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BERNSTEIN-TYPE THEOREMS
AND UNIQUENESS THEOREMS

TEOPEMM THIIY BEPHIIITEHHA
TA TEOPEMM ITPO €TUHICTD

Let f be an entire function of finite type with respect to finite order p in C" andlet E be a subset of

n

an open cone in some n-dimensional subspace R™" (=C") (the smaller p, the more sparse E ). We

assume that this cone contains a ray {z = e‘zu eC": t> 0}. It is shown that the radial indicator

h , (z") of f atany point z” € C" \ {0} may be evaluated in terms of function values at points of the
discrete subset E. Moreover, if f — 0 fast enough as z — < over [E, this function vanishes

identically. To prove these results, some special approximation technique is developed. In the last part
of the paper, it is proved that, under certain conditions on p and E, which are close to exact

conditions, the function f bounded on [E is bounded on the ray.

Hexa#t f— iz ynxigss ckingenioro runy sijmocno nopsyky p y C", E— nimvuoxuna sijjxpu-
Toro Konyca (MM Menwe p, THM Giisiw poapijikenum € E) y jleakomy n-Bumipniomy nijinpocTtopi

Rz" (=C". IMpunyckaersea, WO JlalHi Korye MiCTHTE TpoMilih {z i tzu eC':r> 0}‘ TMokasano,

1o pajiainivg iymkarop A I(z”) dyuxnii f y Gymp-sikift ouni z” € C" \ {0} moxmna ouinyru
yepes anavernnst ynkuii £y rouxax jiuckpertoi muoxuim E.  Kpim toro, skmo  f — 0 gocnts
WBH/IKO NpH z — e Ha [, ‘To jiama dpynknin jiopisiioe myJno toroxno. LA foBefledus LHMX
pesynnTatin pospobJenio cnemiaJLiy anpokcuMarifny rexniky. B ocrammiit wacruni pobori
JloBe/Ienio, 1o 34 JiesKHX BAN3LKHX JIo TounEx ymon sijoctio p i E dymaiis f, ofmexena ma E,
Gy/ie 06MeXelolo 1A BCLOMY npoMelli.

1. Introduction. In this paper, the authors present a new uniform approach to the
problems of uniqueness, growth characteristics, and Cartwright-type theorems. This
approach is based on the approximation of entire functions by other entire functions
with “nice” propertiers. This approximation is the core of the present paper if we speak
about entire functions, and to present it unshaded, we sometimes consider only the -
simple version of proven results. To extend our results on functions analytic in cone,
we apply another kind of approximation, the approximation of such functions by entire
ones found by Keldysh for one-dimensional case and Russakovskii for the general case.

Later on we use the standard notations of multidimensional analysis.

By ¢ and C we denote various constants.

An entire function f: C"— C is called a function of o-type with respect to order

p e (0, =) if

. 1

limsup o8 fp(z)| =0y 2= [Eees T

lebo= 2]

2 2 2
z[" = |zl +.t |zl

The same definition is used for the functions that are analytic in an open cone G
provided ze G as z — o=. By H(p, o) we denote the class of all analytic in G

functions of type at most & with respect to order p. If G = C", we use the notation
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BERNSTEIN-TYPE THEOREMS AND UNIQUENESS THEOREMS 199

H(p, ) = Hg(p, c); the dependence on n is usually implied. By Hg(p) we
denote the class

The (radial) indicator of fe H(p) atapoint z0 e C"\{0}, 0 = ( L., e,
is defined as follows:

hf(zo) = lim sup lim sup logr chfz}[ (1)
=z t—yoa i

If n =1, the first lim sup in (1), which mcan# an upper );égulafizatibn, may be
omitted. Hartogs Theorem implies (see details in [1] and [2]) that definition (1) is

h (ZD) = hm lim sup log(sup{[f(z)| : lz—rzo ‘ ~ tﬁ[zo m _

G 1o P

In 1936, V. Bernstein [3] formulated the problem to describ;a such subsets E of the
ray . :
(z0) = {z=1eC:t>0}
for those the equality '

0
hy z%) = lim sup EEM
o= oeg |tf

holds for all functions fe H|(p). He also obtained some sufficient conditions on
these sets.. Later Bernstein’s result was strengthened and generalized by Pfluger [4],
Levinson [5], Boas [6], Fuchs [7], Levin [8], and Malliavin [9], but all these authors
considered only functions of one complex variable.

For n > 1 Bernstein’s question may be reformulated as follows: Describe such

sets Ec C" that the equality
hf(ZD) = hf, ]E(ZO)

where

—tz° [ < 1‘8|zo I}) ‘
=3 [flp

holds for all fe H(p). Of course, only sufficiently sparse E is of interest for us. It
should be mentioned that & cannot be a subset of any finite union of (n — 1)-
dimensional complex subspaces and the intersection E [11(z%) may be empty.

It is easy to derive some multidimensional Bernstein-type results from each of the
one-dimensional theorems mentioned above. Let z0 be a point of the unit sphere

§" ! = C" andlet F be asubsetof $"' not thin (in the sense of the pluripotential

. o Iog(sup{] f(z)'| :
hf glz’) = hin limsup

theory) at z0. Assume that E is such a setin C" that the intersection E [ l(e))
where

(o) = {z =tweC": ¢t >0},
satisfies the conditions of one of the one-dimensional Berns_tain-typé theorems for all
we IF and given p. Then values of any fe H(p) at points of E uniquely define
hf(zo). However, E is rather massive in this case.
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200 V.LOGVINENKO, N. NAZAROV

Another straightforward multidimensional generalization is as follows: Given
and € > 0, let E = {zj}f i be such a discrete set that the intersection of each rz
i= :

l(w) close enough to I(z0) (or at least of each ray of a union which central projectic
is not thin at z0/ | 20 l for the spherical indicator not dropping down at z0) with

U {z EE":JZ*ZU)I % exp{—lz(") ’p+a}},
j=1

satisfy the conditions of one of the Bernstein-type one-dimensional theorems for th
p. As for each fe H(p) its derivative does not grow essentially faster than tt
function itself, by the Mean Value Theorem for Mappings f grows along this unic
essentially the same as along E. Therefore, the values of f at the points of

uniquely define the value of hf(zn). However, E is rather dense in this case: Its loc

density in the neighborhood of fz0 grows exponentially as ¢ — e= at least along somr
sequence,
In the present paper we’ll prove some Bernstein-type multidimensional theorenr

for relatively sparse subsets E of subspaces of minimal possible dimension. In
sense, these results are the sharpest possible. To formulate them, we need somr
definitions.

Definition 1. Let E and F be subsets of some m-dimensional subspace 1

of R? and let e, ..., e, be an orthonormal basis in L with the correspondir
coordinate functions uy, ..., u,. E is called an asymptotic net (of order 1) for
if

VueF IweE: [u-w| < &fju)
for some function €(R), R € R,, monotonically decreasing to 0 as R — oo. |
is an asymptotic net order p € (0, °) for F if the image of E under the map

w o Py = 1m, G
is an asymptotic net (of order 1) for the image of F under this map.
An asymptotic net of any order may be discrete. E is an asymptotic net of order
for I if, and only if, there exists such a monotonically desreasing to zero as R — «
function &(R), Re R,, that

(VueF:|u|>1) IweE: |u-w| < [u|1_pe(|u[).

Definition 2. Let F be a set in a normalized .s:par.'e L, and letw > 0. .
point z € F\{0} is called w-embedded in ¥ if the ball {ye L : |y-z| <
< m”z ||} cF. By F,, wedenote the subset of w-embedded points of F. .

Definition 3. A measurable set M of a ray I(20) = {z = tz0e C": t > 0} i
called relatively logarithmically dense if

meas; (M [Rz% ARz]) > nR

Jor some A e (0,2), 1 > 0, and all sufficiently large R.
It is evident that each relatively logarithmically dense subset of the positive ra

R, = {teR: ¢ > 0} is the image of some relatively dense subset of this ray unde
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BERNSTEIN-TYPE THEOREMS AND UNIQUENESS THEOREMS 201

the map x> expx. A subset e of the ray
I(z9) = {z = &% C": ¢t > 0}
is called relatively dense (with respect to Lebesque measure) if
inf {meas, (¢ N [Rz%, (R+A)%]): R 20} = 7

for some A € (0,) and 1 > 0.
The following theorem is the main result of the paper.

Theorem 1. Let F be such a subset of R" that for some ® > 0 the
intersection Ky (1 1(20) is relatively logarithmically dense. Let E be an
asymptotic net of order p for F. Then an equality '

3)

B o il logsup{lf(y)[ L yeR|y—1"| < 18]7° ‘}

he(z") = lim limsup »
80 e [ t|

holds for all fe H(p). (If E does not intersect the corresponding ball, then we

define the value of the quotient as —eo )
Remark 1. Theorem 1 is sharp in the following sense:. The set Z of all integers is

an asymptotic net of any order p < 1, butit is not suitable for evaluatlng the indicator: - .

of elements of H,(1). For instance, it does not allow us to evaluate the indicator he(1)

for f(€) = sinml.
For the subclass H,(p,c) of H,(p) a certain Bernstein-type result, with an

estimate from above mstead of the equality, may be obtamed for more sparse sets E. i

We need some deﬁnmons first. _
Definition 4. Let F and E be subsets of R" and let € > 0. E is called E-l

net (of order l)for F if"
VzeF Hme]E:I_z—ml <e
E is called an e-net of order p for T if its i:ﬁage under the map (2) is an e-

net for the image of .

Given € > 0, after a suitable correction near the origin, if necessary, each’
asymptotic net of order p turns into an e-net of this order.  Each e-net of order ' p is

an asymptotic net for all smaller orders. On the other hand, Z" is a ~/n/2-net for
IR”, but it is not an asymptotic net. It is evident to see that for each natural n and each

p € (0, =) there exist such positive values ¢ = c¢(g, n, p) and C = C(g, n, p) that:
1) forany e-net E of order p for F

(VzeF:|z]|21) 3oeE:|z-o| < dz[™;
2) if | |
(‘v‘zelF:|z[2 1) Jowek:|z-w| < c[z|1up,

then E is an e-net of order p for FF. ;
Theorem 2. Let F be the same as in the previous theorem. For each ¢ € (0,

o) there exists such a number €y > 0 and such a number C = C(n,p,c) that
the estimate
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202 V.LOGVINENKO, N. NAZAROVA

hf(zo) < C‘zor limsup M

|z|-2=, zeE |Z|p
is valid for each e-net B, & < gy, of order p for F and each function

fe H(p, o).
Since the spherical indicator of a nontrivial entire function cannot be —ee at any
point, Theorems 1 and 2 result in the following uniqueness theorem.

Theorem 3. Let F and E be the same as in Theorem 1. If for some fe H(p)
y p(20) = —=, )

then this function vanishes identically.
Theorem 4. Let F and E be the same as in Theorem 2. If for some fe H(p)

limsup _H____u_ln]fiz)] it
|zloezeE |2 o
where C is the constant defined in Theorem 2, then this function vanishes

identically.

Let us compare and contrast our uniqueness Theorem 3 and Theorem 4 with the
results known before. Discrete (real) uniqueness sets were mainly studied for functions
of exponential type. These sets were the subject of study in the series of papers by
Ronkin (see [10] where there are the history of the question and detailed bibliography).
Therefore, we will compare and contrast with the mentioned Ronkin’s results only the
particular case of exponential growth in Theorems 3 and 4. Like ours, Ronkin’s
uniqueness sets may be discrete subsets of open cones in R" with an arbitrary small

opening. The upper density of Ronkin’s uniqueness sets is, generally speaking, much
larger than ours. From this point of view, our theorems are stronger even for functions
of exponential type. On the other hand, Ronkin does not assume any regular density,
only the upper. So his theorems are not the particular cases of ours. However, the
main distinction of our results from Ronkin’s theorems is that we do not suppose that
entire functions in questions are 0 on [E. This zero condition is essential for Ronkin’s
method.

The proof of Theorenis 1 and 2 are based on some special approximation, A work
horse of this approximation is the following lemma that, in the authors’ opinion, is of
interest on its own:

Lemma 1. Given n,p, o, and A > 1, there exists such a number qg € (1, =),

that for each triple of fe H(p, ), g > gqg, and vector & € R"\{0} there exists a

function @ € H(1, gp+i| X 'Y with the following properties:

1) xeR", |x-&| < ]:%—l = o] < | £ + Ce#P{—AJE[p}:

2) xeR", |x—&|< (‘f') = |oe)| 2 ]—f%)l - cexp{-Al&f};

3) xeR", |x-§| 2 -|J§_l ‘(pg(x}! < Cexp{-—AlﬁJp}.

Here C = C(f) < o= does not dapend on x and E.
Note that properties 1 and 3 imply that function ¢ is an element of S. Bernstein’s

class of functions of exponential type not exceeding gP*!|£[P~! that are bounded on
-R". We will presently use this fact.
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BERNSTEIN-TYPE THEOREMS AND UNIQUENESS THEOREMS 203

Theorem 5 (V. Bernstein [3]; see also the first chapter of [8]). Let g be an
analytic function of normal type with respect to finite order p in an angle o <
< arg{ < B, andlet ©® € (o, B). For arbitrary ¢ > 0, § > 0, 0 < < 1 there

exists such a sequence of intervals (r,exp {z@} (1 + 8) exp {z@}) k eEN, r,—
—eo, as k —>eo, that an inequality

log|g(rexp{i®})| > (h, (©) —g)rP

is valid at all points of each interval (rpexp{i®}, rk(l +8) exp{z@}) save some
exceptional set of Lebesque measure less than mdry.

Using in our scheme more precise Bernstein-type theorems mentioned above
instead of this theorem, one can easily obtain more sophlsncated versions of Theorem 1
and Theorem 2.

The same approximation allows us to get some Cartwright-type results about entire
functions bounded on a ray. To formulate them, we need the following definition.

Definition 5. Let F be a measurable subset of an open cone K in some m -
dimensional subspace L. c R*"( = C"). F is called relatively dense in K if for
some L < o and & > 0 ' ' '

inf {meas,, {F B (y)}: ye K} = &.
Here I
Bu) = {xeL: x-y]| < L},

F is called p-relatively dense in K if its image under the map @) is relatively
dense (with respect to m-dimensional Lebe&gue measure) in the image of K.

It is evident that F is p-relatively dense in K if, and only if, there exist such
positive constants L and & that the inequality

meas,, {zelL: |Z—W] < Ll w |l-p} NF) = 5| w-lma ~P)

holds for each w e K, |w| = 1. L and & are called density characteristics of I,

Theorem 6. Let K be an open circular cone with an axis I(z0) in R, let F
be p-relatively dense in K, and let E be an asymptotic net of order p for T.
Then each function fe H(p) bounded on E is bounded on I(z°). .

For each ¢ € (0, =) there exists such a number €3 > 0 that each funcrwn
fe H(p, o) bounded on some e-net E, € < gy, of order p for F is bounded
on 1(z0). ' '

Remark 2. In the first statement of Theorem 6, any function f in question is
bounded on all rays close enough to _I(zO). To obtain the similar statement about.the
boundedness on the ray [(z?) only, one should change a circular cone K to a solid of
revolution with the axis [(z?) and the generatrix controlled by the function g(R)
defining the asymptotic net.

We’ll omit the proof of this statement since it only slightly differs from the proof of
Theorem 6.

The following corollary of Theorem 6 concernong functions of exponential type is,
in the authors’ opinion, interesting on its own. )

Corollary 1. Let E be an asymptotic net for an open circular cone K with an
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204 V.LOGVINENKO, N.NAZAROVA

axis l(z0) in R" Then each function of exponential type bounded on E is

bounded on 1(z0).

For each © € (0, =) there exists such a number €9 > 0 that each function
fe H\(1, o) bounded on some e-net, € < &y, for this cone is bounded on I(z9).

The second statement of Theorem 6 was known before [11]. Unlike most known
Cartwight-type theorems, the boundedness guaranteed by Theorem 6 as well as
Corollary 1 is not uniform with respect to functions but individual. However, this is
the case, and, generally speaking, there are no uniform estimates with the exception of

the trivial case of Clos(E)> {(z0). We’ll present the corresponding examples at the
end of Section 3.

We generalize these theorems considering analytic functions in a cone. To derive
the corresponding results, we approximate these function by entire ones with controlled

growth. Such approximation for n = 1 was obtained by Keldysh [12]; using 9-
problem technique, Russakovskii [13] proved the existence of this approximation for
the general case. Our analogue of Theorem 1 is as follows.

Theorem 7. Let F be such a subset of R" that for some @ > 0 the
intersection F , [ 1(z0) is relatively logarithmically dense. Let B be an
asymptotic net of order p for F. Then an equality (3) holds for all fe Hg(p)

provided the open cone G < C" contains the ray 1(z°).

Speaking about uniqueness theorems, note that while the regularized indicator of an
entire function of finite type ¢ with respect to p is bounded from below by -0, it
can be even equal to —eo identically for the case of a nontrivial function which is
analytic only in a cone. For this reason, any analogue of Theorem 3 for functions
which are analytic in a cone needs some restriction on the smallness of the cone’s
opening. '

Theorem 8. Let F be such a subset of R" that for some ®> 0

F,NiA), 1) ={z=e:¢>0}, 1=(,1,..,1)eR"

is relatively logarithmically dense, let E € R" be an asymptotic net of order p > 1
for F, and let

o T
G=4z=(z,...,2,)eC": —— < argz; <—,j=1,...,nyp,
{z (215 2y) 3 g <l }

1 <% < p,
If equality (4) with z0 = 1 holds for some function fe Hg(p), then this function

vanishes identically.

The analogues of Theorem 2 and Theorem 4 for functions which are analytic in a
cone were obtained in the joint paper of Russakovskii and one of the authors [14].

In the second section Lemma 1 is proved. Section 3 contains the proofs of
Theorems [1—5]. The generalization will be considered in the fourth, last, section.

2. Approximation lemma. We introduce some notations first. Let z = (zj, ...

vz e C andlet k = (ky, ..., k) e (Z,)" beamultiindex. Then, by definition,
F=M k= kg
alkl'f
DHf(z) = i
3z ... 9z

The proof of Lemma 1 is based on the property of Taylor polynomials of entire
functions of finite order that contains in the following Lemma 2 (see [15]).

(z).
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BERNSTEIN-TYPE THEOREMS AND UNIQUENESS THEOREMS - 205
Lemma 2. Given n e N, p e (0, =), € (0,0e), © € (0, =), let a finite
number p satisfy an inequality
p > eypo®P (%)
where v = max{1,2°"'}. Then
VfeH(,o) Ve >0 3C <o Y%eC® VYm > 0:

ko 0 0
max 4| f(z) - Z ﬂ(—z--)fz-——z—):Iz—z°‘<®m <
|k||5pmp k!

2 mP
< C’exp{'y(c + E)I Z° [p} (W(%E)@p}ﬂ '

and

[Dkf(z)[ i {ey(0+a)®p]lkllm 4 [ k. ]ﬁk,-lz
s Y ! (c+¢€) N i
0 exp{“( o IZ | } Pp[kh _ _;1;11 ]kli

forany ke (Z,)'\{0}. Here:C = C(f, €) < oo.
Proof of Lemma 1. Without loss of generality, we assume that o = 1 — the

general case may be reduced to this particular by the map z +> z/cl/P. Let fe H(p,
1), and let g be alarge positive constant — we’ll determine its value later.

For £e R", |&| > 1, set m = (g|E[)P. Define

12 sin-[g i(zj—ﬁj)z/iﬁ[ - r]
0 = 3Tn(28) | -
_1f2_ q\/z(zj_gj)'Z/lél —1
‘ j=1

[m]

sin(g Z(zj—‘t;j)z |éf+f] 2 . 40ml
Jak s
q\[z(z;—éjf/lélﬂ R \

jml

» _EVk
Tn8 = 3 D—m?f—é)

[m]

-+

Ve

where

[kl <m
is a Taylor polynomial of f. Since the integrand is an entire function of exponential
type [m]q€, our choice of m implies that g € (1, qp+l| E Ip_l). Properties 1, 2, and

3 may be verified as follows: According to the mentioned lemma, for all g satisfying
the inequality

2y +_gPng2m <—A, A>0
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206 V. LOGVINENKO, N.NAZAROVA

(it is the first restrlctlon on the value of ¢) the following implication is true:
2e
2=t < I8l = 70-Tu(e8) < compfarler} (22 <

< Cexp{ﬂA[E[P}.

*0%  is an even bell-shaped function in neighborhood of 0. Since x is

Let

X
sufficiently close to &, the absolute value of the coefficient of T, in (6) does not
exceed 1, the implication

j-E] < [E] = |og(@)| < |75 B < [£00] + Cexp{-a]eP)

. is true. If Iul < 1/2, then
V2 . m) 1/2 [m)
- J‘{smﬂ:} — J {sm'l:} .
o Lt T

1/
—112

Jz {sin(u—t)}[m] -
bt vt
Therefore, the inequality

x| 2 Jmee ] 2 2 e wf-lef}
holds for |x—&| < |§|!(2q) So, plopertyZIS also verified. Let

r"IJL §|>-|—

Evaluate, to begin with, |7;,(x, &)|:

- |kl /p
|Tu(x &) < Cexplov|eP] 3 [T—fl"'i} x

k], =m

-ttt
I (s leh)™

oot 3, ()" (8

For all € that are remote enough from the origin the maximal term of the last sum

l~§l“r

X max

does not exceed exp{47(|§[/\/3)9}. Using this estimate, one can easily verify that
the inequality

|Tm(X, é)l < CexP{ST(l +q'P=’2)| g |P}[~E[[Z[“§J)m

holds forall £ e R”, |&| > 1, such that [x—&| 2 [E|/g. Therefore,

!‘Pi(x)l s chp{lO'Y|§[p} [Jali)é‘_&|}m[q| |ﬁ_|§|} [ZSmIJﬁm _<_
< Cexp{[l(]y qplog( gsin Dlﬁ]p} < chp{-AfﬁIP}
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BERNSTEIN-TYPE THEOREMS AND UNIQUENESS THEOREMS 207

for these & and x provided that g satisfies the corresponding (second) condition.
Lemma 1 is proved.

3. Radial indicator and boundedness of entire functions on a ray. Proofs of
Theorems 1 and 3. Without loss of generality, we can assume that

0 1 1 1 i
= = = | =y e, T eR”.
C T [4; JE]
Later on we will use the following notation: Let £ € R"\{0}. By K(§, r) we denote
the minimal open cone in R" with the vertex at the origin that contains the ball
{yeR": |y-E&| < r{&|}. We shall prove that
f'ff(ZD) = hf'_ g(20).

By definition the right-hand side of this equation does not exceed the left-hand side.
Hence, to prove Theorem 1, it is enough to verify that hf(zo) = hf. g(20). Let A =

= 20, andlet ¢ inLemma 1 be so large that for some ® > ZIJE the intersection of
F, and any ray of the cone K(z0, 1/(2q)) is relatively logarithmically dense. Let

EeF,NKES 1/(2g)), andlet ¢¢ € H(1, q’Hlj ﬁip"l) be a function defined in
Lemma 1 for these f, A, g, and &. According to statements 1 and 3 of this lemma,
|x-&| < [E]/a = !(pﬁ(x)‘ < |ftx)] + Cexp{wa]ﬁlp},

and

|x-E| 2 1§ = ‘cpg(xji < Cexp{—A|E[p}‘

Ja
Therefore, @g is bounded on the real hyperplane. Assume, for the sake of
simplicity, that the value

Mg = sup{|@g(x)|: xe R"}
is reached by | gg| at some point m e R". If [n—&| 2 |§|/[g, then
Mg < Cexp{-A|§|P}; |
otherwise there exists such a point { € E that e {xER": |x—&| < |§|/JE} and

In-¢| < |&|1_pa(|€]} for some function &(R) that monotonically decreases to O as
R tends to o and does not depend on & and C.
In the first case

[£&)] < Cexp{-A|E|’}

by statement 2 of Lemma 1.
To handle the second case, we need the well-known estimate (proved by S.

Bernstein) for derivatives of funclions of exponential type: Let g: C"— C be an
element of H,(1, ). Then

sup {[ Ve(x)|: xe IR”} < "gsup{[ gx)|:xe R”}

where .

o J
Ve(x) = [ﬁ(x), sy ﬁ(-’r)}
1 n
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208 : V LOGVINENKO, N.NAZAROVA

According to this csnmatc we have
Me = | oem)| < | 0e(8)] + sup{quJg(x)I xeR}n-¢| <

< )| + Cexp{-AlEPPY + €T 1Mg|§|1 Pe(|E]).

JIf € is far enough from the origin — the more remote, the larger is g, this
inequality means that

< 2|F©)| + Cexp{-A| & PP},

and, according to statement 2 of Lemma I,
|7&)] < 8|F(&)]| + Cexp{-A|E[P} <
< 8sup {]f(y)|: yE]Eﬂ{x: |x—&| < |E,|.-’.\/E} + Cexp{—Al}';F}}.
For £ = to it means that '
lim sup M <
=% e, KGO, 12y |t

< lim sup |r|_plog(85up {ro»: ye}E'l,Iy—.tm| <
=% e, NK(Y, 1/(24)) o

< r]m[iﬁ}+Cexp{#Alr]p]mlp}).
V. Bernstein’s theorem allows us to get rid of the restriction that tw € F, on the
left. Besides, the expression on the right does not exceed

c(g) lim SUP log (8| f(r;)l + Cexp{_Alﬁlp})

[€l-= eeENK (", 2/47) 1€
where c(g) — 1 as g — c=. It means that

: log(8/®)] + Cexp{-alEP}

he(z') £ lim  lim sup :
f P
g[8 |EleENK (", 2/47) t4

If by g(20) 2 -0, then hy(20) < kg 5(20); otherwise he(z?) < —o, and f(z) =

= 0. Theorems 1 and 3 are proved.
Proofs of Theorems 2 and 4. Once again, we don’t lose much generality
assuming that

0o = 1 1 1 J "
z = R".
== [J" e
Let g inLemma 1 be so large that for some ® > 2/.Jgq the intersection of F, anc
any ray of the cone K(z0, 1/(2¢g)) is relatively logarithmically dense.
Let £e Fu NK@% 1/(2g)), and let ¢p € H(1, qp“|.§ |P“1) be the function

defined in Lemma 1 for these f, A = 2(1+-\{_) o, g, and i Assume that there
exists such a point m € R” that

| oeM)| = Mg = sup{|pe(x)|: xe R"}.
Let { € E be a point at the distance of less than & from 1. Applying just mentioned
S. Bernstein’s estimate of the derivative of entire function, we obtain
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= [gem)| < | 9e(C)| + sup{| Voe(x)|: xe R*}n-(| <
< | 9eQ)] + CaP* & P~ Mgl [P,

If & > 0 is sufficiently small, the second term on the right is smaller than Mgf 2.
Therefore,

M < 2sup{‘cp§(x)| xe]Eﬂ{ye]R" |y— é| |§|1J_}}

According to statement 2 of Lemma 1, we have
|f(E)] < 4M¢ + Cexp{-A|EJP} < .
< 8sup {]f(x)|: xe]Eﬂ{.ye]R”: ly—E| < |§|f\[§}} + chp{—A]E_,F}.'

By Bernstein’s theorem it means that

he(z%) < lim - sup oglf§§>|
|§|—>=-= éeK(:”, 29)) !&'l

< i P log(8 :
I’éllfi-a EEK(:!?}L(M))]§| og( el
yeEN{y<R":|x-E| < |E]//g}} + Corp{-al¢P|EP).
If

: log| £(5)| ( 1 Jp
lim —2l < -I|1l+—=| o, 7
8> ecrnK (S, 1)) |EF Ve

then he < —0, and therefore f vanishes identically. Theorem 4 is proved. For this
case Theorem 2 is also proved. If (7) is false, the statement of Theorem 2 is still true.
So, Theorem 2 is always true.

Proof of Theorem 6. Let’s prove the first statement of the theorem. As usual,

0 1 1 ) n
z eR".
[ﬂi "n
Assume that fe H(p) is of o-type andbounded by 1 on E. Let A = 20, let

‘Ee l(z9), andlet ¢ = g(n, p, o) in Lemma 1 be large enough to guarantee the
inclusion

B(§,2|§|f\/§) = {xeR":|x—§|.s 2]r’;|f\[g-v}c]K.

Let @ € H(1, qp“| EfR- 1Y be the function defined in Lemma 1 for these f A, q,
and & The set

F; = Clos ((R" \ B(5,2/€|/ 7)) U (B(&.2|E|/¥a) NF))

is relatively dense in R” with density characteristics L| Ell_p and §| & |”(l =P If €|
is large enough, ' @¢ is bounded by 2 on E. It is also bounded on R" by some finite

value that may a priori depend on & However, it can be chosen independent of €. To
show it, we need the following result proved by Schaeffer [16] for n = 1 and by
Levin [17] for the general case (some Schaeffer — Levin-type results for
plurisubharmonic and subharmonic functions one can find in [18 —20]).

Theorem 9 (Schaeffer — Levin). Let F be a relatively dense subset of R”
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with density characteristics L and 8. Then the following inequality
sup{|g(x)|: xe R"} < exp{CcL”"'l/S} sup{|g(»)|: yeF}

where C < o does not depend on g, o, and F holds for every g € H,(1, G).
Let

M = sup{| Qe(x)|: x € R"}
and
Ne = sup{|@z(»)|: y e Fe}.
According to Levin — Schaeffer Theorem,

ME < {qu-i—ll F: |p—IL(n+ l)l(r_:l[(wi-l)(l—-]::l)!,él&In(l—p)}NE < CNE
where the finite coefficient C on the right does not depend on f and &. Assume, for
the sake of simplicity, that ] (pg(x)| reaches the value Ng at some point n € ]Fg. Only
the case of |n—&| < |&|/4fg is of interest for us. In this case there exists such a
point £ € E that

| =
|€-n] < |&] "P(€]) ®)
where €(R) monotonically decreases to 0 as R — e=. Applying S. Bernstein’s
estimate once again, we get that

Mg < CNg < C(2+ | &P~ g €] ~Pe(|E])).

It means that My < e for all f of the class and § e [(1) provided that |§| is
large enough. (In fact, the condition that & € [(z0) was never used in this argument,
and since g may be arbitrarily large, f is bounded on any closed cone embedded in
IK.) The first statement of Theorem 6 is proved.

To prove the second statement, we should almost literally repeat our preceding
reasoning leading to (8). Now we have

|¢-E| < celg|'™®
instead of (8). It yields

Mg < C + CaP* | EP ™ M| &' Pe.
Here C stands for various constants that do not depend on & and f. So, if positive
€ is small enough, all functions @g are uniformly bounded. Therefore, f is bounded

on the ray [(z0). Theorem 6 is proved.

Remark 3. As it was mentioned in Introduction, the estimates of entire functions
that Theorem 6 guarantees are not uniform with respect to functions f even though
there is such a common finite constant that all of them are bounded by it for all
Ee l1) with |E| 2 Ry, Rp < e=. The following example shows that it is impossible

to get rid of dependence of R on f,
Let

1 sin(m(«/ﬁ—m)) sin(m( J?:Il-f-m)) 1

2| m(mh—m) | (N +m) ()
m=1273,...

For A = 0 the inequalities -J?E[Mﬂnl?_] and lk-—(m+1f’mz)‘ 22/m

&) =

are equivalent, Let
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F=E-=R"\ D {x=p.m)eR":

m=1.

X+t 2, = (4m+1/16m*)| < 1/},

and let

1
Jn(@ = gam(z +...+2,) éH"[E)’ m=12,....

E itself is relatively dense in (R,)" and besides an asymptotic net in it of any

order less than 3 /2. All f,, are bounded by 1 on E. However,

ﬁn[ﬂ,...,‘ﬁ] = 2dm +o(1), m—>ee.

n n

Remark 4. Actually, we have proved more than was formulated in the first
statement of Theorem 6: Each of the functions in question is bounded on any closed

cone embedded in K. The following example shows that we cannot change embedded
cones to shifts of K.
For the sake of brevity, assume that n = 2. Let
= sin(zy —m;)
flanz) = ), gjla)————L
j=1 b mj

where numbers m; T oo as m — oo. If increasing is fast enough, then fe H,(1, 1).
Evidently, this function is bounded on

<2/4i},

F=FE-=R?\ U {x= (x, m)eR?: |x+x—(f+17 %)
j=1

which is relatively dense in K = (R_,_)2 and an asymptotic net in it of any order less
than 3/2 simultaneously. On the other hand, f(j, m;) —» e as j—» eo. For each
vector a = (a,ay), a; > 0, a; > 0, all pairs of the sequence {(j, m;)}, but a finite

number belong to K + a.

4. Generalization. To extend our results on functions which are analytic in a cone,
we need a Keldysh-type theorem of Russakovskii mentioned in Introduction. First let’s
introduce some notations.

Let @ and ¢ be plurisubharmoqic functions in C", the following "nonoscillating
property":
M) < - A0 + B

where by " (z) we denote sup{u(®): [@—z| < r} and A, B > 0. Assume also
that ¢@(z) = 0 and :

log(1+|z[) = o(e(z))
as z — o, For € > 0 let
Q. = {ze C": w(z) < -e9(2)},

and let
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Ve, > gy inf{‘zm - zm]: Peq, 2P eC” \QEZ} > 0,
which is a kind of smoothness condition on @ and @.

Theorem 10 (Russakovskii [13]). Let f(z) be an analytic function in £
satisfying the estimate :

|7@)| < Crexp{Cro(2)}, ze Qy.

Then for each € > 0 and each N = 1 there exists such an entire function g(z)
that

| F(z)—g(2)| < Cexp{-No(2)}, ze Qs

lg(2)| < Cexp{C'max{Cf, N}(—i-co* + (p)(z)}

where C does not depend on N.
Proof of Theorem 7. Without loss of generality, we can assume that

0 X 1 1 J o
= e = | B".
f T [JZ n
If M is a constant which is large enough, then the connected component g,
1/+/n €Qy, of the set

{zeC”: max{M|Imz_?! - Rez?:j = 1,...,n}- < 0}
is a subset of G. Define
w(z) = max{M‘Imz?[— Rezf:j = 1,.”.n}

outside the union of the other components and 0 on them. Define also

o(z) = max{l,max{[zjlp:j = ln}}
It is evident that the functions and domains defined in such a way
Q= {ze C: w(z) < —eo(z)}

satisfy the conditions of Russakovskii theorem. According to it, for each fe Hg(p,
o), each & > O and each finite N, N = Ny(G, p, ©), there exists such g e H(p,
Y(N)) that )

|f(@-8@)] < Cexp{-yMzf}, 2z Q. ©
Here W(N)—> e as N—>eeo. If hg g(1) > —co, then g behaves on E essentially in
the same way as f. Applying Theorem 1 to the function g, we see that
he(l) = hy(1) = hy g(1) = hyg@). .
If hyg(1) = o, (9) yields inequality hy (1) < —y(N). Therefore, k(1) < —W(N),

and applying (9) once again, we get that k(1) < —y(N). Since N is arbitrary large,
we are done in this case too.

Proof of Theorem 8. This proof may be derived from Theorem 3 and
Russakovskii’s theorem in exactly the same way as the proof of Theorem 6 was
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derived from the latter and Theorem 1. The only point that should be added to the
previous argument is the following Phragmen — Lindel6f-type result: Since the
opening of G is wide enough, the indicator of each nontrivial function fe H(p)
should be bounded from below. Theorem 8 is proved.
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