Е. П. Нестерук

Физико-технологический институт металлов и сплавов НАН Украины, Киев

Преимущества применения центробежных проточных реакторов для внутриформенного модифицирования

Представлены данные о сравнительном исследовании влияния технологических параметров при модифицировании в прямоточном и центробежном проточных реакторах на улучшение показателей процесса внутриформенного модифицирования.

Ключевые слова: модифицирование, проточный реактор, высокопрочный чугун, температура, фракционный состав, расход лигатуры, коэффициент заполнения реактора

лагодаря высоким показателям и хорошему сочетанию прочностных, эксплуатационных, физических и технологических свойств, высокопрочный чугун находит широкое применение во всех отраслях промышленности. Возрастает потребность машиностроения в отливках из высокопрочного чугуна повышенного качества. Оптимизация процессов модифицирования является одним из факторов повышения качества отливок из высокопрочного чугуна при одновременном снижении их стоимости. Модифицирование в литейных формах не получило широкого распространения в нашей промышленности. Детальное изучение процессов плавления и растворения модификаторов в проточных реакторах и влияния на него технологических параметров, которые позволяют целенаправленно воздействовать на механизм и кинетику процесса взаимодействия расплава с модификатором позволит рационализировать технологии получения высокопрочного чугуна.

Факторами, определяющими эффективность модифицирования, являются теплофизические процессы, обеспечивающие расплавление модификаторов [1], и параллельно протекающие физико-химические процессы переноса модифицирующих элементов в расплав чугуна [2, 3], установление закономерностей которых позволит усовершенствовать технологии получения высокопрочного чугуна.

Для традиционных технологий внутриформенного модифицирования, основанных на применении прямоточных реакторов, характерно создание условий, обеспечивающих относительно равномерный переход магния в чугун на протяжении всего времени заливки литейной формы. Переход магния в чугун описывается возрастающей во времени линейной функцией, которая характерна для слоевого характера межфазного взаимодействия, при котором скорость растворения лимитируется поверхностью частиц модификатора, находящегося в пределах реакционного слоя [4]. Основной недостаток слоевого межфазного взаимодействия состоит в том, что первые наиболее холодные порции расплава с минимальным содержанием магния поступают в полости

отливок, а последние, с максимальным содержанием магния, остаются в литниковой системе. Первые порции выходящего из реактора расплава могут иметь недостаточное для образования шаровидного графита содержание магния. Это затрудняет получение равномерной структуры в отливках, конструкция которых препятствует усреднению содержания магния путем жидкофазного смешения первых недостаточно модифицированных порций расплава с последующими с более высоким содержанием магния. Создание в проточном реакторе объемного характера межфазного взаимодействия обеспечивает высокий уровень насыщения расплава чугуна магнием в начальный момент заливки, и первые порции расплава с высоким содержанием магния идут в отливки, а последние его порции с низким содержанием магния заполняют литниковую систему.

Выбор и применение оптимального, для конкретных условий, вида межфазного взаимодействия является одним из главных факторов при разработке высокоэффективных управляемых процессов внутриформенного модифицирования. Псевдоожижение твердой фазы в поле центробежных сил позволяет увеличить скорость ожижающего агента и ускорить межфазные процессы [5]. В таких условиях интенсифицируется тепломассообмен как за счет увеличения поверхности межфазного взаимодействия, так и за счет турбулизации теплового и концентрационного пограничных слоев. В связи с этим актуальным является сравнительное исследование влияния комплекса факторов на переход магния в металл отливок в условиях внутриформенного модифицирования в прямоточном и центробежном реакторах.

Целью работы являлось сравнительное исследование влияния технологических параметров на степень перехода магния из магниевой лигатуры ФСМг6 в металл отливок при модифицировании в прямоточном и центробежном проточных реакторах для улучшения показателей процесса внутриформенного модифицирования.

Экспериментально исследовали влияние следующих технологических параметров: температуры

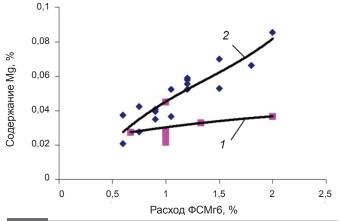
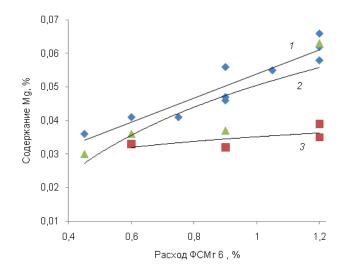
МЕТАЛЛ И ЛИТЬЕ УКРАИНЫ № 8 (255) '2014

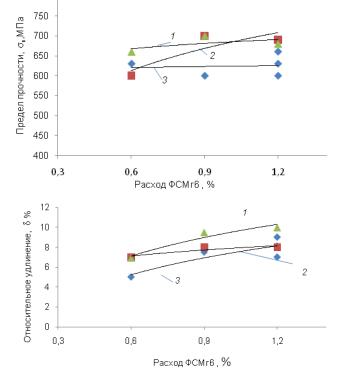
^{*} По материалам V научно-практической конференции молодых ученых Украины «Нові ливарні технології і матеріали у машинобудуванні» (14-16 мая 2014, ФТІМС НАНУ)

заливаемого чугуна ($T_{\rm зап}$), диаметра проточного реактора (ØПР), фракции модификатора ($\Phi_{\text{мод}}$), расхода лигатуры (Q) и коэффициента заполнения реактора модификатором ($K_{\text{зап}}$) на содержание магния в отливках и его отношение к количеству введенного магния (коэффициент усвоения). Параметры процесса модифицирования в проточном реакторе варьировались в широком диапазоне значений. При изучении влияния одного из параметров на переход магния в металл отливок другие параметры имели постоянное значение: T_{san} – 1420 °C; ØПР – 80 мм; $\Phi_{\text{мод}}$ – 1...10 мм; $Q - 1,0\%; K_{3an} - 0,5$. Химический состав чугуна перед модифицированием находился в следующих пределах (в %мас.): 3,6-3,8 С; 1,83-2,2 Si; 0,2-0,38 Mn; 0,04 Cr; 0,012-0,015 S; 0,04-0,06 Р. Модифицирование проводили ферросилиций-магниевой лигатурой ФСМг6. Применяли литниково-модифицирующую систему, состоящую из стояка, проточного реактора (со сменными цилиндрическими реакционными камерами диаметром 100; 80; 70 мм), центробежного шлакоуловителя и литниковых каналов.

В прямоточных реакторах происходит гравитационная сегрегация. Крупные частицы лигатуры ФСМг6, плотность которых в два раза меньше плотности жидкого чугуна, отделяются от реакционного слоя и под действием архимедовой силы всплывают в верхнюю часть реактора. В центробежных реакторах целенаправленно используется сочетание гравитационной и центробежной сегрегации жидкой и твердой фаз. В условиях центробежного движения более легкие частицы лигатуры сепарируются в центральной части реактора вдоль оси вращения. Интенсивное перемешивание твердой фазы способствует выравниванию температур и концентраций в объеме реактора и ускоряет ход тепломассообменных процессов.

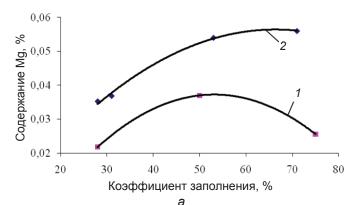
Расход оказывает значительное влияние на содержание магния в металле отливок. При небольшом расходе лигатуры ФСМг6 (0,5-0,7 %) содержание магния в отливках отличается незначительно (рис. 1). Это объясняется тем, что псевдоожижение и растворение небольшого количества лигатуры в прямоточном реакторе происходит почти так же быстро, как и в центробежном. С увеличением расхода лигатуры с 0,7 до 2,0 % при модифицировании в прямоточном

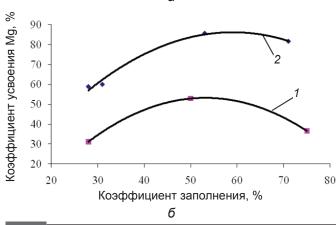




Рис. 1. Влияние расхода магниевой лигатуры ФСМг6 на содержание магния в металле отливок при модифицировании в прямоточном (1) и центробежном (2) реакторах

реакторе содержание магния увеличивается с 0,025 до 0,038 %.При модифицировании в центробежном реакторе переход магния в металл отливок интенсифицируется, и при расходе лигатуры 2 % достигает 0,085 % Mg. Это в 2,2 раза больше, чем при модифицировании в прямоточном реакторе.

При модифицировании в центробежном реакторе полидисперсными фракциями лигатуры ФСМг6 (фракции: 1...10; 15...20 мм и <1 мм) с увеличением расхода лигатуры до 1,2 % содержание магния увеличивается в 1,8 раза для фракции 1...9 мм и в 2,2 раза для фракции 15...20 (рис. 2). Для фракции <1 мм с увеличением расхода лигатуры содержание магния в отливке увеличивается незначительно с 0,033 до 0,039 %. Это можно объяснить значительной загрязненностью этой фракции окислами, являющимися балластом, снижающим эффективное содержание магния в дозе

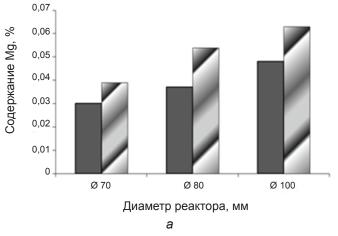

800

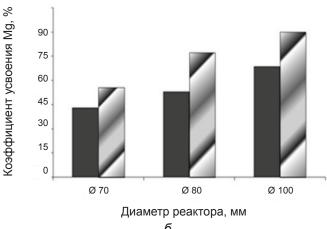


Рш. 2. Влияние расхода и фракционного состава магниевой лигатуры ФСМг6 на механические свойства, мм: 1-1...10; 2-15...20; 3-<1

модификатора. Поскольку модифицирование фракцией <1 мм обеспечивает достаточный для получения высокопрочного чугуна переход магния в металл, отливок ее можно применять для получения деталей не очень ответственного назначения. Предел прочности находится на уровне 660-700 МПа, а относительное удлинение 8-10 % для фракций 15...20 и 1...10 мм соответственно. Для фракции <1 мм предел прочности ~630 МПа, относительное удлинение ~7 %. Интенсивное перемешивания, которое создается в центробежном реакторе, способствует выравниванию температур и концентраций в объеме реактора и ускоряет ход тепломассообменных процессов, что делает процесс модифицирования менее чувствительным к фракционному составу. Как следствие позволяет эффективно применять ещё более широкую по размеру частиц фракцию 1...20 мм.

Коэффициент заполнения характеризует отношение объема засыпки лигатуры к объему реактора. Влияние коэффициента заполнения на содержание магния в металле отливок и коэффициент усвоения при модифицировании в прямоточном и центробежном реакторах представлено на рис. 3. При модифицировании в прямоточном реакторе при коэффициенте заполнения 30 %, когда засыпка лигатуры сосредоточена в донной части реактора, где интенсивность циркуляции расплава минимальна, содержание магния в отливках низкое. При коэффициенте заполнения 50 % переход магния из лигатуры в металл отливок максимальный и составляет 0,037 %. При повышении коэффициента заполнения

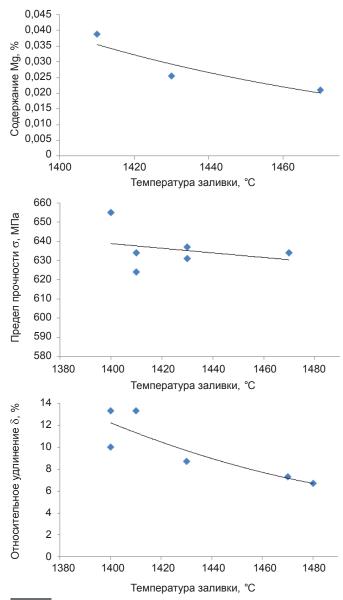




РП. 3. Влияние коэффициента заполнения реактора на содержание магния в металле отливок (а) и коэффициент его усвоения (б) при модифицировании в прямоточном (1) и центробежном (2) реакторах

до 75 % скорость растворения лигатуры замедляется, поскольку в реакторе увеличивается соотношение между ее количеством и количеством расплава, что снижает температуру в зоне межфазного взаимодействия. При модифицировании в центробежном реакторе содержание магния увеличивается с увеличением коэффициента заполнения и при коэффициенте заполнения 70 % содержание Mg составляет 0,058 %, а коэффициент усвоения достигает 82 %.

Результаты исследования влияния диаметра реактора на переход магния в металл отливок и коэффициент усвоения при модифицировании в прямоточном и центробежном реакторах представлены на рис. 4. При модифицировании в прямоточном реакторе с увеличением диаметра с 70 до 100 мм содержание магния в отливках изменяется с 0,030 до 0,048 %, а коэффициент усвоения магния не превышает 70 %. При модифицировании в центробежном реакторе содержание магния в отливках и коэффициент усвоения с увеличением диаметра реактора повышаются и составляют 0,039-0,063 и 56-90 %, соответственно. Максимальный переход магния в металл отливок достигается в центробежном реакторе диаметром 100 мм. В нем растворение модификатора происходит наиболее быстро вследствие большой площади поперечного сечения, малой высоты засыпки модификатора и наиболее высокой скорости центробежного движения. В таких условиях твердая


Рш. 4. Влияние диаметра реактора на содержание магния в металле отливок (а) и коэффициент его усвоения (б) при модифицировании в прямоточном (■) и центробежном (✓) реакторах

фаза быстро всплывает и растворяется в условиях движущейся жидко-твердой среды.

Наиболее эффективно магний переходит в металл отливки при невысокой температуре, но снижение температуры заливки ниже 1400 °C может привести к браку тонкостенных отливок по спаям и недоливу из-за недостаточной жидкотекучести расплава вследствие снижения температуры в результате модифицирующей обработки. Оптимальной для условий проведенного исследования является температура заливки 1420 °C. При более высоких температурах повышается интенсивность испарения магния и его усвоение чугуном снижается. При повышении температуры заливки с 1400 до 1480 °C относительное удлинение снижается с 13 до 7 %, а предел прочности составляет ~ 640 – 635 МПа (рис. 5).

Выводы

Создание в проточных реакторах режима центробежного движения активизирует размыв засыпки модификатора, ускоряя образование движущейся жидко-твердой среды, в которой интенсифицируется тепломассообмен, что позволяет создать высокоэффективные процессы получения высокопрочного чугуна и повысить степень перехода магния из лигатуры в металл отливок на 30-50 % и более. Применение центробежных реакторов позволяет увеличить заполнение их твердой фазой до 70-75 % и таким образом повысить выход годного литья. Открывается возможность применения расширенных по гранулометрическому составу полидисперсных фракций модификатора.

Влияние температуры заливки на содержание магния и на механические свойства отливок из высокопрочного чугуна

- 1. Теплофизика взаимодействия модификаторов с жидким чугуном / Н. И. Тарасевич, В. Б. Бубликов, И. В. Корниец, В. В. Суменкова, Е. П. Нестерук // Процессы литья. 2007. № 6. С. 39-46.
- 2. *Верховлюк А. М.* Кинетические особенности растворения твердых материалов в расплавах на основе железа / Там же. 2004. № 3. С. 10-20.
- 3. *Найдек В. Л., Верховлюк А. М.* Некоторые размышления о механизме образования шаровидного графита в чугуне // Там же. 2014. № 1. С. 47-54.
- 4. *Бубликов В. Б.* Межфазовое взаимодействие при внутриформенном модифицировании чугуна. // Там же. 1997. № 3. С. 39-48.
- 5. Аксельруд А. Г., Молчанов А. Д. Растворение твердых веществ. М.: Химия, 1977. 272 с.

Анотація

Нестерук О. П.

Переваги застосування відцентрових проточних реакторів для внутрішньоформеного модифікування

Представлено дані про порівняльні дослідження впливу технологічних параметрів при модифікуванні в прямоточному і відцентровому проточних реакторах на поліпшення показників процесу внутрішньоформового модифікування.

Ключові слова

модифікування, проточний реактор, високоміцний чавун, температура, фракційний склад, витрата лігатури, коефіцієнт заповнення реактора

Summary

Nesteruk E. P.

Advantages of application of centrifugal running reactors for the in-mould modifying

Data a comparative research of the influence of technological parameters under modifying in a once-through and centrifugal reactors for improving the efficiency of the process of in mould modifying are presented.

Keywords

modifying, flowing reactor, ductile iron, temperature, fractional composition, master-alloy consumption, the fill factor of the reactor

Поступила 03.06.14

Телефон редакции журналов

«Металл и литье Украины» и «Процессы литья»

(044) 424-04-10

Информация о журналах на сайте:

www.ptima.kiev.ua