BIUMEY | BCTAHOBACHD DUIHKY NPOCTOpoBO-
ro aracan a Ty Cen-Benana pianocio wacosoro aracania s Mexax obnacti ansmey. [l ackmirmo-
THEH “MAcOBO] NOBEAIKH BHKopHCTaRo MeTon Hesapo, nos' azanuil 3 KIHeTHIYHOO Ta medpopMalifinoo
CHEPIiAMH, TA BCTAHOBACHD ACHMOTOTHYHHA PIBHOPOINONLT cyMapHol chepril  [loBeaeHo Teopemy
CAMIOCTT LAM CKUIMEHNHE Ta HeCK ey TiA 663 Oyib- AKHX NoNepeaiix MpHiyiLeHs IOAo poi-
B AIKIE HA HOCK IHYMCHHOCT,

1. Introduction. Various theories have been proposed in literature for describing the
behaviour of the chemically reacting media (see. for example, Truesdell and Toupin
[1], Kelly {2]. Eringen and Ingram [3, 4]. Green and Naghdi [5, 6], Dunwoody and
Miiller [8], Bedford and Drumheller [9], ete.)

Recenty Tesan [ 10] has developed a theory for binary mixtures of of granular mate-
rials in Lagrangian description, in wich the independent constitutive variables are the
displacement gradients, displacement fields, volume fractions and volume fraction gra-
dients. The theory takes into account the results established previously by Munziato
and Cowin [11]. Goodman and Cowin [12] and Drumheller [13]. The imtended
applications for such a theory are o granular composites, solid explosives and
peological materials,

In [10] a linear theory is also presented and some uniqueness results for bounded
bodies are established for the linear dynamic theory with no definiteness assumptions
on the elasticities and without any regtriction on the initial stresses,

The present paper studies the spatial and temporal behaviour of the solutions to the
boundary-initial value problems in the linear dynamic theory of porous elastic mixtures
as developed in [10].

For the spatial behaviour of the dynamic processes in porous elastic mixiures we
use the time-weighted surface power method developed in [14]. Thus, we introduce a
time-weighted surface measure associated with the dynamic process in question and
then we establish a lirst-order partial differential inequality, whose integration gives a
zood information upon the spatial behavior. Then we obtain a more precisely version
of the domain of influence in the sense that for each fixed ¢ €[0,T] the whole activity
is vanishing at distances to the support of the given data on [0.7] greater than cr,
where ¢ is a constant characteristic to the elastic mixture. A spatial decay estimate of
the Saini-Venani's type is established for describing the spatial behaviour of the
dynamic process inside the domain of influence.

As regards the temporal behaviour of the dynamic processes in porous elastic mix-
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tures, we introduce the Cesdro means of various energies and then establish the rela-
tions describing the asymptotic equipartition of energy. To this end we use some
Lagrange identities and the method developed by Day [15] and Levine [16].

The plan of our paper is the folowing one. In the Section 2 we present the basic
equations of the linear dynamic theory of porous mixtures developed in [10]. Some
constitulive assumptions and other useful results are also presented. The auxiliary
identities are established in the Section 3, while in the Section 4 a time-weighted
surface measure is defined and its properties are studied. Moreover, a first-order partial
differential inequality is established for this measure, The main result concerning the
spatial behaviour is presented in the Section 5 and some uniqueness results are obtained
as a direct consequence. In the Section 6 we introduce the Cesdro means of various
energies and establish the asymptotic equipartition of the total energy.

2. Basic equations. Throughout this article, the motions of continuum are studied

with respect 1o a fixed orthonormal frame in E”. Then, we deal with functions of po-

sition and time. Moreover, it is useful to stress that in the following text the tensor
components of order p = 1 will appear with Latin subscripts, ranging over the integers
{1,2, 3}, and summation over repeated subscripts will be implied. Greek indices are
understood to range over [1,...,9) if they are lower case letters, or over (L2} if
they are upper case letters: the summation convention is not used for these indices.
Occasionally, we shall use bold-face character and typical notations for vectors and
operations upon them. Superposed dots or subscripis preceded by a comma will mean
partial derivative with respect to time or corresponding coordinates.

Let B be a bounded or unbounded regular region in the physical 3-dimensional
space, whose boundary dB is a piecewise smooth surface. A chemically inert binary
mixture of iwo interacting porous elastic solids, ¢, and ¢y, in a given reference con-
figuration, is into B,

The positions of particles of ¢ and ¢, attime ¢ are x and y respectively, i.e.,

x=x(X.1)., y=wY.r) XYeB, rel,

inwich X and Y are reference positions of these particles, [ = [0,+=). By following
Bedford and Stern [17], we assume that X = Y.

Let the top label ¢ refers the various fields to the constituent  ¢,. Taking into ac-
count the linear theory, the behaviour of a binary mixture of elastic solids is governed
by the local balance equations (see Iesan [10])

e , o fa) i) _ o) ded)
SJ'J.;' +{ ]]u;ji + p .ﬂ( = p o,
(1}
(o) oy ) bl o
K+ ' 4 pl @ = O DE®  on B x (0,00).

In these equations, §'@ ™ are the stress tensor and the body force associated
with ¢,; p is the vecior field for characterizing the mechanical interaction between

the constituents ¢, and cp; W™, g @ are the equilibrated stress vector,

intrinsic and extrinsic equilibrated body force associated 10 ¢, respectively.

([=3 (o)

Moreover, u'® is the displacement vector fields associated with c,: ¢ i5 the
change in volume fraction for the constituent ¢, starting from the reference configu-
ration.

Finally, p™, %'™ are the bulk mass density and the equilibrated inertia of the
material &, in the reference state.
According to the classical interpretation of system (1), we assume that

D u'®, ¢ e CB xI);
i) ST A™ e cY@ xn, p;ec®Exi;
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i) £, g ¢ e 0B xn, p™, ¥ e CYB).
where, B is the closure of B.
Then, we introduce the 29-dimensional vector ficld

EU) = {e; (U).g; (U).¢". 9P, d;(U). 9. 0P},
with

U= {“u}‘"rz:.mln#::}}
and
. = i, 0 . _ i (2)
ei V) = S} +ul), &) = ]} +uf,
o (2)
di(Uy = u!" - u'® on BxI.

1] i

MNow we define the magnitude of E(U) by

|E(U)| = {e.-, (U)e;; (U) + g (Udg,; (U) +d7(U) +

2 Wz
¥ 2 [w‘“’mw‘“’mrupf:”tuwf:”m}}} :
]

Owr attention is focused on a homogeneous, centrosymmetric mixture, by supposing
that the initial continuum is free from stresses. Thus, in the context of our theory, the
internal energy density associated with U is given by [10]

W(U) = %[r'-.-,-”f,-,,-{me,,{m+c.;.;x,;:ms,,wl +LoMe +

+ 19?9 +0;0 0 + 7,070 +a;dU)d; (V)] +

+ By, €j(U) g,y (U)+ Dy (V)@ + Eje;(U)o'? +
+ Mg U)e" + Nyg, (Ve +B, 00 +

+ bydi(U)T) +¢;d,(V)g +19M o™ 3)
The material coefficients, appearing in the previous equations (3}, are conslants and
they obey the following symmetry relations:
""J}r: = AJ'J'M s Arﬂj ¥ Bllj.r: = Balrr.ﬂ Cf_fn - aﬂj o a_fJ' J

4)
II;J:=I1_";. 'l";_,'='i",.'- ﬂ,‘j"—'ﬂj,‘. E:=E..

The constilulive cqualions are
SO = (A +Boyji)es(U) + (B, +Clin)g s (U) +

+ (D + M)V + (E; +Npe'?,

'S,:':r':'{u} = Br:r'jer:{ul + lel'n S‘”{U} + Mr'jtpﬂ] + hr:jtprzj-

2™y = - D,e,(U) - M,,g,(U) - Lo — 1P,

(5)

gP(U) = - E,e,(U) - N,

o8 (U) — 10" — po®,
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pilUy = g dj Uy + h.j' lpfjt} + g '-'Pir-z},

J‘.':'l}"_'] = ﬂu ‘P{j} + i '.'pf': + bjldj l:l..l}.

K2 = Bie + v, 0 + Gid; (V).

)

Let 4, =||5.u.i|- K.L=1,...,20,
Er:.="*ra« EF{EH-M:BI"A* &ng:ﬂ‘r« ary=Er.

dosria =Bars  diryo+a)=Cras Guerne=Mr. dpir=Nr. "
: i . : - (6)
agy =Dy, @gpeay=My. de=0, dpn=T.
dya=Es. dapoesy=Na. dape=T. dxpp=H.
where we have called the nine index combinations (i j ) or (rs) by capital Greek let-
ters (i.e. T, A, and'so on). Now, let O be the null matrix 20 x9 and Ay = bg, |,
K.L=1....9, be

g =@y By =by.  bigyy=cy.

Baviyy =B bavixasy =%+ Bavinesy =By . ()
Bissiry =Civ  Bsrinaejy =Bjis  Bvixesj ) =7ij-
Then, the energy density (3) assumes the form
- S
W) = L ¥ AgExWEL) = LEU)- 2EW), )
2 KL=l 2

where the matrix A=Ay, |, K.L=1,....29, is defined by

.ﬂ—|:£' o] 9)
“lo af

and O is the transposed matrix of O.

In that follows we assume that p'®’, %' are strictly positive and W(U) is a po-

sitive definite quadratic form; thus, there exist the positive consianis £,, and Ly so
that

EJEWP < 2wy < Ey|EQUP, (10)

where &, isthe minimum elastic moduli and £, is the maximum elastic moduli.
Let

s = {5"W).5 P).e "W). ? W) p, A W) AP W)},
then the magnitude of S(U) is defined by

a 12
ISU)| = { ¥, [5 #0)s ) + AU S ) + g @ U)g @ (U)] +p,-tmp.-tv}} .

a=]1
Taking into account the equations (5) — (9), as in [18] it follows that
IS = AE-2E = E-4%E < E,E-4E = 2E,W(U). (11)

The surface tractions s“)(U) and h'““)(U) are defined by
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s$OW) = §PWn;,  AU) = AUy, (12)

where n is the outward unit normal vector to boundary surface. The relations (11),
(12} imply thai

2
Y [(Cws® )+ a ) < S s 28,w). (13)

a=]

If we introduce the notations
iy = Ajipy +Bm’i +Ejn':r "'{"jr'.rr*
b

ijrs = le'n +Cj|rs- d - cd'jﬂ- (14)

—_ EH +Nr'j'

irs
T if

the equation (3) becomes

=Dy +M;. o;

W) = % [aiestel )l + i3 P + L0 + P! +

(1)

+a; 0L + v, 0P QP + a; di(UM, (V)] + by uPuf? +

- T.J'Hf.]_,?fpm " U;,-u,ﬁjj-:p{z' + M "E_:‘pm + N "E_:mm "
+ By 007 + b (V)9 + ¢; iV + 19V, (15)
Using the symmetry relation (4), we get

=

ai}h’ = arn]" dijr; o drn:j' a; Ji*

: (16)
U'J]' = u‘_ﬁ* Tu = Tﬁ‘

The constitutive equations (5) become

n - (1 (2 (1 (2)
S5 W) = aguuy +hpu +T, 9 +O; ¢,
(el s i (2 i1 ]
S0 = by +d s + M@0 + N;@' 7,
in - (1) (2) (1) {2)

g = = Ty~ Mpuy L0 — 19,

22U = -6, 4" - N 43 -19" —po™, (17)

FEor.g

n

i il (2
r W) {I‘].:p';-'-l-ﬁﬁ-:p‘j +b;d;(U).

AP = Bio) +v; 07 +ec;id;U).

It follows from the equations (15), {16, (17) that

1]

2
2WU) = Y [SU)T + KO - g U] + pi(U)dU) (18)
a=]

and

2
W) = ¥ [SP0)aS + KW - g W)e' ™| + p(U)d,(U).  (19)

a=1

We consider the initial-boundary-value problem P defined by the equations of
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motion (1), the geometrical equations (2) and the constitutive equations (5) and the
following initial-boundary conditions

P R Y
(20)
FO=g,  $P=¢ on Bx(0)
and
4O =E on Tyxl, {0= on LxI.
21

q){l‘.ﬂ =¢E¢-} an :3}: I. gl _ pled ap E xl,
where X i=1,...,4, are the subsets of df such that
E]_UEE = EEUE‘ = aﬂ. E.ﬂ21 = 23ﬂ24 — 'E
The items on right-hand in the equations (20) and (21) are prescribed continuous
functions; along with 'V, £® ¢V /2 ihese constitute the external data of the
problem .
An array field U= {u'" u'® ¢'V.¢'®}, meeting all equation (1), (2), (5). (20) and
(21), will be referred to a (regular) solution of the problem P,

3. Auxiliary identities. In this section we establish some integral identities that we
will use in next sections.

Lemma 1. Ler U be a solution of the initial-boundary-value problem P .
Then, for every regular region P < B with a regular boundary 9P it follows that

lj' —M{E [piﬂ! Iﬂlli”ulﬂ}[”_l_p{ﬂ}x{ﬂ-lmﬁﬂ}i”m‘{{ﬂ{:}] + zwiun}j}du +

t
+ J'Ie h{z [p{“] (E}{:}u{ﬂ][$}+plﬂl (o) - tu}[.i‘:llip'u}{l]]'l'ZW{U{SH}Q'UdF
op

L 2
= J‘Je—h z [plfil:i){‘:(ﬂ!(s}ﬁ!:lﬂ{s}_'_p{ﬂ}f{lﬂ{s}{‘p{ﬂ]{‘ﬂ]dvds +
o P a=]

2
ﬂ { Y, [P0+ o ¢ 06 0)] + 2 Wﬂj{ﬂ})}du +

+ j Je "“E[s{“}{U[s}]Ht“JU}+-‘lm}(U{5}Jimeﬂ] 22)

where A is a positive parameter and te I,
Proof. The equations (1) and (19) lead to

E-aui a{ Z [Pfﬂ] fﬂ}{s}u{tl-}':s} +P{E} iﬂ}w{E}{SJ¢EBJ{5}]+zwms}}} =

a-]

2
= A {p‘“bf,.‘“h:m;“’{s}+p‘“‘e‘“}m¢‘“‘{s} +
=]

+ [ 12D + OV } (23)
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By integration of the equation (23) over Px[0,r] and by using the divergence
theorem, we obtain the equation (22).
If we introduce

2
) = J‘ %{ 3 [p‘“}&;‘m(r}:ifm{f}+p{“‘xm¢‘“]{i‘l¢m{r}]+3 w{U{r)}}dv. (24)
B a=1

then, for =0 and P =8 the equation (22) reduces o

P2
€N = €O+ | E[p‘“'ﬁ“?'{syaj“'{s}+p‘“}e‘“'m¢{“’m]dm;+
0 &/ =]

+

o ey =

2
| 3 [£*Ueni® )+ K9 UE)§'*(5)]dads. (25)
af

We note that “€(r) is a measure of the energy stored in B at time .

Lemma 2. Ler U be a solution of the imitial-boundary-value problem T .
Then, for every regular region P c B with a regular boundary 9P it follows that

2
] 2 [P 0i® 0 +p 3 e e 0 |dv =

P o=l

I
- jj{z[P'mﬂ'm{.'-'}u'm{.ﬂ+Pm'x'miptmi.'l]'li?m}l[s}]-EW{U{s}}}dtrds i
o P
+]
P
i 1
O aF

] ¥
+ j j b2 [p"" _,ffm{s]ufm{.r}+pm}fm]'{.r]tpm'{s}]duds, tel. (26)

P a=l

MH

[P0+ p Y V¢ 016V (0)] o +

MIJ

[S{PWUENE () + K U)§'(5) | dads +
=

8

0
Proof. The relations (1) and (18) imply that

Z[p:u} :u}(ﬂ"{m{j} +p{u:| {at) lnh{s}q][u}':ﬂ] -

= E[P{mﬂ,.!m(ﬂli:m{i‘}+P"mxfm¢m}(ﬂ¢m'(3}] +

+ E[lef[m{-ﬂﬂ{m(ﬂ'*P{mfm}'[ﬂ?(m(ﬂ] —2W(U(s)) +

=1
2
+ 2 [$P U6+ KD U ) 27)
a=1
The relation (26} follows from (27) by integration over P x[0,¢t] and by using the
divergence theorem.
Lemma 3. Let U be a solution of the initial-boundary-value problem. Then,
Jor every regular region P C B with a regular boundary oP it follows thar
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poas]
= I Z [p{ﬂ}u:;ﬂ]{nlu‘::ﬂlizr}_‘_ ptﬂ!&fnﬂ[ﬂ}&‘tﬂi]{m} +
Pa=]

2
+ [ z [ @ - )u® e +5)- pf 2t + 5)uP (e —5) +

F -

+ p{ﬂlf{ﬂ}{r _’}‘plﬂl{, +35)- plﬂ'-:lf{ﬂ-"{' ik S]':pm.{f —J}]dﬂd&' +

= e

2
+ Y, [ - )ui® @ + )= s WU + DU - 5) +

ap a=l

+ KU - 909 +9- UG +5)9 ¢t~ 5)|dads, r1el. (28)

| ——

Preof. For every function ¢eC (1), the following identity holds
-0 +5) - d(+5)0(-5) =
i %{@{;-;}qm +35) + Olr—s5)b(r +.r}}. se[0r], trel. (29)

On the other hand, in view of the relation (1), we have

2
¥ [P - u® +9-p@i P + Hu e -35)] =
=

2
e, [p‘“’fr.‘“’(: —)u Nt +9) - pf P+ Hul-5) +

=]
+ [$ U= nul®a +9) -5 PWUa +suPa-s)], +
+ [820 + sHuPe - -5 P -nHuS e+ 9]} -
= p (Ut = s))d; (UG +5)) + p (Ut +5))d;(U(t - 5), (30)

and

2
E [p{mxm&{a}{, i3 s]tp{“‘{: +5)— p{a:x:u} q':t{“]'{: i SJEF'WJ - ﬂ] =

x=1

2
= z {[P‘mlf':a}“_FI'F‘(QI{I'FFI-‘){GI'E{U;]U +S}q"h}“—5}] -+

a=]

+ [P U= +9-HP Ve + N9 -5)] +
+ [A® WG+ -5 - h U -9t +5)] +

+ [ W - )9t +5)- g WU + )9 - 9]} (31)
Further, with the help of (15) - (17) we prove that
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r!
> {[Se+ M e -9 - SOV DuGe + 9] +

a=1

+ [ +50)0 P - )~ KU -9t +5)] +

+ [£9WE - N9V +9) - WUa + NV -]} +

+ [p (UG + 5)d; (UGt = 5) = p,(U(r = s)d (UGt +5))] = 0. (32)
Then., the equations (29) = (32) imply that

2
3 {p“’ Y0 = ul® e + 9= F Bt + )™ —5) +

a=1

+ [$100U0 -9 +9- S PO+ P -3)], +
+ p @ 5 +5) - p'* N 4 5 9 N - 5) +

+ [hj“}m{: - Nt +5)~h ™ (U +5) ¢ (¢ - n]J. } =

E [0 - )™t +5)+pu® - 90V +5) +
¥ aml

. p‘“’x‘“'w‘“‘{:-x}w‘“}u +5) 4+ p P @ @y _ 6 _”}}_ (33)

The equation (28) is reached by performing integration of the equation (33) over
P »[0,¢] and then by using the divergence theorem,

4. A time weighted surface measure. Having fixedtime T'e/, for the external
given data of the problem P we define the set Dy by:

i) if xe 8, then

{13 {2}

ax) 20 or aVx)20 or x)#0 or a?x)#0

(2)

By 2 0 or Py

tPE;n{x} #0 or tpE,.“{x]l #0 or @y
or there exisis such 1T € [0,T] thai
f,-m(x.r} =0 or fm(x D20 o Mx=20 or Px1)20:
ii) if x €dB ., then there exisis such T € [(LT] that

sf"{x. T}iifn{x.‘r} 20 or sfz'{mr}ﬂfh{x.‘c} =0

(x) =0

or
M 0eMxn 20 o APx.0ePixT) 2 0.

The set ﬁ'r represents the support of the initial and boundary data and the body

force on the time interval [0,T]. In what follows, we assume that Dy is a bounded
set.

We c:unsrdm‘ a nonemply set DT whmh is such that DT c L‘rr c B and
i) if D]-I”IB # Ei then we choose DT is the smallest bounded regular region in

B that includes D;r in particular, we set D7 -.-‘J, if DT it also happens o be a
regular region:
ii) if @+ Dy cdB, then we choose Dy as the smallest regular subsurface of
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dB thatincludes Dy: in particular, we set Dy =Dy if Dy is a regular subsurface
of dB;

i) if B";r ={, then we choose .C-l;- as arbitrary nonempty regular subsurface
of dB.

Now, we mean the set D, by

D, = {KEB_: D}NZ(x.r) # 525}. rz0, (34)

where Z(x,r) isthe closed ball with the radius » and the center at x. Further, we
use the notation B, for the part of B contained in BA\D, and B(n.r)=B_\B,.

r >ry 8, denotes the subsurface of dB, contained into inside of B and whose
outward unit normal vector m is directed to the exterior of D,. Surely, taking into

account that for each r>0, Dy €D, and DyNB, =@, we get
a™ =0 d=0 of'=0. ¢§"=0 ona8&,.
=0 M<0 onB, x0T (35)
SO _ g O — g on (B,NIB)X[0,T].

For a fixed positive parameter & and for any r=0, 1€[0, 7], we define the time-
weighted surface power function  Pir.1)} by

‘ 2
Pry=-[fe™y [sf“'{mm;i}“’{s}+h‘“}(ugs}}¢‘“'{s}]dads. (36)
05, cxml
In the following lemmas, we show some relevant properties of the function P(r.r).
Lemma 4. Ler U be a solution of the initial-boundary-value problem TP and
Dy is the bounded support of the external data on the time interval [0.T]. Then,

the corresponding time-weighted surface power function P(r.1} is a continuous dif-
Serentiable functionon rz0, te[0.T] and

2
%P[r.r} = - [ ™Y, [ U@ 0+ UenNe ™ m]da,  37)
5, =]
ﬂ xn ol -J'..r{ : fig) = fex] o - e (AP IR T PR -
=P(r.1) = 1.5-,‘? E‘.lp )i () + p @y @@ ) )] +

) 2
i W(U[I'.!]}da = %I .[E_k{ E[p{mﬁ'."u'{s}ﬂ:m(s} +
i 5

2 a=I1

+ P D D) ()] + 2W(U(s)) }dads. (38)

Maoreover, for fived 1€ [0.T], Pir.1) is a nonincreasing function with respect
o r.

Proof. The equation (37) is an immediate consequence of the definition of
FPir.t). On the other hand, on the basis of the relations (35) and (36). we obtain

Pln.1) — Pir.a) =

1]
1
[ ] M——

il ] =]

2
[ ™3 [ Ui s)+ KO UEn§' @ ) ]dvds.  (39)
R.ry
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Then, by taking P = B(r.r) into Lemma 1 and by using the relation {35), we have
.F{rl.l'] - P{rz.[} =

% I { E [ptuj }{.,h-‘fu}“} +p(u}xtm¢{u}”]¢{ul{t}] i
Bin.ry)

b | =

I
i EW{U{:]}}:{P -=] j { ¥ [0 syl (s) +
0 Bin, E::!

+ pm:x{m‘i'm'l{ﬂﬂil{m{s}]+2W{U(ﬂ}}d”ﬂ'~‘- “0)

This relation straightly leads o (38).

Since we have assumed that p'™, %™ are strictly positive, A is posilive and
Wil is a positive definite quadratic form, (he equation (40) gives

P(r.1) £ P(r3.1) with n2n, e[0T (41}

Lemma 5. Ler U is a solwion of initial-boundary-value problem P and Dy
is the bounded support of the external data on the time interval [0, T). Then for any
r20, rel0.T), the function Plr.t) satisfies the following first-order differential
inegqualities

%IF{F.I"}1+£P“.I] = 0, (42)
[—F{r ol + —F{r 0 < 0. (3)

where
c= |3 with m = min {p", p'2, pVyD, p @1, (44)

m
and Ey is the maximum elastic moduli.

Proof. It follows from the Schwarz’s inequality and the arithmetic-geometric
mean inequality that

2
¥ [sUEnE® @) + A U § n)|

=]

Fi
£ = Z[Ep*“’af“’ma!“’m+ L,, ST U s UnD) +
2 gai Ep

+ Ep{“’x‘“‘tb‘“‘mrb‘“’-:n+Wﬁ‘“’mmm“mim} 5)

where £ is an arbitrary positive constant.
Using the relations (35), (45). (44). (13) and taking € = ¢, we deduce
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| Pir.r}] =

b=
ey, ™

J’e-l.s{ i [p'mﬂf-“}{.:}ufm{.ﬂ+p‘“'xm}tp{m{'rlipm'{3jl]
5

2 |
+ 2W{U(s) }f.‘ad.s (46)

for rz0 and 0=¢ =T,
Similarly. from (37) we obtain

& J- _.'-.f{ z [p:u: :mm"m]“}+p:mx:mw[mmtptmm]
2 i

‘a Pir.t)

a=]

+ EH’IUU]}}dﬂ 47)

for r20 and re[0,T]. By the equation (38) and the relations (46) and (47) we
oblain the result.

Lemma 6. Ler U is a solution of the initial-boundary-value probfem P and
f)r is the bounded support of the external data on the time interval [0, T). Then, it
follows that

Pir.iyz0 for rz0, 0=1r=T: (48)
FFIOreaover,
Pir.ty = E(r.1), (49)
where
Eir.1) = %J’ { z{ :“]:}E“]{rlfifmfr}+pm1!m':|1[m(f}fpm}{f}] .
=8, a=1

' 2
+ EW{UEH}}JII + %[ je"*‘{ ¥ [p" i )i (s) +
08,

a=]
+ piulxlab[b{uﬂ{_ihbfﬂ}{s}] + 2W(U(s)) }d;_ld_g‘ (50)

Proaf. Il B isa bounded body. then the variable » ranges on [0, L], where
L= max {min {[(x; - )5 -y )" ye D} xe B} < o, (51)

Starting from the definition of El,- and by using the relation (36), we obtain
PiLty =0, 0<r=<T (52)

thus, the equation (41) implics the relation (48),
If B is an unbounded body. then the variable » ranges on [0, es). The inequality
(43) is equivalent 10

5; P(r.1) + %Pu 1) < (53)
and
- i%?{r 1+ _JEP{r..I'} = 0. (54)
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If we choose the pair (fy.15) such that rp €[0.7] and ry 2 ey and we put (=

= 1y + —2 in the inequality (53). then
c

E[P[r, i +’_’“H < 0, (55)
dr ;
and thus,
F(r, :n+r———~ﬂ;r ) s -“(-"u. fp + 12 ;r ] with 7. (56)
For r=r and n = iy —cty. we gel
Pin.tg) = Pl —ciy. 0) (57)
- . F=r . .
Similarly. by setling = 5 — in (54). it follows
c
ﬁ{%nm-ﬁﬂngn‘ (58)
v c
50 that
P{rn 'I'E.I'u.n] = P{'h.fn}. (59)

Taking into account Pl — iy 03 =0 and P(ry + ¢ty 0) =0, the relations (57). (59)
imply that

Pim.1p) = 0.
Surely. for ry — == in the above relation, it follows

Plee,tg) = lim Piry.fy) = 0, (60)
Fy—Fo

and. by (41}, we conclude that the relation (48) is true.

The equation (49) [ollows from the relation (40) by means of the use of the
relations (52) and (60).

5. Spatial behaviour. By the properties of the time-weighted surface power
function £, we establish the theorem that gives a complete description of the spatial
behaviour of the elastic process in question outside of the support of the external data.

Theorem 1. Ler U is a solution of the initial-boundary-value problem, Dy is
the bounded support of the external data on the time imterval [0.T], and ler Pir.r)
ix the time-weighted surface power measure associated with U.

i. Spatial behaviour: For each fived 1€[0.T] and 0<r<ct. we have

Pir.n) = Pm.r}cnp[— %r]: (61)

ii. Domain of influence results: For each fived 1€[0.T] and r2cr. we have

=0, P=0,
(62)
o' = 0. ¥ =0 on B.
Proof. The equations (42), (48) give
;[mp{ﬁa-]f’{r.:}} =0, 0sr=ea, 0=:<T, (63)
r [

50 that we obtain the equation (61).
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If we choose (e[0,T] and we set r=cr in (53), then
i
—|Pict.t}] £ 0, &4
r GRCRN (64)

and therefore, by means of the relations (41) and (64), it results in that for all " 2 o
we have

F(r'.ty € Plcr.t) < P(0,0) = 0. (65)
Thus, we have for all r = o
P(r.r) =0, (66)
and, taking into account (48), we oblain
F(r.r) = 0. (67)

Now, the equations (67), (49), (50) imply

E(r.a) = - Jf—h{ E [p{a! {m“}"tm“] "'P{R'I(“"«Pm}'[”"-ir'*m'{f}] +

cm]

.r

‘ 2
. 2wm{m} %j [e‘*‘{ Y [P i i) +
048

=]
- p{“’x‘“’cﬁ-‘“}{s}tb‘“"{s}]+2W{Ui51}}dﬂds = [ (68)

Since p' and %'™ are strictly positive, A is positive and W(U) is a positive
definite quadratic form, we have

av=0, a¥=0, $"=0, =0 on B, rza, rel0,T] (69)

-

s0, by (35). we oblain the equations (62).
The equations (62) imply that the set 4 covers a domain of elastic dislurbances
produced by the data at time T, i c.

u" =0, u?=0, ¢"=0. ¢¥=0 on By x[0,T]: (700

this result is known as a so-called domain of influence theorem (see Gurtin [18]).

As an immediate consequence of the equations (62), we establish the following
unigueness result valid for a bounded or unbounded body.

Theorem 2 (Unigueness). [t exisis at most one (regulary solution for the
inirial-benndary-valuwe problem.

Froof. Thanks 1o the linearity of the problem, we have only to show that the null

data imply null solution. Let U = {@".a®.§"".¢*} a solution corresponding to

null data. Since the set fi].- = foreach Te(l,+s) and the funciion Pir.1) =10
we can conclude that

ﬁj"=(}t EIZJ =0, ﬁ‘r{”={l. &12:!:'] on Bw/l.

We note that if B is a bounded regular region, for suffficiently great values of T,
then such a value of re[0.T] having the property that D, 2B  exists, the relation
{62) becomes superfuous and behaviour of solutions is completely described by the
relation (61). On the other hand, if the values of T are sufficiently small, the
behaviour of solutions is described by the relation (62) almost as in B, Similar
arguments are valid for an unbounded regular region.
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6. Asymptotic equipartition of energy. Throughout this section, we study time
asymplolic behaviour of the problem @ for the bounded regular region B. The
problem 4, is defined by the following equations of motion

5'{“: +{ |:|' pi = pﬂﬂi} "Ui}
71
-ﬁ"ﬂ ,_ plﬂ}xlﬂ}tptﬂl on BK{D.W}. { }

the geomelrical equalions {2} and the constitutive equations (5), the initial conditions
(207 and the boundary conditions

(W =0 on I;x/, s =0 on E;x/,
(72)
9 =0 on Eyxf, A =0 on E ;xl.

Mow, we introduce the Cesiro means of various energies associated with the solution
U of the problem  F,:

)

J [ i syif™ (s) dvds,

0B

" I
K@ = 2:

2
. _ 1 ey (ex) ol o) nfend
K2(r) = }:1 = [ ()¢'* (5)dvds, (73)

o S

i
1
Selry = S

o ey =

[ wusHavds,
B

and

Kelt) = Ke(n + K. (74)

If meas I, =0, then there exisis a family of rigid motions and null change in volume
fraction, which satisfy the equations (71), (2). (5). (20) and (72). We decompose the

initial data &' and a'® as

d® = O LA®, GO o GO je (75)
where @™ and @™ are the rigid displacements determined so that A and A/™

satisfy |hc nnn‘na]:mlmn restrictions
[ ™A™ = 0, j' e qx; AT dv = 0,
fi

(76)

[pA 0o =0, [p e Ao = .
fa

and £, is the alternating symbol.

We put

') = {v with v;eC'(B): v;=0 on I, if measL;#0,

or p' ™' dv = 0, _[ E p'“eux;vedv = 0 if meas E, =0},

| B a=l

e n_p
MIJ

e}

and
C'®) = {LeC'B):L=0 on I},
and
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W,(B) = the completion of C'(B) by means of I-llw,ca)-
and

W,(B) = the completion of C'(B) by means of "'IH".M}‘

The space W, (B) represents the familiar Sobolev space and W, (B) =W, (B)).
The cquation { 10) assures that the following Korn’s inequality [19] holds

[2wvydo = m | Z (v} {“’+1‘“’¢‘“‘¢{“’}du my = const >0, (77)
a8

i a=1
for every V = |\f”' t"} m ¢I{"J:_ E“".l[.ﬁ‘]. ¢IG]E“¢I{B}1
If meas X, =1. then we find a convenient practice o decompose the solution U =
= {u™ u®, ¢, ¢"*'} of the problem B, in the form

ul_ﬂ] e E:“]+!E:gb+ﬁt“'|. 'P{l:ﬂ ki ¢1’1:l.i+ {?El

where V= {v/" v2 M 6!2'} ¢ W, (B)x W,(B)x W,(B)x W,(B) represents the

solution of the problem F, with the initial data {@'®". ¢!®'} and {a'®".$!*')
Theorem 3. Ler U is a solution of the problem  B,. Then, for all choices of

initial data with  a'® e Wy(B). a'“ e Wy(B) o e Wi(B), o5 € Wy(B).
Then, the following asymptotic behaviowr of the solution U holds:
i) if meas £y =0, we have
N _ = — lr .
lim Ke(r) = lim Sc(r) = 25{{]). (79)
it) if meas E; = 0. we have

rlltrl Kelr) = ||m 5.;“1+‘I;_J zptma[m :mdp -

R o=l
2
= leayel o) =) =)
ol 2;! 2, P a o, (80)

where E(1) s defined by (24),
Proof. Relative to the problem %, it follows that "' =0, @ =0, ¢V =0,

€ = 0 and the boundary conditions (72) are verified. Thus, the equation (25) be-
COmMes

Eir) = EO), 20, (81)
50 that
Kolt) + So0) = €0y, foral 20 (82
On the other hand, the relations (26) and (28) imply

:K-'C{!I} _ Sc‘{l'] _J 2{ [zpﬂﬂ m]m]"{mm]+zpimxm:tpmlm"bfmm}] +

B =l
+ 'l 0¥ 20 + i * )™ 20)] +
p'™ m:[lpta:lm}wl&}u”+¢iﬂ}{ﬁ;}¢*m[0]]}du, =0, (83)
The relations (10}, (24) and (81) imply
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_[ PP ()i (s)dv < 2€(0),

J‘pqutmw(tﬂ{ﬂ.;p‘“'fg}dr: £ 2%00). (84)

[ 919 (s)dv < -lj 3 W(Us)dv < 2 (0).
'] n foaml g-m

thus

lim I Zp‘m 'm{s}u[m{i}a’n = .

P T EB giml

lim Ip{mx{mt‘p'mfs}wmif.s}dp = 0, (85)

s=4s= §

lim - J.tp-'m'[.i'}tpm:[s}cfu = 0.

J—:ﬁ“

By using the Schwarz’s incquality nnd the relation (857 in (83). we oblain

lim K(1) = lim Sc(n) = lim | 3 F OO O, (86)
[ [T o

R o=l

When meas £, 20, thenfor w e I'aﬁ-".lj.ﬁ*], P e IrI‘-"]{B}. the relations (24}, (77)
and (1) imply

| S u@su@s)dv < —j 3 WU < —wm 87)
B as=l l g a=I -

and, by means ol the Schware"s inequality. we obtain

" 1 i ) i
lim {mj 3 P il O™ ("!:Jm:-} = 0. (88)
i o=l
Then. by using the cquations (86) and (88) we have
Ilm K1) = lim S0 = 0. (H9)

=po

The relations (82) and (89} m‘nply (79).
When meas ) = 0. then, the equations (75), (76) and (78) lead 10

J mea tm{ﬂ)«m}{ﬂhdu i _I qum_:a] - Faal SR
.B =] A a=1
2
I me]{’ﬁim 5 r:n:!;"J 20dy + 2]‘ E """*"""“’du, (90}
n:'ltl :

since  V={v"" v® 0" ¢} & W,(B)x W,(B)x W,(B)x W,(B). from (24).
(77) and (81). we deduce that

{2
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Taking into account the equations (90) and (91), we have

a 1 : {2} () ) = 1 : () () 2 cx)
: . 2 {3 gy, 92
Jim :_[ Eﬂp i (0 (20 v _[ §=|p aa > dv (92)

Thanks 1o the equations (86) and (92), we get

; = L[ 5 5t (@)
lim Xe(r) = Ililﬂl&-{-'}+5££p @ d M dv. (93)

a=1
In addition. the equations (82) and (93} lead o (80),
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