В. П. Красовский, Н. А. Красовская*

КОНТАКТНОЕ ВЗАИМОДЕЙСТВИЕ И СМАЧИВАНИЕ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ МЕТАЛЛИЧЕСКИМИ РАСПЛАВАМИ

Методом лежащей капли в вакууме $2\cdot 10^{-3}$ Па в широком интервале температур изучены смачивание и контактное взаимодействие поликристаллического кремния с металлическими расплавами с целью создания паяных соединений. Металлические расплавы железа, никеля, меди, серебра, германия взаимодействуют с твердым кремнием и смачивают его поверхность. Разработаны режимы и технология пайки поликристаллического кремния с металлами.

Ключевые слова: смачивание, поликристаллический кремний, металлы, контактное плавление.

Введение

Кремний, использующийся в технике, представлен в нескольких модификациях — это сверхчистый монокристаллический кремний, поликристаллический кремний (получаемый из технического кремния) и новая разновидность материала — пористый кремний, который находит все большее применение. Сверхчистый монокристаллический кремний преимущественно используется ДЛЯ производства электронных приборов (нелинейные пассивные элементы электрических схем) и однокристальных микросхем. Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде поликристал-лического является основным сырьевым материалом для солнечной энергетики, а также используется для изготовления зеркал газовых лазеров. Технический кремний применяют как сырьё для металлургических производств и для создания кремнийорганических материалов, силанов [1]. В настоящее время появилась возможность получать на основе слоев пористого кремния светоизлучающие структуры, химические датчики, фотоэлектрические преобразователи солнечной энергии и другие полупроводниковые приборы [2].

Кристаллическая решётка кремния кубическая гранецентрированная типа алмаза, параметр a=0.54307 нм, но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи атомов С—С твёрдость кремния значительно меньше, чем алмаза [3]. Кремний хрупок, только при нагревании выше 1100 К он становится пластичным веществом. Он прозрачен для инфракрасного излучения начиная с длины волны 1.1 мкм. Собственная концентрация носителей заряда — $5.81\cdot10^{15}$ м $^{-3}$ (для температуры 300 K).

*

92

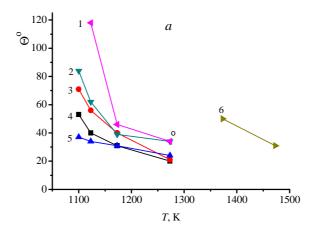
^{*} В. П. Красовский — доктор химических наук, заведующий отделом Института проблем материаловедения им. И. Н. Францевича НАН Украины, Киев; Н. А. Красовская — научный сотрудник, там же.

 $^{{\}rm \ \, }$ В. П. Красовский, Н. А. Красовская, 2018

Подобно атомам углерода, для атомов кремния является характерным состояние sp^3 -гибридизации орбиталей. Вследствие гибридизации чистый кристаллический кремний образует алмазоподобную решётку, в которой кремний четырёхвалентен. В нормальных условиях кремний химически малоактивен и активно реагирует только с газообразным фтором, при образуется летучий тетрафторид кремния SiF₄. "неактивность" кремния обусловлена пассивацией поверхности наноразмерным слоем диоксида кремния, немедленно образующегося в присутствии кислорода, воздуха или воды (водяных паров). При нагреве до температуры свыше 800 К Si реагирует с O_2 с образованием $\hat{Si}O_2$. Процесс сопровождается увеличением толщины слоя диоксида на поверхности, скорость процесса окисления лимитируется диффузией атомарного кислорода сквозь плёнку диоксида [4].

Изготовление из поликристаллического кремния изделий больших размеров, в частности солнечных батарей, требует разработки технологических процессов соединения и припоев для пайки отдельных элементов батарей между собой и металлической конструкцией [5].

Цель настоящей работы — исследовать смачивание поликристаллического кремния металлическими расплавами, что позволит решить важную проблему разработки режимов и технологии пайки.


Материалы и методы исследования

Исследования смачивания проводили методом лежащей капли в вакууме $2\cdot 10^{-3}$ Па в температурном интервале 1100—1473 К. В качестве твердой фазы использовали поликристаллический кремний, который полировали наждачной бумагой различной зернистости. Средняя шероховатость поверхности R_a была меньше 0.02 мкм. Перед исследованиями подложки очищали с помощью ацетона и спирта и отжигали в вакууме при температуре 1300 К. В качестве жидкой фазы выбраны серебро (чистота 99,999%), электролитические никель и железо, медь марки 83 (чистотой 99,995%), монокристаллические германий и кремний (чистотою 299,995%), Sn марки 084-000, Pb марки 084. Серебро, медь предварительно плавили в графитовых тиглях в вакууме $2\cdot 10^{-3}$ Па при температуре 1373 К. Сплавы с кремнием готовили плавкой во фторидных тиглях при температуре 1523 К [6-8]. Контроль массы сплавов проводили взвешиванием до и после эксперимента.

Результаты исследований и их обсуждение

Результаты исследования смачивания подложек кремния различными металлическими расплавами в вакууме в широком температурном интервале и с различным временем выдержки представлены на рис. 1 и в таблице.

Элементы 4-й группы (Ge, Sn, Pb) неограниченно растворимы в кремнии, как и большинство других металлов. При нагревании кремния с металлами могут образовываться их соединения — силициды [9]. Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочно-земельных металлов) и металлоподобные (силициды переходных металлов). Металлоподобные силициды имеют

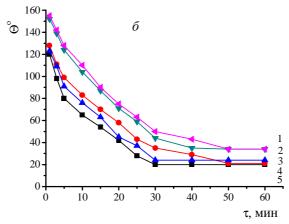
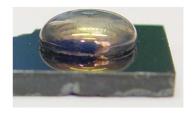


Рис. 1. Температурная (*a*) и кинетическая при $T=1273~\mathrm{K}$ (б) зависимости смачивания подложек кремния металлическими расплавами (% (мас.)): Ag—4,5Si (\blacktriangleleft), Ag (\blacktriangledown), Cu—5Si (\bullet), Cu—72Ag (\blacktriangle) и Cu (\blacksquare)

Fig. 1. Temperature (a) and kinetics at T = 1273 K (6) dependences of wetting of silicon substrates by metal melts (% (mas.)): Ag—4,5Si (\blacktriangleleft), Ag (\blacktriangledown), Cu—5Si (\bullet), Cu—72Ag (\blacktriangle) and Cu (\blacksquare)

высокие температуры плавления (до 2273 К). Они химически инертны, устойчивы к действию кислорода даже при высоких температурах.


Для целого ряда металлов (Fe, Ni, Cu, Ag) наблюдается контактное плавление с растворением. В системах жидкая медь—твердый кремний контактное плавление происходит при температуре 1076 K, а при 1373 K расплав полностью растворился в подложке и образовалась большая лунка, для сплава Cu—72% (мас.) Ад контактное плавление фиксируется при температуре 1053 K. Краевые углы смачивания при этом можно измерить благодаря медленному и ограниченному растворению металлов

Результаты смачивания подложек кремния различными металлическими расплавами

Wetting results of silicon substrates by various metal melts

Расплав, % (мас.)	Т, К	Время, мин	Краевой угол смачивания θ, град
Ni	1273	1	~ 0
Ni—5Si	1273	1	~ 0
Fe	1473	1	~ 0
Cu	1273	10	20
Cu	1373	1	~ 0
Cu—5Si	1273	20	21
Cu—72Ag	1273	10	24
Ag	1273	20	34
Ag—4,5Si	1273	20	34
Ge—7Si	1473	10	31
Pb	873	20	136
Sn	1073	20	119

a δ Puc. 2. Фото подложек кремния после смачивания жидким

Fig. 2. The photo of silicon substrates from after wetting by liquid Pb (a) and Sn (δ) at 873 and 1073 K accordingly

свинцом (а) и оловом (б) при 873 и 1073 К соответсвенно

в кремнии. Для никеля и железа растворение сопровождается образованием эвтектической смеси и значения краевых углов смачивания близки к нулю.

В системах жидкие Pb и Sn—твердый Si при изучаемых температурах (до 873 и 1073 К соответственно) взаимодействия не наблюдается из-за наличия оксида кремния на поверхности кремния (рис. 2).

Для улучшения смачивания низкотемпературными припойными расплавами поликристаллического кремния на поверхность материала наносили покрытие из титана (рис. 3). При температуре 873 К свинец смачивает кремний и краевые углы смачивания при различном времени достигают следующих значений при мин: $1-136^\circ$, $3-97^\circ$, $5-75^\circ$, $8-59^\circ$, $10-45^\circ$, $15-29^\circ$, $20-25^\circ$, $25-21^\circ$, $30-15^\circ$, $40-10^\circ$, $50-8^\circ$, $60-8^\circ$.

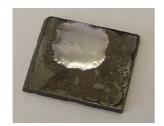


Рис. 3. Фото подложки кремния с нанесенным покрытием из титана после смачивания жидким свинцом при 873 K

Fig. 3. The photo of silicon substrates with titanium coverting after wetting by lead at $873~\mathrm{K}$

Выводы

Исследовано смачивание поликристаллического кремния расплавами меди, серебра, никеля, железа, германия и их сплавами с кремнием. В системах наблюдается контактное взаимодействие, что способствует смачиванию. Краевые углы имеют значения намного ниже 90°. Результаты исследований позволили разработать технологию пайки кремния с металлами.

РЕЗЮМЕ. Методом лежачої краплі у вакуумі $2 \cdot 10^{-3}$ Па в широкому інтервалі температур вивчено змочування та контактна взаємодія полікристалічного кремнію з металевими розплавами з метою розробки паяних з'єднань. Металеві розплави міді, срібла, нікелю, заліза, германію взаємодіють з твердим кремнім та змочують його поверхню. Розроблено режими та технологію паяння полікристалічного кремнію з металом.

Ключові слова: змочування, полікристалічний кремній, метали, контактне плавлення.

- 1. *Шульгин Б. В.* Новые детекторные материалы и устройства / Б. В. Шульгин, А. Н. Черепанов, Д. Б. Шульгин. М. : Физматлит, 2017. 358 с.
- 2. *Трегулов В. В.* Пористый кремний: технология, свойства, применение: (Монография). Рязань: Рязанский гос. ун-т, 2011. 124 с.
- 3. *Бокий Г. Б.* Кристаллохимия. М.: Наука, 1971. 236 с.
- 4. Справочник химика 21 // Електронний ресурс: http://www.chem21.info.
- 5. *Аксельрод Э. Л.* Справочник конструктора точного приборостроения / [Э. Л. Аксельрод, В. А. Бурков, В. Н. Горский и др.]. М.-Л. : Машиностроение, 1964. 945 с.
- 6. *Красовский В. П.* Галогенидные огнеупоры для изотермической плавки и гомогенизации химически активных сплавов с большим содержанием титана, циркония, гафния / В. П. Красовский, Ю. В. Найдич, Н. А. Красовская // Зб. наук. праць ВАТ "УкрНДІ Вогнетривів ім. А. С. Бережного". Харків : Каравелла. 2005. № 105. С. 66—70.
- 7. *Красовский В. П.* Огнеупоры для плавки, литья и гомогенизации химически агрессивных сплавов на основе титана, циркония, гафния / В. П. Красовский, Н. А. Красовская // Адгезия расплавов и пайка материалов. 2004. Вып. 37. С. 103—109.

- 8. *Красовський В. П.* Галогенідні вогнетривкі тиглі багаторазового використання для плавлення, ізотермічної гомогенізації і високотемпературного синтезу хімічно агресивних сплавів на основі Ті, Zr, Nb, V / В. П. Красовський, Н. А. Красовська // Адгезия расплавов и пайка материалов. 2016. Вып. 49. С. 96—102.
- 9. *Хансен М.* Структуры двойных сплавов. Т. 1, 2. / М. Хансен, К. Андерко. М.: Металлургиздат, 1962. 1488 с.

Поступила 17.11.18

Krasovskyy V. P., Krasovskaya N. A.

Contact interaction and wetting of polycrystallic silicon by metal melts

The wetting by sessile drop method and the contact interaction of polycrystallic silicon with metal melts in vacuum $2 \cdot 10^{-3}$ Pa in wide temperature interval were studied. The aim this investigates was a elaboration of brazed joining. Fe, Ni, Ag, Cu, Ge melts acts with silicon solid and wetting of substances. The brazed technology of polycrystallic silicon with metal was elaborated.

Keywords: wetting, polycrystallic silicon, metals, contact melting.