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ON THE SMOOTHNESS OF GENERALIZED SOLUTION
FOR PARABOLIC SYSTEM IN DOMAINS
WITH CONIC POINTS ON BOUNDARY

IIPO I'NTIAJKICTD Y3ATAJIbHEHOI'O PO3B’A3KY
INAPABOJIITYHOI CUCTEMM B OBJIACTSIX
3 KOHIYHMMMH TOYKAMM HA MEZKI

We consider the first initial boundary-value problems for parabolic systems in domains with conic points
on a boundary. We study the smoothness of their solutions with respect to spatial variables.

Hocatijiyiornbes mepuii moyaTkoso-Kparosi 3ajiaqi Jiis napabosiuimx cHereM B8 oblacTsx 3 KoHiYHH-
MH TOUKAMH 11a Mexi. Bunuvaerncs raajikicrs X poan’s2kin sijjiociio 4acoBHX sMilmx.

1. Introduction. At present, the boundary-value problems for elliptic equations in
domains with nonsmooth boundary are completely studied. The general problems in
multimeasured domains with a finite number of conic points on boundary were
considered in detail in [1], where the Noether theorems were proved.

In domains with smooth boundary, the nonstationary problems also were
considered by many authors. In [2, 3], the unique solvability of boundary-value
problems for parabolic equations was established and was shown that if the right-hand
side, the initial and the boundary functions are infinitely differentiable, then the
solution is also infinitely differentiable.

In this paper, we consider the first initial boundary-value problems for parabolic
systems in domains with conic points on a boundary. We study the smoothness of the
solutions with respect to spatial variables.

2. Notations. Let Q be a bounded domain in the space R”". The boundary 3Q

of £ 1is assumed to be an infinitely differentiable surface everywhere except the
coordinate origin, in the neighborhood of which dQ coincides with the cone

where G is a smooth domain on a unit sphere. Let Qg denote a cylinder Q x [0, T),

0 < T < eo, H“‘(QT) denote a space consisting of u = (uy, ..., u,) from L,(Qp),

which have the generalized derivatives up to order [ with respect to x and up to order
k with respect to ¢ belonging to L, (7). The norm in this space is defined as

follows:

1/2
]Iu”H.-.k(nT) = {J’ Z ]Duul dxdt + J- z ‘ujl d_xer ;

Qrlal=0 Qrj=l

Let }:’Lk(ﬂr) be the closure in H " (£24) of the set consisting of all functions which
are infinitely differentiable in Qg and vanish near Sr=09Q % [0, T).

Let H"* (™', Q.) be the space consisting all functions u(x, t) satisfying
12
=y R
Il oy = { | [ [Dau + E ‘uj] J = a’xdr} :
0. \ol=0
In the same way as above, define H"‘k(e'“, Q..). Denote by Hé‘k(ﬁr) the space

consisting of all functions u(x, t) satisfying
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1/2
""""iﬂ'kfﬂ ) = !:‘[ ( E 2B+ al— I)ID(! 2 |uJ\ dedf] )
BT Q7 \lal=0

Denote by Hf;(QT) the space consisting of all functions u(x, t) satisfying

1/2
”””H‘(QT) _ [J Z 2B+ atf+j- f)rDa | a',xdf] .
i Qp la|+j=0

We define the spaces Hé'k{e“w, Q). Hé(e'“"', Q_) by analogy with the definition

of H'*¥(e™, Q).
In Q., we consider the first initial boundary-value problem for the following
system:

m m
=n" ii Z DPa,,(x, )D%u + 2 a,(x, )DPu + a(x, t)Lt] - = fx 1) (2.1)
Irllgl=1 [pl=1
Here, Qpys @y, @ are infinitely differentiable and bounded complex-value matrices
XS, Ay = (~pPHHaly A |p|=]g|=m, are uniformly continuous in Q. =
=0 %[0, o).
We assume that the considered system (2.1) are strongly parabolic, i.e., for each

Ee R"\{0} and ne C"\{0},

S an OEPEMT 2 polefInP.  (xe G, 2:2)
Ipl=lg|=m
where &= Ef' ... Ef", n, is a positive constant.
The function u(x, t) is called a generalized solution of the first initial boundary-

value problem for system (2.1) in the space i}”"l(e"w, Q) if u(x,0)=0 and we
have

I[—u,n+ PG ) "’l‘“a D“'uD"’n+
Qr [phlgl=1

m
+ 3, 0", DPum + (-)"" laun]d_xdx = j frdxdt (2.3)
1pl=t Qr

foreach 7> 0 and all functions M € ]:""'I(QT) satisfying 1 (x, T) =0.
3. Main results. The following result can be obtained on the basis of Galerkin's
method (see analogous proof for the hyperbolic case with finite cylinders in [4]).
Theorem 3.1 (smoothness with respect (o temporary variable). Suppose that

aka“ ak_lap k-1,
< T atml gkl
where 1< |p||g|<m, k<h+1, p=const>0, (x,T)e Q.. Then there exist

the positive constants Yy, 0 <k <h, such that if fie€ L*(0, o5 Lo (L2)),
Ju(x,0)=0, 0 < k<h, the generalized solution u(x, t) of the first boundary-value

< W,

o
problem for the system (2.1) exists in the space H™(e™V', Q.), where v = 7y,
and possesses the derivatives with respect to t of all orders k <h. Moreover, the
following inequality is true:

ISSN 0041-6053. Y&p. mam. sxypit., 2004, m. 56, N® 6



ON THE SMOOTHNESS OF GENERALIZED SOLUTION FOR PARABOLIC ...

7
I] i

where the positive constant does not depend on u and f.
We now consider some results on the smoothness wit respect to spatial variables

Lemma 3.1. If f, fie L7(0, eo; Lo(Q)), f(x,0) =0, fi(x,0)=

ulx,t)e H™ e Q) is a generalized solution of problem (2.1) such that u

2

‘ s o3| ’
H™ (™Y 0 ) ;ZE} f;k L™(0,50: L ()

whenever |x|> R =const, then ue Hy™'(e™", K..) and

H“[lﬂﬁ;""(g—ﬂ,x”) 3 C[”fﬂ_a”(o.m:Lg(K)) +“'}c‘”L"°(0,»:L2(K)J]’

where C =const is independent of u, f.
Proof. Rewrite system (2.1) in the form

>, bo(x D% = F, (
le|€2m

where u, +f=F. It follows from Theorem 3.1 that F e L~ (0 o0; Ly (K)).
‘We consider the sequence of domains of
= {z|xe X, 2"‘s|x|52"‘“}, k= 1,2,....

From theorems on smoothness of a solution of elliptic systems inside the domain an
the neighbourhood of a smooth piece of boundary [5], we obtain

[|p%uxnfdx < € [ (1FG 0P +]utx, 0 )dx, (
? o'ua?ual
|| € 2m, C = const.
In (3.1), we perform the substitution x= [5‘]—) x" for k;>2 and then apply estin
(3.2). As aresult, we have '

HD (s :)[ dx' <

v 4m ; -
<qg | [[ F(x', P (i,q) +|u(x’, 1) [ZJ dx’, C, = const.
alua2ua? 2
By returning to variables xy,...,x, we obtain

[|D%ux, [ r20et=m gx <
af

G, J (| F(x, HEr™ 4 12 u(x, .t)[z) dx, C, = const.
Qh—] Uﬂh ng] +1

After summing up these inequalities with respect to all k; > 2, we airive at

inequality

A

[ |D%utx, o Pel-max <
Ekbz‘nk
<G | (PG OP" 4+ ux, ) dx, Cy = const. ¢
T @
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Since the solution is smooth outside the neighbourhood of a conic point, inequality
(3.3) implies
[|D%ux, o[ PA0e=m gy <
K
< Gy [(1FG OPP™ + 17" u(x, ) dx,  C4 = const. (3.4)
K
The conditions D;’;uls =0, j=0,1,..., m—1, yield the estimate

[ ux Pdx < 65 Y, [|DPuf dx, €5 = const
K [Bl=m &
This and (3.4) imply

_f r?‘(]“i_"‘)‘ D%u(x, 1) F dx <

< G I(|f{ +i”fi - Z |Dﬁu| Jd}.’, Cg = const.
- |Bl=m :
By integrating this inequality by ¢ from 0 to e after multiplying its both sides with

- .
respect to ¢!, we obtain

[ reb=m| pyx, e dxdr <

K
, % .
< G J (|f|2+|u; |2~|~H3]2r |Dﬁu| ]e W dxdt. (3.5)
| I =m

By virtue of Theorem 3.1, inequality (.) 5) implies the statement of Lemma 3.1. This

1cmma is proved.

-1

Let @ be a local coordinate system on S . We can represent the main part of

operator L atorigin 0 in the form

Loy(0, 2, D) = 7 ™Q(w, t, 1D, D), Dy = 5—2.
Hence, the following spectral problem is of great importance: ,
‘ Q(w,t, A, Dy)v(w) =0, oegG, (3.6)
Div@) =0, ©edG, j=01,..,m—L 3.7)

‘We prove the following theorem.
Theorem 3.2. Let u(x,t) be the generalized solution of problem (2.1) such
. that u=0 for |x|> R =const and let fre L7(0, =; Ly (K)), fr(x,0)=0 for
k <2m. In addition, suppose that the stripe

-& < mrx c2m-2
Mg m Mmoo

does not contain points of spectrum of problem (3.6), (3.7) for every t € [0, ).
Then u(x,t)e HZ"(e 72!, K_) and the following inequality is true:

2
]l”lﬁ{é"'(c_h“!.f('“) < CIZE} ”f;k "L“(U,m:lQ(K})’ C = const.

Proof. First, we prove the inequality
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u s

It follows from (3.1) that

2

2m 2
Hgm.(}(e-w‘xh) = C}ZE) ”.f;k ”LM(UJ»:LQ(K))’ C = const, s < 2m. (3.8)

(=1)""'Ly(0, &, D)u = F(x,1), | (3.9)
where F(x,t) = u, + f+ (-=1)" " [Lg(0, t, D) = L (x, ¢, D)]u. Theorem 3.1 and
Lemma 3.1 imply that F(x,/) e Hol/(e™, K.). Therefore, F(x,t)e
e H

m

0 (¢ K.) for almost every ¢e [0, ). On the other hand, in the stripe
m— g SImAEsm+1-— -%, there are no points of spectrum of problem (3.6), (3.7) for

every te& [0, e). So, the results of elliptic problem [6] imply that, for almost every
te[0,e), ue HXM (¢ Y2 K_) and

||””i'fa’ﬂlfe'“"".xm) < Il omtyiy 1 im0 mzyy s € = comst.

The repeating arguments conducted above lead to the inequality
2 2 2
I ""”H[‘,'"‘(e‘ﬁm*. Ka) S C["f ”L“"(o,uzlacxn + [l ||L°°(D.m;£Q(K))]
and, moreover, to the inequality

+ |

A

2 a2 2
[ Hﬁg""”[e—'ﬂ. K.) C[”ﬂlr.”(o.m:ig(xn ||L”(0.=-=:Lg(K)}]'

This and Theorem 3.1 imply

2 2
C{”f”L“"(O.w:IQ(K}) " "-ﬁ ”L“"(O.w:Lz(K))}’

A

"H“:;}é.-u,[){e-—w. K.)

i.e., (3.8) is proved for s=0.
Assume that (3.8) is true for s — 1. We differentiate system (2.1) s times with
respect to ¢ and put v = Uy

As a result, we obtain

m— n i 5
(=1)""'Lv = v+ £, + 1Y E’l(k) Lyt s, (3.10)
where
) m m ak .
Lp= 2 DP pq 4 ¥, aa:c DF %T
[pllgl=! t [pl=1 t

From induction assumption and from arguments that are analogous to the case s =0,
we obtain (3.8).
Since
2m—

2
| oo
the confirmation of theorem fo]lows from (3.8) and Theorem 3.1. Theorem 3.2 is
proved.
We now consider the Dirichlet problem for the system
(-1)"'Ly(0,t,D)u = F(x, 1), xeK. (3.11)
Lemma 3.2. Let u(x, t) be the generalized solution of Dirichlet problem for
(3.11) for almost every t € [0, =) such that u= 0 in the case where ]x| =R =

”M”Hmu(e-—lym.r K.) < ZJIJO{L—T! K )'{'“E 2m

(™, K.}
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=const, and let u(xf) e Hg’”” W™ K_). Let, besides that, F e

& H[‘;'U(e"w, K_.). Then u(x,t)e Hﬁ"””‘o(e"w, K.) and

2 2
“””HE"'*"fU(rT’,K“) s C[”FHHEU(.,-T" (- +| “'||,%1§’"+f"1»0(e—w.Kw)],

where C = const.
Proof. It is well-known [5] that

' HD“u(x. :)Fafx <c | [ > | D*F(x, r)l2 + |u(x, rle)dx
‘a2 aluazyad \lolst
|].|,| 2m+1,

where Qi, .QZ, Q> are the same as in Lemma 3.1, C = const. From this inequality
and from arguments analogous to the proof of inequality (3.3), we obtain

[ 78| Dhugx, o dx <
K

£ @ J’( Z }.2(13+1a1—!}‘13a}r(x‘ r)lz % rzfﬁ‘z’“‘”lu(x, r)]gJ £
’ K\ alst
After integrating this inequality with respect to ¢ from O to ==, we obtain
J-E_ETII‘ZB]DHH(J:, f)lzc‘fxdt P
Ke

<C [IIF I[ié-ﬂw-w. oy b [ RO r)|2dxdr} <
Kw

< C[||FH§1’£'°(¢“T’. k. Hlu [IZHETI*""]'O(F"”. K.,..)]' 3.12)
We have

I “”iﬁ"'“'o(&“"f”. Ky =

B X I _%ﬂ.lzﬁle.’.i(l r)[ dxdt +|u ”HZnH-I LOGY gy
|ul=2m+! K
This and (3.12) yield the statement of lemma. Lemma 3.2 is proved.

Theorem 3.3. Let fu € L™(0, o; Ly (K)), fu(x,0)=0 for k<I+2m, and let
u(x, t) be the generalized solution of problem (2.1) such that u=0 for |x|>R =
= const. [n addition, we suppose that, in the stripe

m—-=2 < Im) < 2m+l-—£,
2 - 2

there are no points of spectrum of problem (3.6), (3.7) for every t € [0, o). Then
u(x, t)e _Hg"’ﬁ(e"h"”"r, K.) and thefollowing inequality holds:
2m+i

5
ul” s o C.= const
” ||H§.m+f(e T!m-{-.‘r‘ K.) Z “fk ”L (0, 5o [JZ(K))
Protf. The theorem will be proved by induction on [. For [ =0, the statement of
theorem follows from Theorem 3.2. Let this statement be true with substitution of [

by [-1.
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We prove the inequality
2m+!

[ ",qg"’““ s tamei=st gy S C Z |7 HL (0,953 Ly (K)) P

for s=[1[-1,...,0, where C=const.
Since f; e L7(0, ==; L, (K)), f1(x,0)=0 for k<1+2m—1, we obtain from

Theorem 3.1 that s € HY%(e™", K..). This and arguments analogous to the proof

of Theorem 3.1 yield inequality (3.13) for s =L
Assume that (3.13)is true for s =/ [-1,...,j+ 1L Put v =u,; ;. From (3.10) it
follows that

(—l)m_lLU =

1 (3.14)

where
m J j
F; = v, +fi+ (-1) Z(k) Lyuj .
k=1
By virtue of induction hypothesis with respect to I, we obtain
I orj ;
I=j, —Y1-jt
2 (k) L!kurj'"ﬁ' € HO j(e J , Km)
k=1
On the other hand, in view of induction assumption with respect to s, we have v, e
e Hy /(e K.). Therefore, Fye Hy/(¢”"~/', K..). Since
b ORI B R i T g
we have Fje HME ™, k).
By 1epcat1nCr Lhc arguments analogous to the proof of Theorem 3.1, we obtain that
ve H.,:.:!H J=L D(e i K.)
This and Lemma 3.2 imply
5‘;} =ve H'_J.m'l-f—j,ﬂ(e—"ﬁl K”),
Im+!

” i " ?-'lr+! =100~ k) =C 2 ” ”L Ouesi Ly (K’ C = const. (3.15)
We have
2

2
i i = ; . i
"HH uyg"‘”“i(,'ﬁ*"*"'f", K.) = ”ul‘;+1 Hg.m-l-f—‘;—l(8"72:::+f—j+l'r‘ K..) &

+ ]Iu (3.16)

2
2n+l=10 W gy’

By virtue of induction hypothesis with respect to s, it follows from (3.13) that

5 Am+l
”u;j"'i |H(?J-J'H-I-f—j—]{e"T2IJI+f—j—1f‘K”) s C E “f'!‘ ”L (0, == (K}), C = const.

This and (3.15), (3.16) yield the inequality

Lm+l

” “J “ 2m+n’ ch‘TZmH—_;" k) Z “fﬂ ”L (Ouo=i Ly (K)) C = const.

‘We obtain the statement of theorem for j= 0.
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Consider the theorem on the smoothness of generalized solution in domains with a
conic point on boundary.
Theorem 3.4. Let u(x,t) be the generalized solution of problem (2.1) and let

fr € L7(0, eo; L, (Q)), fx(x,0)=0 for k<!+2m. In addition, we assume that

m—-2 < Im) < £+2m—%

2
does not contain the points of spectrum of problem (3.6), (3.7) for every t € [0, o),

Then
u(x, t)e Hg.m+l(e“'\'2m+f"‘ Q)
and the following inequality holds:

2m+1

7
”“”ngwftf—nm+n. o) E ||f£ ”L O Ly (@)’ C = const.

Proof. We surround the point 0 by the neighbourhood U, with so small
diameter that the intersection of £ and U, coincides with K.

Consider the function uy = Qqu, where Qg€ c (Up) and @p= 1 in some
neighbourhood of 0.
The function g satisfies the system

(=1)™ ' L(x, 2, Dyuy— (up), = 9of+ L (x, t, D)u,

where L' is a linear differential operator of order less than 2m.
The coefficients of this operator depend on the choice of function ¢y and equal 0
outside Upy. This and arguments analogous to the proof of Theorem 3.3 imply
2m+1

||(PGH]FHOZHJ:+!(E—T?.H:+H‘nw) sC Z ”f" "L (0,05 Ly () (3.17)

The function @ u=(1-@g)u equals O in the neighbourhood of the conic point. We
can apply to this function the theorem on the smoothness of solution of elliptic problem

in a smooth domain, from which it follows that ¢, u € H3"*!(¢e”"2"*, Q). This and

Theorem 3.1 yield the relations ¢ ue Hy"*(e “Yam+l! 0 ) and

_..FT.'+

2
" tpiu”Hg..-n-t-fte"ﬁm-t-ﬂ‘n“) = 2 ”JCJIL ”L (0,05 L5 () (3.18)
Since u=gu + ¢, u, it follows from (3.17), (3.1 3) that
3 2m+!
"u”Hgnl-l'f{e_‘Tlm-t-f’l Q.) = Z f" "L (0, 0 LQ_(Q))

The theorem is proved.
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