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THE LYAPUNOV - SCHMIDT APPROACH
TO STUDYING HOMOCLINICS SPLITTING
IN WEAKLY PERTURBED LAGRANGIAN
AND HAMILTONIAN SYSTEMS

ITIPO BACTOCYBAHH METOIY JIAIIYHOBA - IIMIATA
JO JOCHIZKEHH A I'OMOKJIHIYHUX PO3IIEII/IEHD
CJIABKO3BYPEHUX JIAI'PAHZ2KEBUX

I TAMIJIBTOHOBHUX CUCTEM

We analyze the geometric structure of the Lyapunov — Schmidt approach to studying critical manifolds
of weakly perturbed Lagrangian and Hamiltonian systems.

Hanejieno atwiria reomerpuuniol crpykypr metoty Jlsmnynona — Wmijrra jis nHBYeIns KpHTHYITHX
MI1101 '0|§H,J'Lill CJIﬂﬁKOBﬁ)’pﬁl!Hx JENPATDKENHX i 1aMidEToNORMX CHCTeM.
1. Setting. Consider a real Hilbert space # with inner product (-,-), norm ||| and
a family of Gatcau-differcntiable functionals £, € C*(#;R) smooth with respect to a
real parameter €€ R. In further we will use tho following definitions.

Definition 1. The ser crit(Ly) = {u e H: Li(u)= 0} is called critical.

Definition 2. One suays the Cl-funcriormf Lg: H — R' satisfies the Palais —
Smale condition [1] if any sequence {u, € Hine Z,} such that

sup | Le(u,)| < +oe
neZ, .

n 4 .
anel ]1111 Le(u,) =0 contains a convergent subsequence.
H—r+e2

Definition 3. A set  Z¢ cerit(L,) is called regular if: a) Z¢ < Li'(e) for
some ceR and b) Z{." is isolated, that is there exists a neighborhood U (Z,‘;F )
of the set Z< such that U(Zg) ﬂ(cri[(.f,e)\zg) =0.

Let’s assume further that: .

i) the set Z9 of critical points of the functional Ly CCE(}{; R) isa d-
dimensional C*-manifold:

i1) forall zeZd the linear operator Lg(:) is Fredholmian;

iti) forall zeZ? onchas T.(Z)=Ker Ly(z).

Remark 1. In general il is evident, that T.(ZY) = Ker Ly(z) forall zeZ9, that
is conditions iii) reflects the nondegeneracy of the mapping Lye C*(H;R)
amounting o the following: if any o€ solves the equation £§(z)a= 0, then
aeT.(z9) forany zeZ".

The first property being of interest for us is the existence near any z ez’ ofa
manifold Z¢ diffeomorphic to Z“". and such that for any ueZ¢ the condition
L

7;.-(1-5) =( implies L:.(u) =(0. In this way the search of regular critical points of
-t
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L, on H (near z4) is reduced to search of regular critical points of the mapping
L‘élz"' This procedure is carried out in the lemma below via the well know implicit
E

function theorem construction [2].
Lemma 1. Assume for convenience that Z9 =E_,(Rd) with EECZ(RJ;F{),

B. ={9 eRY: ||9||<r} and Z(‘f.) :=&(B,). Then for givenr >0 there exists ;>0
and a smooth function w: M, — H , where M, =Z{, % (~€y,€,), such that

19) w(z,0)=0 VzeZzl;

20) Ly(z+w(z;8) € TZY) V(z;8) e M, :=Z, x (&g, &);

39) w(z;€) is orthogonal to T,(Z{) V (z:€)€ M,.

Proof. Let g;=q;(z), i=1,d, z EZ(“:.), denote an orthogonal basis for TZ(Z(‘:",)
We will find the mapping w: M. — H by means of the local inversion theorem
applied to the map F: M, x (}f X R“r) — H xRY defined as follows:

, d
F(zelw,c) := [L(z+W)—chq;,(w,q;),(W.qZ},.-.,(w,qd)J = (A, E). (1)
i=1 -

Let us notice here there F; = 0 means that L:._(z+ vv)e?}(Z{i)), namely that
condition 20 holds, while F, =0 means that (w, TZ(Z{,{,)) =0, namely that condition

39 holds too.
It is easy to see also that F(z;0]0,0)=0 and F(z;0[0,0)=0 forall ze Z(‘f.}.

Fix % e Z(‘f_) and consider the Frechet derivative _
F’(zt; 0|0, O) T hﬂrj_i Bi
d(w,¢) d(w,c)
ofmap F: M, x (5{ % R“') - H xR? at point (z“; 0|0, 0) with respect to variable
(w,c)eH x R?. One easily finds that for any (v, s) e H X RY

oo\ ey
<a(!r . ,(D,b)> g LU(Z ) v ;Si'gf’

v, C)

oF,
<a(w‘"c). (v, 5)> = (v @) (0. g2)s .05 (0 Gg))s

where (-,-) is the usual Euclidean scalar product.
In order to prove that F’(::*;O[O, 0) is invertible, we notice that condition ii)

implies that the operator Lo(z*): H —> H is Fredholmian, so it is enough to prove
that its kernel is trivial. Then assume that F'(z“:O|D, 0)(u, 5)=0, i.e.

Lo(z")v = qu,(z ). )

Taking the inner product of (2) with q,-(z*] € T:(Z(”), we infer that
i’ = ” - 2
(L@Ing)) = (0 L) = silla[” = 5 ©)
forall j=1,d since Ly(z*)= Ly*(z*).
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Making now use of iii). that is the condition g; € Ker Ly(z*), or Lg(z”‘)qj =0
for all j=1,d, one gets due to (3) the condition s;=0 forall j=1,d. Thereby, the
equation (2) is reduced to Lg(z")vzo. Making use once more of condition iii) one
gets that ve Tz. (Z(‘f,)).

0
a(w, ¢)

and thus v =0. This shows that F'(z0]0,0) is really invertible. So, one can appiy
the implicit function thcorem [2] giving rise to the existence of smooth, unique

functions (w, c): M, — H xRY, defined in a neighborhood Ua(z*) (relative to
Zf‘i)) for eeR small enough, satisfying there the condition

F(zelw(ze), c(z€) = 0 @

On the other side, the condition

(v. f)=0 implies that (u, T;,(Z(‘f.))):(),

forall zeUs(z").
Since Z(‘f.) is a finile-dimensional compact manifold, one can extend by
compactness the function w: Us(z") — H on the whole set M, that completes the
roof.
’ Remark 2. The found [unction w: M, — H is smooth and w(z;0)=0 for all
zE Z(‘:’.J In particular, it [ollows that w(z, €)= O(g) as € — 0, uniformly in ze Z(‘i)
Define the following set

Zd = {me(@) 1= 2 + w(ze): &) e M,}

for all small enough € € (—g, &p)-
Lemma 2. The set Zf:" is an n-dimensional manifold diffeomorphic to .

and enjoys the natural constraint for L;(zg), namely, if z; € Zg and L;: ‘ ZE;(ZE) =

=0, then L;(ze)=0 too.
Proof. Suppose that L;lz,;(ze)=0 for some ze=?t£(z)ezg‘ Then L;(zg) is

_ obviously orthogonal to T-'r (Zf) since the following commutative diagram

Z) . 7(z¢)

l 0
zd, Sy .z
implies that the mapping T, ,: T(Z(‘i))—; T(Z;:") is a local diffeomorphism and for
any o =T, ,0LE T(Zg] with ae T[Z(‘i)) the following expression

(L;(“e(z))a C‘e) = (Ll:.(ne(Z)L ne.*a) =
= (] e e @) = (] ptzd ) = 0 )

holds.
On the other hand, from (1) one has that for all m.(z) e Zf

5 d
Le(me(@)) = X c(2)gi(2) (6)
i=
forall ze Z(‘j',,.
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Having substituted the expression (6) into (5) one gets for any o, € T(Zg) and
j=1,d that

o o d
Z},Cf(ﬁ)(% o) = 0 & g{,\’-‘f(z)(% Teodj) = Z{CE(Z)(Q’;, w'-g;) +ci(2)  (7)

since by definition spanR{qj(z): jzl,_d} = T:(Z(‘f.)), zeZ(‘fi}.

As a result of (7) we gel the linear vector equation (14 Q)c=0, where a vector
¢:=(c,(2), €2(2)s ..., cg(d))T and the matrix Q = {Q;:= (q,-, w'(z, E)Q’j(z))l i,j=
= ﬂ} Since the condition (g;, w)=0 holds for all i=1,d, one finds easily that
the matrix Q: RY - RY is symmetric with norm [|Q||<1. The latter follows from
the fact that the mapping w: ‘i, — Z(_‘:" is a diffeomorphism, since then the matrix

mapping 1+w' = ng., is invertible implying the norm "w'“ <l1.
On the other hand, the matrix norm ||Ql|=“w’ [|< I, since the matrix Q:
R’ 5> RY is symmetric and the vector (g, ¢a,..-5qy)" ET(Z(‘f.}) is orthonormal.

Thereby, the equation (I +@)c=0 can be solvedas c=(1+ Q)"' -:0=0 since the

matrix (1 + Q) is in virtuc of the condition ||Q]|<1 invertible too.
Summarizing the resulls stated above, one gets easily from (6) that

L;.('EE(Z)) = L::(za) =0

forall z; e Zé'l, solving the equation L; }Zd(zg) =0.
{3

Remark 3. The mapping 7, ‘i,—) ¢ where T(z)=z+w(z;e) for all

Z€ Z(‘,",}. is smooth and cnjoys the condition w(z;€)=0(g) as € — 0 uniformly in

z eZ(‘f.J. So, all of solutions to the equation L;]zg‘(zﬁ) =0 due to the Palais — Smale

condition must enjoy the above condition z, — z* as € — 0, where z* e Z(“;) solves

the equation Lf)(z*) =0 that can serve as a tool for localization of the proper critical
points under search.

Remark 4. The finitc-dimensional manifold Z¢ constructed above by means of
the local diffeomorphism m,: ‘J‘:, — zg’ enjoying the equation (4) was Speciﬁed.by
its natural extension on thc whole compact set Z(‘i, which obviously is not unique.
Otherwise, given a local diffeomorphism Tg: Zf‘;, — z;’ where the set z;" =Imm,,
what conditions have to be put on the sets Z¢, and z,;’ as metric spaces that this

local diffeomorphism be a global diffeomorphism of sets Z{i, and Zg? As a part of
answer on this question onc can claim that some nontrivial topological constraints on

the local diffeomorphism e ‘i) — Z¢ should be involved on what we shall not

dwell here in more details. only pointing out this important problem.
2. Time-dependent weakly perturbed systems: separatrix splitting criterion.

Denote now by H the Sobolev space H (R, R”) with the usual scalar product
(B2 = [((ouB)+(cuB))ar
R
for any (o, B)e Hy (R, R”].
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Assume that the set Z' < H  of critical points of the nondegenerate functional
Ly e C*(#H;R) enjoys conditions i) and ii) allows the representation

z¥ =Ry B,

where Z9"' < R" isa (d - I)-dimensional compact submanifold.

The closed subset R, x Z‘;" will be called homoclinic if its o- and B-limiting
points [3] subject to evolution system L{)(u}z 0, ue H, are hyperbolic, coincide and
dim Ker Lo(u) =k for some k<d.

In the case when o- and B-limiting points don’t coincide the corresponding subset

R, x Zg_] is called heteroclinic. In general, these subsets are manifolds and called
separatrices.

Proceed now to studying the behavior of these separatrix manifolds in the case
when a functional L;: # — R is a weak periodic perturbation of the functional
Ly: H — R described above, that is

Ly = Ly + gf(tulv), fi+2mulv) = Ft;ulv), (8)

where f: R/(2nZ)x H xR¥ - R is smooth for any teR, ue H('J (R, R”) with

e € R being a small enough parameter.
For the [urther convenience let us assume that functional

Ly = [ (06, u)— HG)dt,
R

where HeC? (R",R], a mapping ¢: R" — R, is such that for any ueR"
condition @' —@* =Q~' with the invertible symplectic matrix Q: R" — Sp(R”)
holds, that is the differential 2-form (du, AQ(u)du) is closed.

This amounts to the following equation 1, =-Q7'w)H" being equivalent [2] to
the equation L{,(u)= 0. Thus, the corresponding equation equivalent to L;(u) =0
brings about the following Hamiltonian system:

Bpri= Q7w H () + Q7N w) £/(1; uv), ©)

where ueR, fo‘j duc lo conditions i) and ii) implied in the setting chapter.

Moreaover, since Q" =-Q and detQ#0, one gets easily that dimR" =n=2m,
that is even.
Making use of the approach described in the setting, we can investigate the

corresponding critical secl Zg and its homoclinic subsets of the functional (8) by
means of Lemma 2.
Denote first the stable and unstable manifolds of R,-invariant critical hyperbolic

points iy € Z*~' of the functional Ly: H - R as W¥%) and W*(%)
respectively. Define now the following projectors: for a given seR, and a
homoclinic y: R— Z*~!

Ps): Tyy(R") = Tye(W(%))

0s): Ty (R") = Ty (W (o)),

salisfying the properties
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(1= P 9) Ty (R") = Tio(W (@),

(' - (é')) 7::(3) (R") y(x)(wm(“o ))

where the conjugation “*™ is taken with respect to the standard scalar product in R”.

(10)

lI

Conditions (10) are equivalent evidently to these: [{,('\f)= 0, 1i111 Y(t) =iy and
[ =]

(1= PO Ty (W) = 0, (1= 06N Ty (W) = 0,

forall seR.

If now o €T,

G(t, 5): “,,(W“J(uu)]-a TU)(W( )(uo)) for te€[s,o<) of the tangent evolution
system Lo('}’ o=0 u=-0" "u)H', the vector o= G(z, s)og — 0 exponentially

as t— e,
In the case of the weakly perturbed functional (8) as is well known, the hyperbolic

R, -invariant points of the critical set Z*=! transform into hyperbolic periodic orbits
with corresponding time-dependent stable and unstable manifolds [1, 3, 4].

Let me(s): R" = R", yeR,, be a Poincare mapping associated with the evolution

w(Ws™) at seR, then due to existing the transition matrix

system L;(u) =0, ue H'(R, R"). equivalent to (9). Then it can be characterized as
follows.
Proposition 1. In a vicinity of a homoclinic orbit yeR, x Z¥=! the stable
W (i) and unstable WiP(ity) manifolds of the deformed orbit us € R, x ZX™!
subject to the Poincare mapping mi(s), seR", have the following local expression

Wz = Ufre +eg (s,
seR
1"'1:::](“0) = U{'Y(IS)‘FE}}(")(S n(tr) )}
seR
where
g9(sns€) == ' + (1= P)) TGt.v. Q7 (y()f (v~ s v(w)dr,
5 ’ (11)
g (sn%se) = 0" + (1-06) [ Gl QT (¥ (D) £ (2~ s y(w)dr,
with =S
% & Ty (W (@) /Ty [0 <<1,
anel

" € Ty (W @) /Ty, [0 <<1,

Jorany teR.
Due 1o the hyperbolicily of the perturbed periodic orbit u, e R, X fé‘_' its stable

manifolds W (i;) with respect to the Poincare mapping 7 (s): R” - R", seR,
is generated by initial values of the corresponding bounded solutions for fe&[s, =) of
the tangent evolution system L () [,:;__,-(x: 0, af,.;,=0p€ T( lf._;‘c’(u&)) Thus,

one can write down that [or all 7 &[s, =)
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ot 500) = Glt, ) Psdag + G(t, ) PEs) [ Gls, D Q™ (y(0)f (e — 5 Y() e +

1
+ Gt 91 - Ps)] [ Gis, Q7 (y(0)f (x - 5 () dr. (12)

Put now

N*.i= Pls)0) € Ty(W () /Ty
Then making use of the contraction mapping principle one gets that integral equation

(12) has a unique bounded solution (¢, 53 0p) € T(W]m(ue ) for ”1](” " <<1 and all
t €[5, ). Thereby, pulting =5 we obtain that

g“-’(s; % E) = 0" + (I - P(s)) _[G(.\', Q™ (y()f (x - 5 y(D)de

coinciding with the first expression of (11). On the other hand, for any
ug € T( A {ut)) the representation

ue(t) = Y(t+5) + eaft, 5 09) + O(€?)

holds in a vicinity of the homoclinic orbit yeR, X Z*! forall te [s, e2).
By the same way one can find the second cxpression in (11) for unstable manifold
Wioe (7).

o

Proceed now to studying the separation of W.(%Z) and” W(%,) making use of
the Lyapunov — Schmidt procedure [1, 2].

Lemma 3. The following direct sum decomposition of the tangent vector bundle

7}(_”(11" ) af the following form

Tvm( ’) (Range P(x) N Range O(s)) @ (Range P(s) (1 Range(1—Q(s))) @

@ (Range(1 — P(s)) N Range O(s)) @ (Range(l— P(s)) N Range(1— QO(s))) (13)

holds for any se€R.
The proof is based on lacts aboul projectors that

(I1=P)P(s) = 0 = )1 - 0(s))
amounting to the properties:
Ty (R"),

Range O(s) ® Range(l — 0(s)) = -‘r:f(j)(Rn)’

Range P(s) @ Range(l — P(s))

Il

and Ty )(R") N Ty (R") = Tyy(R") forany seR.
Subject to the decomposition (13) points g{“‘"—g(“(s; 11(‘”;5) and g" =

= g"(sin"’;€) of the corresponding stable WS (%) and unstable W (%)
lTl'll'llfoldS are decomposcd as follows:

m( sim® ) = (3,0‘ Tlﬁ”,m”’( ;T|E‘"); mf_;"(s, o; 115"")),

{u}( .nful ) 2 (S‘,G n%u},m(u)( ,T]f“)); mgn(S,G;T]E”J)),
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where (s, ) € Range P(s) [ Range O(s), 1}(” (cr n%‘)), n}” e Range(1—-Q(s)) N
N Range P(s), n“: (0‘ 11(")) and 1{" e Range(l— P(s))' () RangeQ(s) for any
seR. ’ ‘

Notice now that the projections of g* and g into the subspace Range P(s) N

M Range(l—Q(s)) (1 Range(l— P(s))[NRangeQ(s) intersect transversally. This
means that equations :
mi(.\')(s o _I.l(l.r}l ) = n(u) f")(s o ﬂ(") |IJ) _ T]('ﬂ

can be solved as 1\ =n{"(s,clv) and n‘")—n("’(s,d]u) for any (s,0) €
e Range P(s) (] RangeQ(s), s€R.

Therefore, to measure the separation of manifolds W(%,) and W(%). it is
enough to measure the separation in the subspace Range(l — P(s)) [ Rangc(l o)),
s € R, that is just a geomelrical interpretation of the Lyapunov — Schmidt reduction [2,

4] procedure.
Denote by (s, o[r) e Ty (R"), se€R, the separation of W (%) and

loc
W (izy), that is the vector
8(s, olv) := mf,”)(s, ; T]E")(s,clv)) - mé‘“(s, G; 11(1"')(.9,011))). C14)
Since, evidently, the vector 8(s, o|v) € Range(1 — P(s)) [ Range(l — O(s)), s€R,
we can coordinate it by means of elements of the linear space @©(s) of bounded
solutions to the equation

de

9, k" =0, suplol <=, as
f reR

adjoint to that u, = K(u) := -Q'wH, ue H'(R; R"). Really, the space

®(s) = Range(1— P*(s))N Range(1 - Q" (s)),
is that of initial values of hounded on s R solutions to (15). Since,
dim (Range (1 — P*(s)) N Range (1 — 0"(s))) =
= dim(Range(l — P(s)) (Y Range (1 — O(s))) =
one gets easily that dim®(s)=g¢g, seR.

Let {cp,, (/- q)q} € 'E;(R”) be a basis of the space ®(s), s<R. Then one can

determine [1, 4, 5] the coordinates of the separation vector (14) with respect to the
basis fixed above as follows:

(s o) = (0;65.1.8(s. 1) = [(o;0r 02 Q7 (V@) £t~ 5 ¥() )t
R

where j=1,¢q, v eR* and seR.

The vector p(s, olv) := ([.1,(5, o), Hals. olv)..s Byls 0'|u)), seR, is usually
called a Mel'nikov vector being of fundamental importance when studying chaotic
behavior [1] of trajectories in a vicinity of the separatrix to a hyperbolic critical point.

The numbers ¢ and d €Z, introduced above can be estimated as follows:

g+d = dim{T,R") [Range(P(s) + Q) } = dim{Ty(W(@))+T,(WW@)) } <

< n = dimR".

Since n=2m, one gels finally that g+ d <2m.
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The following theorem as like as in [4] holds.

Theorem. Let a point (sq, Og|vy) €R, X Z¢ X R* be such that the Mel’nikov
vector W(sg, Oglvg)=0. Ifi
Ip
Uﬂ,j

. J=l.d, are nonvanishing;

i) vectors

(.5'0, Gn [I’l,) =d< k,

. Ju
k==
[f) ran 3

then for small enough values of & (le|<<1) the local stable W] uf}) and

(1:}
Eoc

OC

Lmsmb(e (g) manifolds intersect transversally at some point p € Wm () N

{l:}{LI )
Thue.. given a nonperturbed homoclinic manifold R x Z9 of the critical points of a
nondegenerate smooth functional L{): H — H, then stable and unstable manifolds
of its nonautonomous perturbation L.: # — R, where

o J((tp(u), ) — Hu) + ef(w)dt
R

intersect transversally il the conditions i) and ii) are enjoyed al some point

(50> 0o |vg) € R, x Z¢ x R¥, at which the Mel'nikov vector [1(s,, To|ug) = 0.

The statement above can be effectively used in many important for application
studies of nonregular behavior of trajectories [4, 6, 7] in vicinity of homoclinic
hyperbolic stable points manifolds.
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