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ON RANDOMLY PERTURBED
LINEAR OSCILLATING MECHANICAL SYSTEMS

PO BUITAJKOBO 3BYPEHI
JIMHIHI KOJIABHI MEXAHIYHI CACTEMH

We prove that the amplitudes and the phases of eigen oscillations of a linear oscillating system perturbed
by either a fast Markov process or a small Wiener process can be described asymptotically as a diffusion
process whose generator is calculated.

Hosejeno, mo aMmaiTyau i ¢asy BJacHKUX KOJIMBalb Jinifnol KoJimeioi cuereiu, 36ypenol abo
LWUIBHIKMM™ mpoliecoM Mapkoga, a60 2K MaJiuM BillePOBHM MPOIECOM, MOXKIIA ACHMITTOTHYHO ONMUCATH
nHdysifHHM MpOIIecoM, I'elIEPATOP AKOI'0 06YHCIIIOETBCA.

mn

1. Introduction. A linear oscillating system in R™ is a system with the potential

energy of the form

Ux) = 2(Axx), xeR", (1)
where A is a non-negative symmetric matrix. The kinetic energy of the system is
T(v) = %(u, v, veR™ @)
The motion of the system is determined by the system of differential equations
i X =D
dt '
3)
E’-u = —Ax.
dt
Let {e,...,¢e,} be the basis formed by eigenvectors of the matrix A.- Set
X = (x, ), 7&%‘ = (Ae,e), k=1,...,m.
Then the system (2) can be rewritten in the form
& 2 0p Fel 4
E:“é'xk(f)‘f' kxk(f) = U, i M ( )
So
xk(t) = ﬂksin 7\rk(t + (Pk),
)
V(1) = Apapeos A (+ @), k=1,...,m,
where ay, @4 k=1,...,m, are determined by initial values x(0), v (0). The

functions represented by formulas (5) are called the eigen oscillations of the system.
A randomly perturbed linear oscillating system is defined as the solution to the
system of differential equations

£ 5,0) = veo),
©
Liog ) = ~Axet) + Fleu 1, 50),ve(0), ©),

where
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We assume that random perturbations are defined on a probability space {Q, F, P}
and that

I3
lim _f F(e, s x,v,0)dt =0
s—)OO

and probability for all #> 0. We consider two particular cases.
A. Fast Markov perturbation. We assume that

F(e, t,x;1, 0) = f[x,v,y(é],m),

where f: R"xR™xY — R™ and (¥, C) is a measurable space, y(f, ®) is a
homogeneous Markov process in (¥, C), this process is ergodic with an ergodic
distribution p (dy), satisfying the following strong mixing condition:

sup [ var (P(t,y,-) = p(-))dt < e,
Y o
where P(¢,y,-) is the transition probability of the Markov process, and var (-) is a
variation of the signed measure under consideration. We suppose that the function
f(x,v,y) is bounded, measurable in y, twice differentiable in x, v with bounded
derivatives, and the relation

J’f(x,u,y)p(dy) =0, xeR™ veR™ @

is fulfilled.
B. Small Wiener perturbation. We assume that

F(e,t, %5 ®) = \/Em,v);ﬁ;w(z),

here F(x,v) is a twice differentiable L (R™)-valued function which is bounded with

its derivatives, and w(t) is the Wiener process in R™. In this case the second equation
of system (6) should be rewritten as a stochastic differential equation.

Differential equations with random functions containing a small parameter were
studied first by R. Z. Khasminskii [1—3]. The problems considered in the article are
related to diffusion approximation for randomly perturbed differential equations.
Under various conditions the problems of such a kind were studied by R. Z. Khas-
minskii [3], G. C. Papanicolaou, D. Stroock, and S. R. S. Varadhan [4] , A. V. Skoro-
khod [5], M. L Freidlin and A. D. Wentzell [6].

2. Asymptotic properties of unperturbed systems. We need results concerning
the behaviour of averaged values of functions of phase variables along the trajectories
of the system. Let x(z), v (#) be a solution to system (3). For a function ® e

e C(R™xR™) denote:
y _
A(@;x(0),0(0) = = [ D(x(®),v()dr. ®)
) |

Theorem 1. A limit exists
Jim A7 (®;2(0),0(0) = A(®;x(0),v(0)), ©)

" where the function A: C(R™ XR™)X R™ xR™ — R is a non-negative linear -
SJunction in ®, and it is determined by the relation
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" A(®; (a;co80,; ... ; @, c0s0,,), (Aja;sinb;;...;-Apa,sinb,,) =
5,...5 syl 2ns)! - :
= EES"_ i i BB 55.05 4 B3 VO itis s Ops )V elry v,
(10)

where the vectors X, Y are determined by their coordinates:

r
Xk(SI,sl,...,B,.,.fr)= a COS[ZH@-SJSJ +9kJ,
: j=1 .

r
Vk(ﬁl, SR 5,., S.F‘) = —Kk aksin[z rlkjﬁjsj + Bk],
=

here r is the dimension of the linear span L(A,...,A,) of Ay, k=1,...,m,
over the ring Z, the positive numbers 8;, j =1,...,r, are formed a basis in
LNy, ..oshy,), and

&
j\’k: zn;g-ﬁj, ukj(:' Z, k=1,‘..,m, j=1,...,r.
j=1
The proof of the theorem can be obtained from formula (5).
Remark 1. 1t is easy to see that 6, = A, ¢,. Formula (10) implies that

A(®;x0),v(0) = A@:;ap e, Gy @3 = Ppyeees P = )+ (11)

where x(0), v(0) are determined by formula (5) with ¢ =0, the function A(®;-)
from R x[—2m, 2r)™ ! into'R is expressed through A (% ;-) in a natural way.
Remark 2. Let

q)(xs I)) = (I)l ('rls L rm)(DZ(wl’ »\le

where
Xp = rpCosVy, . U = —Apnsinyg,, k=1,...,m,
and ' '
ree R, e [0,2m), k=1,...,m.
Then '

A®;aes 8y G2 = Ppy ot P = @) =

P> -1 1) f‘i(l»---»l’ P2—Pp- s P =P
3. Fast Markov perturbations. We consider the stochastic process (x.(t);
vg(t)) for which x¢(#) and vg(t) satisfy the system of differential equations

d
Exg(r) b vl?,(r))

| (12
L g ®) = -Axet) + F(el1), ve(0) ¥e(0),

and yg(f) = y[ij, where the stochastic process y(¢) satisfies condition A of
€

Section 1. We assume that x.(0) = x(0), v,(0) = v(0) are non-random. We will
use some results related to the Markov process y(?) and the solutions to system (12).
Denote : :
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R(y,C) = [ (Pt C) - p(C))dt (13)
0

and set
Rg(y) = [ e R, dy") 14

for any measurable bounded function g: ¥Y— R.
Lemma 1. Let A be the generator of the process y(t):

i
A = lim = (E, -
g0) = lim - (Byg(y(m) — () (15)
which is defined on all measurable bounded function g(y) for which
~(Byg ) - g

is bounded and the limit in the right-hand side of relation (15) exists, E, is the

conditional expectation under the condition y(0) = y.
Then for any measurable bounded function g(y) satisfying the condition

[ eO)p@y) =

we have
ARg() = —g(¥). (16)
The proof is obtained by calculation.
Lemma 2. Let a measurable bounded function @ (y) satisfies the condition

[ otIp(@y) =

Then the stochastic process

T =
Er(t) = :f% i o (y(0) dt (17

converges weakly to the Wiener process E(t) for which

EE(t) =0, EE ()= 2t[ [ G)Ro()p(dy).

The proof can be derived from the general theorem on converge.nce: to a diffusion
process ([4, p. 78], theorem 1).

Corollary 1. The stochastic process y (t) satisfying condition A of Section 1 is
uniformly ergodic, i.e. for any measurable bounded function g(y) the following
relation is fulfilled

T 2 '
Jim s E.(ij g(y@)dt— | g(y)p(dy)] = 0. (18)

In the next theorem the results on averaging and normal deviations whxch can be
derived from [1, 3, 4], Sec. 2.5, are formulated for system (12).

Theorem 2. Let (x.(t);v(t)) be the solution to system (12), the function
f(x,v,y) is bounded continuous in x, v and had bounded continuous in x, v
derivatives

(0.9, Hl503),
Ll vy Sl vd)s Joul®i0s0D;
and let (x(t);v(t)) be the solution to system (3) satisfying the same inirz'al.
conditions. Then
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(i) for any T>0 with probability 1 the relation

lim sup (|xg (®) = x(@)| + [ve (¢) = v(@®]) = 0 (19)
e=0,<T
is fulfilled:
(i) set
i 1
@ = =0 -x@),
ve (20)
Be () = ﬁ(vg(r) — v(®),

as € — O the stochastic process (X (f);Dg (t)) converges weakly to the stochastic
process (%(t); () satisfying the system of stochastic differential equations
dx() = v(t)dt,
(21)
do(t) = —Ax(t)dt + dz(t)
with the initial condition x(0) = $(0) = 0, where z(t) is the Gaussian process
with independent increments with Ez(t) = 0, and

I3
E(z(t),uw)* = [ [ [ (f(x(),0(), ), 8)(F (x(5), v(5), ¥"), ) Ry, dY') p(dy) dis
0 .

forall ue R™,
Now we consider the composite stochastic process

Xs(r) = (xa(r); Ug(r);ye(r))

in the space (R™)*x Y, here (x4(t); v¢(t)) is the solution to system (12). It is easy
to see that X (¢) is a homogeneous Markov process, and its generator is of the form

Heg(x,0,y) = Hg(xv,y) + éAg(x, %), 22)
where
Hg(x,0,) = (v, g:(x, 0, 7)) — (Ax, g,(x, 1, 7)) + (F(x, 0, 7), g(*, 1, 7))
(23)

and A is the generator of the process y(¢) which is acting on g as a function of y.
The operator H, is defined on the functions g: (R™Y X Y — R satisfying the

condition (H):
a) g(x,v,y), g.(x,v,5), g,(x,v,y) are measurable bounded function continuous

in x, v uniformly with respect to y,
b) the limit

lim % (Eyg(x,v, y() = g(x,v, %)

exists locally uniformly in x, v.
Denote by E, , , the conditional expectation under the condition

xe(0) = x, ve(0) = v, ye(0) =y.
For any function g satisfying condition () the following formula is valid
t
: Ex,v‘yg(xa(t)n Ua(t)s ye(t)) - glx,v,y) = Ex,p,y _[ Hgf(xe (s), Vg (s), Ye ('5')) ds.
0
(24)
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ON RANDOMLY PERTURBED LINEAR OSCILLATTING MECHANICAL SYSTEMS 1299
Denote by F° the c-algebra generated by { X (s), s<t}.
Lemma 3. Let g satisfy condition (H) and J gx,v,y)p(dy) = 0. Set
G(x,vy) = [ gtxv,y) RO, dy). 25)

Then for t; <t, the relation

L]
E[J g(xa(s),vg(r),yecs))ds|9:fJ =

]

= EE[G(xe(tl):Ue(tI): ya(rl)) = G(xg(r?.)sve(tz)> )’a(tz)) =+

fy
+ [ HOG(3e(5), 06 (5), ¥ () ds | ,f} (26)
h

is valid.
The proof follows from formulas (16), (22), (24).

Corollary 2. Let g satisfy condition (H). Then for t, <t, we have

)
E[J‘ g (e (5), v (1), ¥ (5)) ds ,f} =
h

)
= E(I f 8(xg (8, ¢ (), ¥) p(dy) ds [ %f] + 0+ (t,—1)). 27)
h

To prove this we apply Lemma 3 to the function
Env,y) = gnv,)) - [ g, y)p(dy).

Denote by v
{xs k=1 0smYy LV E=Towym}

the coordinates of the vectors xg, vg. Set
70 = Npxg (6) + v (@), '- (28)
Let {@f k=1,...,m} be determined by relation

xep(t) = (M) 4 25 () cosh, B2 (8), :
(29)

ver(r) = = zf () sinke 65 ().
Set . B -
85 = 651 — 65 (D), k=2,...,m. @0
Lemma 4. The stochastic process zg(t), k=1,...,m, and 05(t), k =2, ...
.., m, satisfy the system of differential equations _
L2 = filze v o), k=L, &)
gy = Fel6) £ (0,06 @, e @) _
dr * 228 (f) -
_ Xy () fr (xa (?, ve (), Ye (L‘)) R T (32)
2z, (®) : .
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1300 i - A.V.SKOROKHOD

The proof follows from formulas (28) — (30).
Consider the compound stochastic process

(2% 8°() = [z[é]e[g)] BRE)

in the space R™xR™ !, where
250 = (@, 70 @),

0%(r) = (85(n),..., 05, (9)).

‘We will prove that the stochastic process given by formula (33) converges weakly in C
to a diffusion process. For the description of this process and the proof of the statement
we need some notation. Let

R e BY, BB, )y U B el
We introduce new variables
Zp = %?;tx,% + ‘U%, k=1,...,m,
and .
0,= 6, — 6, k=2,...,m,
where '

-1 =
X = Ap +f 7, coshy 0,

Vp = —4/Z Sinlk ék .
Denote by B(x,v) a (m—1)xm matrix with elements which are determined by the
relations:

1( x Xi i ,
bi;(x,v) = =| =13 — L1r:2n |, =1,....m, j=2,..,m
;J'( ) 2(21 {i=1} Z {J_‘}J I m, J
Let '

e = [ [ AunfEoy) RO p@). @4

Denote
a(x,v) = [ [ £,0,5) (50,5 RO, d)pd), (35)

and let the vector b(x,v) be determined by its coordinates
bk(x,v) = E&'I;_k-fh‘ﬁc(xl.v)_f'lzﬂ.ﬁ[(xav)l k=2""sm- (36)
2y ]

Note that the following formulas are valid for the Jacobians:

Dz oy, 20 uaptew),
Dv Dv .

where the elements of the matrix V are given by the relation v ; =v ilii=j3-

Introduce the matrices £ (x,v) with elements f‘,j (x,v) and
C*(x,v) = 2VE*(x,v),  C*®x,v) = 2B(xv) F*(xv),
C%@,v) = 2VE* (5, 0) B* (5v),  C%°(x,v) = B(xv) F*(x,v) B* (x,v).

Let the vectors &(z, 0) , b(z 6) and matrices
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ON RANDOMLY PERTURBED LINEAR OSCILLATTING MECHANICAL SYSTEMS 1301

E=(0), €90y, -C%(z0), €%(0)
are A -transformations of the vectors a(x,v), b(x,v) and matrices

™), 0w CPEmy A
for example

&' (Zy e) o A(aj;Z]}“u zm: 82:--'! em) 3

where the function A was introduced in Remark 1. Denote by L?® the dIfferentlal
operator which is deteimined for ® € C*)(R™xR™ ) by the relation '

L¥®(z,0) = (®,(20),d(z ) + (Py(z 0), b(z, 0)) +
+ Tr®y (2, 0) 6% (2,0) + Tr @y (2, 0) (C% (2, 0))* +
+ Tr @4, (2, 0) (C? (2, 0))" + Tx Bog (5, 0) CP (2, 0))- (37)

Theorem 3. The compound stochastic process (zZ°(t); éa(t)) converges weakly

in C as € — 0 to the diffusion process (z(D; 0(1‘)) in the same space with the
initial value (z9; 69), where

7% = E(5(0),v4(0)), k=1,...,m
of = of — o), k=2,...m

and the generat&r L*® which is determined by formula (37).
Proof. We will use Theorem 1 on [4,p. 78]. We have to prove the relation

.[(D(ZE (718,057 1) — P(B (e hy), 0%(e7 1)) ~

9-:1“':1}

for #, <t,. To prove this we use. the following sequence of relations

E(®(° (1), 6° (1)) — B (2 (1), 0% () | %¢) =
B
= {J‘ li(@ (Z (5) 68(5')) dZ (S)J [q’e(f’«' (S) ea(s)) dz (S)J]ds

i

lim E|E
g—0

% f 17 (7% (5), 8% (5)) ds =0 (38)
4 . !

| _
f -

Iy
= E(J. (@, (2% (), 8% (s)) +

f

+ B (% (), De(“')) ‘DB(Z (5), 8% (), f(xs(-’),us(-s') J’s(s)) dﬁ'lﬁ)

Applying to thc last integral Lemmas 4, 3, and Corollary 2 we can obtain the realtion
E(®(5 (1), 05 (1) - D5 (1), 05 (1) | ) =

= 0(e*(t, — 1 + D) + -eE-[ [ [(@;. a0 9, 5 52) +

Y-
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1302 ' A.V. SKOROKHOD

+ {‘DG s b(s:a (), v (-5'))) + Tr q)zz (sz (xs (5), ve (-5')))‘ ot
+ Tr Py, (C*° (g (5), v (1)) + Tr P, (CO (¢ (5), v (6)))" +

+ Tr gy (C% (xg (5), v (5)))"] ds

ﬁ] . (39)

In this formula the derivatives of the function @ have as their arguments the functions
z%(s), 0%(s). It follows from statement (i) of Theorem 2 that for any continuous

bounded functions G: R™xXR™ — R and ¥: R™xR™™ — R the formula is
fulfilled: '

lim eE
g—0

e~y -
E{ | ¥ 6),6°) x
€ty

f

X [Gxe (), 9 () — G(2°(s), 0% ()] ds

f]} =0, “0)

where
G(2,0) = A(G;21.er Zs 0200-0r 0 -
Formulas (39) and (40) implies the relation

)
E{@(Ea(m,é%ﬁ)) — (28 (1), 8° (1) - [ 20 (2°(s), 8°(s)) ds 9‘}?} =

= 0(e) + a(e), (41)
where

algnom(a) = 0.
Formula (41) implies formula (38), so the theorem is proved.

4. Wiener perturbations. We consider the functions x.(#), v¢(¢) satisfying the
system of stochastic differential equations:

dx(t) = v(t)dt,
(42)

, dve(t) = —Axe (1) + \EF(xe (1), ve () dw(®),
where the function
F: R™xR™ — L(R™)
is bounded and smooth enough, and w(t) is R™-valed Wiener process. _Let the
stochastic processes z°(s), 6%(s) are determined by formulas (28)—(30), where

x¢(t), ve(t) satisfy the system (42).
Lemma 5. The functions

£0), k=l..,m,
9?(0, 3‘32’--- » m,

satisfy the system of stochastic differential equations
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ON RANDOMLY PERTURBED LINEAR OSCILLATTING MECHANICAL SYSTEMS 1303

dzf (1) = B Y, oy (xe (1), ve (1)) dw; (1) + By (% (1), ve () dt,
. i

de; (1) = & D, ¥y (e (1), ve (9) dw; (1) + €8, (xe (1), ve (9) df, (43)
where J
ay (@) = 20, Fg(nv),  Bi(av) = 2v, 3, By (xv) (44)
and :
Yy(xv) = B =L Fy (%, )_j—; Fy(x,v),
(45)

8 (x,v) = Z[ R, v)~z— e v)]
j 1

I i
and Fy; are the elements of the matrix F.

The proof is obtained by calculation.
Theorem 4. The compound stochastic process

EE®:8°(@) = [za (é);es (i)]

converges weakly in C as € — 0 to the same diffusion process (z(£);0(t)) as in
Theorem 3 for which

&k (z: e) A(Bk;zl;; z;n} 92:-"; 9;;1)!
Bi(2,0) = AG;iz1s. o 2y 02ee0r 0,)

ééz(z: e) = AA(E akjajj;zf:'; zm: 92:"': en:J;
J
ékzia(z: 0) = éfiz(z: 6) = AA(E akj'ﬁﬁZlvu,zm:ez;---,.emJ,
J

G*.'?B (z,0) = A[; Yiks Zoeeos Zms 0250y em] .
The proof of the theorem follows from the It&’s formula and the Theorem 1.
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