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CORRELATIONAL OBJECT DETECTION BASED ON ACTIVE
SHAPE MODELS

New correlation-based approach for object detection is proposed. Method for varying shape
object detection is developed. Proposed method showed promising results on synthetic images.
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3anporoHOBaHO HOBUM MiJAXiJ Ui KOpeILIHiHHOro BHSBICHHS 00 €KTiB. Po3zpobieno merox
BUSIBIICHHS 00’ €KTiB 3MiHHOI (hopmu. TecTyBaHHS METOy Ha CHHTE30BaHMX 300pa)KEHHAX IPO-
JIEMOHCTPYBAJIO IEPCIIEKTUBHICTh METOLY.

KmouoBi ciioBa: gusgnenna 06 ’ekmie, nOpigHAHHA 3 emalOHOM, KOPENAYIs.

Obiject detection is one of the hardest problems in computer vision. It is virtually
impossible to extract superior approach from the variety of existing object detection
methods. This is caused by the complexity of the given task. Any particular approach is
developed and can be considered as superior only for a certain class of tasks or objects.
Existing object detection methods can be divided on two classes. Those are feature-
and template-based techniques. Feature-based methods represent an object image by a
set of features and corresponding spatial relations, thus they neglect certain amount of
information about an object. On the other hand, template-based methods use complete
image of an object, but the majority of those methods are unable to deal efficiently
enough with variations in shape or texture of an object, otherwise they become very
computationally expensive.

This paper deals with template-based paradigm. It considers template to be
dynamical (dynamical not with respect to time but to possible shape variation) model
of given object image and gives computationally efficient solution to the object
detection by matching with such a dynamical template.

Dynamical template matching. This section formulates the classical problem of
template-based object detection. It also reveals existing problems of this approach
related to low tolerance to object distortions. There is proposed an approach for
efficient correlation-based object detection, which is based on dynamical template
matching. Under dynamical template we understand an object image template that is
able to change its shape depending on some its model parameters. It is also shown how
such technique can be fulfiled in computationally efficient way.

Correlational template matching. In general template matching consists of
comparison of input image | with template T in order to find coordinates (x, y) of the
best match [1]. Generally speaking, any suitable metric M can be chosen as the degree
of matching. One of the most practical and common used metric is a sum of squared
distances (SSD):

M (n,m) = > (G, ) =T (i —n, j-m)?*. (1)
ij
Straightforward utilization of SSD can be computationally expensive so it is more
convenient to use cross-correlation as a kind of fast SSD approximation

2.6, )-T(i-n, j-m))> =2 1 )T (I-n, j—m). )
ij i

It follows from decomposition:
© T. S. Mandziy, 2010

ISSN 0474-8662. Bin6ip i 06po6ka indopm. 2010. Bun. 33 (109) 83



M(n,m) =Y (1G, j)?> =216, )T —n, j—m)+T (@i —n, j —m)?). 3)
i

Sum over T(i-n, j-m)? is energy of the template which is disregarded as it is a
constant term. Sum over I(i, j)® is energy of an input image under the template and is
neglected under assumption to be a slow changing term. The sum over I(i, j)(T(i-n, j-m)
is a definition of a so called cross-correlation.

Correlation has a few desirable properties for template matching task. The main
two advantages are its robustness to noise and comparatively low computational cost in
frequency domain. Correlation of two functions in spatial domain is a simple inverse
transform of product of their Fourier spectrums:

frg=FG", 4)
where * denotes correlation, F and G~ are Fourier spectrum of f and complex
conjugate of Fourier spectrum of g, respectively.

Correlational methods were successfully used in object detection, image
registration, image recognition, stereo reconstruction, etc.

The problems arise when one tries to detect objects with possible presence of
complex shape and texture variations. The detection of such a complex object requires
the match of input image with templates of all possible variations of object shape and
texture. Consideration of all of those variations can be very computationally complex
thus impractical task.

Dynamical template object detection. Suppose T(b) is a template image, where b
is a parameter vector responsible for shape variations of template object. Straightfor-
ward approach to detect such an object on input image | would be to correlate it with a
set of templates {T(iAb)|i[-M;M]} that covers all possible variations in object
appearance. But such number of input image matchings with different variations of
template, in general, is very computationally heavy task.

Under assumption of smoothness computational cost of this task can be trade on
accuracy of a method. Let us assume that small changes of parameter vector b cause small
changes in correlation picture. The assumption suggests that correlation pictures of two
templates that differ on some small Ab with an input image | do not qualitatively dissimilar,
but slightly differ only in amplitude, position and width of the correlational peaks.

Based on the smoothness assumption and given a set of correlation pictures {Ci}
corresponding to the set of templates {T (iAb)|i e[-M;M]} we can assume that sum-
mation over correlation pictures set {Ci} does not changes qualitative picture of cumu-
lative correlograme C™". Qualitatively steady C™" means that positions (x|, y["™)

of all main peak maximums are not changed. Although, relative amplitude values of
those peaks can be different. Now by using the property of cross-correlation:

fx(g+h)=f=*g+f=*h, (5)
instead of summation over {Ci} we can first sum over all templates
{T(iAb) |i e[-M; M1} and only than correlate the result with input image

coum :Z{Ci}:Z' *T (iAb) = *{ZT(iAb)]. (6)

With such approach computational cost of cross-correlation for dynamical template
is equal to cross-correlation with regular template. All the computation complexity lies
on the creation of sum over a set {T (iAb) |i e[-M;M]}. Advantage in this case is that

sum over {T(iAb)|ie[-M;M]} is computed only once during training stage. So the
detection process per se remains computationally efficient.
Efficient computation of template sum. The key moment in this approach is the
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efficient generation of sum over a set of template images {T(iAb)|ie[-M;M]}.

Straightforward computation of {T(iAb) | ie[-M, M]} for complex objects with mul-
tidimensional parameter vector b is impractical. In case of having proper analytical
description for T(b), parameter vector b can be simply integrated out, what is
equivalent to summation over {T(iAb) | ie[-M, M]} when Ab—0.

In our opinion there are a few state of the art methods most suitable for object
image generation. Those are active shape models ASM [2], active appearance models
(AAM) [3] and morphable models (MM) [4]. After training, those methods are able to
generate modeled object images with intrinsic shape and texture variations.

For simple analytical description and computational simplicity here are regarded bina-
ry edge images of objects. Usage of binary edge images considerably simplifies computations
and also provides certain invariance to brightness changes and lightning conditions.

Active shape models (ASM) were taken as a basis of object edge image modeling. ASM
are statistical models of shape. They represent the object as a set X ={X;,... Xy, Y1,---Yn}
of key point coordinates. The basic ASM consist of mean shape vector 3 and matrix P

that holds information on allowed variations and restrictions on shape variation. To
produce a new shape ASM uses the following equation
x=X+Pb, @)
where x is a key point coordinate set of a new shape and b is a parameter vector of ge-
nerated shape x, X is a mean shape. This paper does not concerned with ASM training
and utilization, so interested readers are referenced to [2] for more details on this subject.
ASM provides coordinates of object key points and connecting them line segments
form a piecewise linear approximation of an object edge image. Now the main question
is how to analytically represent the image of object given a set of key points
{X{,--Xns Y1,---Yn} Qenerated by (7). As it turns out, it is much more convenient to
represent the analytical description of a line in frequency domain than it is in spatial
domain. Let us assume that g(x, y) is an image of a line segment in spatial domain.
Consider the line with a slope a that goes through the origin and is bounded by the
spatial limits xe[-X, X] and ye[-Y, Y]:
y=ax. 8
Fourier transform L(w, v) of g(x, y) is the next:

Lwv)= [ [ g(xy)e 2™ Waxdy . 9)
By making the substitution x=y/a with assumption that X=Y, and because g(x, y) is
equal to 1 only along the line y = ax and 0 everywhere else the (9) transforms as follows:

y

L(W,V) _ 1 T[ T[ eZT[i(WaJrVyjdydy:Z?Ysinc[Y [ﬂ_ijj . (10)

Ta a
-Y -y
The slope a and the integration bound Y for a segment of a line | that connects
points (x{,yi) and (x5, yb) are look like the following:

_(r-w)
A=y

(X2 —x1)

Expression (10) generates frequency representations of the line segments with
arbitrary slopes and lengths but with restriction that the line goes trough the origin. For
translation of the line to a desirable position in spatial domain the translation property
of the Fourier transform is used. According to this property the multiplication of

Y=y)-y. (12)

L(w,v) by e®(WC4+2)*v(1+¥2) \yill cause the spatial image to be shifted along x and
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y coordinates by respectively. Thus, substitution of (11) into

(10) and application of translation property gives the analytical representation for arbit-
rary line segment in frequency domain:

L(w,V) = 2(xy —x{)sinc(w(xh —x ) +v(y} — yl'))e“i(""(xlu"l?)“’(y{*yl?)) : (12)
where x!, yI, x» and yb are computed by (7) and take the next form:
{x' :Yl' + 'leb : {x£ :Yz' + 'szb :

= I ol — 1~2 (13)
Y=Y+ Pb, Y2=Y2+ Pyb.
Based on (12) we can write down the analytical expression for the frequency

representation of an object edge image as a superposition of all its line segments:

n .
FATO)HW,v) = Y. 2(xh — X)) sinc(w(xb —xd) +v(yh — y1) e ("a DO (14
1=1
Taking Fourier transform of (6) and assuming Ab—0 we get frequency repre-
sentation of cumulative correlogram:

A
Fean = Fy [ F{T(b)}db=F Fr, (15)
-\

where [-A, A] is a range of allowable changes of parameter b and F|* is a complex

conjugate of an input image Fourier transform.

Expression (14) is not analytically integrable with respect to b. The solution to
A
j F{T (b)}db can be reduced to computation of exponential integral functions. Unfor-
vy
tunately the size of the analytical representation of the integral in terms of exponential
integral function is inconvenient to be published in present paper. But the original
solution can be precisely replicated by using any symbolic integration packages for
integration of (15) with respect to b.

Computed once Fr than can be used for detection of modeled object in arbitrary
input image. So given Fr object detection process is now straightforward and consist of
input image | Fourier transform F; computation, multiplication of precomputed Fr

with F|* and computation of inverse Fourier transform of F’l{Fccum}. Final stage of

detection procedure consist in correlational peaks location on F’l{Fccum}. Peaks on

this correlational picture denote object of interest most probable locations.

Experimental results. Radiographic image of pipe joint weld was chosen as an
object of interest. Depending on a relative pipe weld position to source of x-rays
radiation we get different ellipse-like shape images of pipe welds. For automatic
radiographic nondestructive testing tasks it is important to be able to detect position of
welds on radiographic images.

Developed approach was tested on synthetic images containing generated pipe
welds-like shapes. Edges of welds were modeled by piecewise linear approximation of
key points obtained by ASM training. Model was reduced to consist of only one para-
meter b. Practically reasonable variation range for this parameter was be[-2, 2]. For
testing, synthetic set of object images with different values of parameter b were gene-
rated. Before computation of F, input image was blurred by gaussian-type filter mask. This
is made to achieve more noiseless correlation picture and thus more steady detection
results. Examples of those generated images are gathered in test image shown on Fig. 1a.
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Fig. 1. a — a set of synthetic test images with different parameter b (top row from left to right:
b =-1.8, b =-1, bottom row from left to right: b = 1, b = 2); b — a set of synthetic test images with
different parameter b in clutter environment.

A number of occlusions in a form of
objects with different shapes were added
to original input image (Fig. 1a) to
complicate the task of object detection.
The cluttered version of input image is
shown on Fig. 1b.

After computation of (15) and taking
inverse Fourier transform of the result we
obtain a correlation picture shown at Fig 2.
Correlational picture has a complex
structure with many correlational peaks.
Nevertheless, lots of those peaks can be
filtered out by the absolute values of their
amplitudes. Correlational peaks corres-
ponding to true location of the modeled
object have considerably bigger values  Fig. 2. Correlation picture for test image Fig. 1b.
compared to added noise objects.

Four biggest maximum correlational peaks were found. These peak locations with
precision up to 93...98% correspond to the true locations of modeled object in input image.

Accuracy of the proposed method is satisfactory. As experimental results show
the proposed method can be successfully used for detection of objects with varying
shapes. The only requirement for such objects is the fulfillment of smoothness
assumption.
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