A. V. Skorokhod (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv, and Michigan State Univ., USA)

ON RANDOMLY PERTURBED LINEAR OSCILLATING MECHANICAL SYSTEMS

ПРО ВИПАДКОВО ЗБУРЕНІ ЛИНІЙНІ КОЛИВНІ МЕХАНІЧНІ СИСТЕМИ

We prove that the amplitudes and the phases of eigen oscillations of a linear oscillating system perturbed by either a fast Markov process or a small Wiener process can be described asymptotically as a diffusion process whose generator is calculated.

Доведено, що амплітуди і фази власних коливань лінійної коливної системи, збуреної або "швидким" процесом Маркова, або ж малим вінеровим процесом, можна асимптотично описати дифузійним процесом, генератор якого обчислюється.

1. Introduction. A linear oscillating system in R^m is a system with the potential energy of the form

$$U(x) = \frac{1}{2} (\Lambda x, x), \quad x \in \mathbb{R}^m, \tag{1}$$

where Λ is a non-negative symmetric matrix. The kinetic energy of the system is

$$T(v) = \frac{1}{2}(v, v), \quad v \in \mathbb{R}^m. \tag{2}$$

The motion of the system is determined by the system of differential equations

$$\frac{d}{dt}x = v,$$

$$\frac{d}{dt}v = -\Lambda x.$$
(3)

Let $\{e_1, \ldots, e_m\}$ be the basis formed by eigenvectors of the matrix Λ . Set

$$x_k = (x, e_k), \quad \lambda_k^2 = (\Lambda e_k, e_k), \quad k = 1, ..., m.$$

Then the system (2) can be rewritten in the form

$$\frac{d^2}{dt^2} x_k(t) + \lambda_k^2 x_k(t) = 0, \quad k = 1, \dots, m.$$
 (4)

So

$$x_k(t) = a_k \sin \lambda_k (t + \varphi_k),$$

$$v_k(t) = \lambda_k a_k \cos \lambda_k (t + \varphi_k), \quad k = 1, \dots, m,$$
(5)

where a_k , φ_k , k = 1, ..., m, are determined by initial values x(0), v(0). The functions represented by formulas (5) are called the eigen oscillations of the system.

A randomly perturbed linear oscillating system is defined as the solution to the system of differential equations

$$\frac{d}{dt}x_{\epsilon}(t) = v_{\epsilon}(t),$$

$$\frac{d}{dt}v_{\epsilon}(t) = -\Lambda x_{\epsilon}(t) + F(\epsilon, t, x_{\epsilon}(t), v_{\epsilon}(t), \omega),$$
(6)

where

$$F: R_+ \times R_+ \times R^m \times R^m \times \Omega \to R^m$$

We assume that random perturbations are defined on a probability space $\{\Omega, \mathcal{F}, P\}$ and that

$$\lim_{\varepsilon \to 0} \int_{0}^{t} F(\varepsilon, s, x, v, \omega) dt = 0$$

and probability for all t > 0. We consider two particular cases.

A. Fast Markov perturbation. We assume that

$$F(\varepsilon,t,x,v,\omega) = f\left(x,v,y\left(\frac{t}{\varepsilon}\right),\omega\right),$$

where $f: R^m \times R^m \times Y \to R^m$ and (Y, C) is a measurable space, $y(t, \omega)$ is a homogeneous Markov process in (Y, C), this process is ergodic with an ergodic distribution $\rho(dy)$, satisfying the following strong mixing condition:

$$\sup_{y} \int_{0}^{\infty} \operatorname{var}(P(t, y, \cdot) - \rho(\cdot)) dt < \infty,$$

where $P(t, y, \cdot)$ is the transition probability of the Markov process, and $\text{var}(\cdot)$ is a variation of the signed measure under consideration. We suppose that the function f(x, v, y) is bounded, measurable in y, twice differentiable in x, v with bounded derivatives, and the relation

$$\int f(x, v, y) \rho(dy) = 0, \quad x \in \mathbb{R}^m, \quad v \in \mathbb{R}^m,$$
 (7)

is fulfilled.

B. Small Wiener perturbation. We assume that

$$F(\varepsilon, t, x, v, \omega) = \sqrt{\varepsilon} F(x, v) \frac{d}{dt} w(t),$$

here F(x, v) is a twice differentiable $L(R^m)$ -valued function which is bounded with its derivatives, and w(t) is the Wiener process in R^m . In this case the second equation of system (6) should be rewritten as a stochastic differential equation.

Differential equations with random functions containing a small parameter were studied first by R. Z. Khasminskii [1-3]. The problems considered in the article are related to diffusion approximation for randomly perturbed differential equations. Under various conditions the problems of such a kind were studied by R. Z. Khasminskii [3], G. C. Papanicolaou, D. Stroock, and S. R. S. Varadhan [4], A. V. Skorokhod [5], M. I. Freidlin and A. D. Wentzell [6].

2. Asymptotic properties of unperturbed systems. We need results concerning the behaviour of averaged values of functions of phase variables along the trajectories of the system. Let x(t), v(t) be a solution to system (3). For a function $\Phi \in C(R^m \times R^m)$ denote:

$$A_{T}(\Phi; x(0), v(0)) = \frac{1}{T} \int_{0}^{T} \Phi(x(t), v(t)) dt.$$
 (8)

Theorem 1. A limit exists

$$\lim_{T \to \infty} A_T(\Phi; x(0), v(0)) = A(\Phi; x(0), v(0)), \tag{9}$$

where the function $A: C(R^m \times R^m) \times R^m \times R^m \to R$ is a non-negative linear function in Φ , and it is determined by the relation

ISSN 0041-6053. Укр. мат. журн., 2000, т. 52, № 9

$$A(\Phi; (a_{1}\cos\theta_{1}; ...; a_{m}\cos\theta_{m}), (-\lambda_{1}a_{1}\sin\theta_{1}; ...; -\lambda_{m}a_{m}\sin\theta_{m})) =$$

$$= \frac{\delta_{1}...\delta_{r}}{(2\pi)^{r}} \int_{0}^{2\pi\delta_{1}^{-1}} ... \int_{0}^{2\pi\delta_{r}^{-1}} \Phi(X(\delta_{1}, s_{1}, ..., \delta_{r}, s_{r}), V(\delta_{1}, s_{1}, ..., \delta_{r}, s_{r})) ds_{1}...ds_{r},$$
(10)

where the vectors X, Y are determined by their coordinates:

$$X_k(\delta_1, s_1, \dots, \delta_r, s_r) = a_k \cos \left(\sum_{j=1}^r n_{kj} \delta_j s_j + \theta_k \right),$$

$$V_k(\delta_1, s_1, \dots, \delta_r, s_r) = -\lambda_k a_k \sin \left(\sum_{j=1}^r n_{kj} \delta_j s_j + \theta_k \right),$$

here r is the dimension of the linear span $\mathcal{L}(\lambda_1,\ldots,\lambda_m)$ of λ_k , $k=1,\ldots,m$, over the ring \mathcal{Z} , the positive numbers δ_j , $j=1,\ldots,r$, are formed a basis in $\mathcal{L}(\lambda_1,\ldots,\lambda_m)$, and

$$\lambda_k = \sum_{i=1}^r n_{kj} \, \delta_j, \quad n_{kj} \in \mathbb{Z}, \quad k = 1, \dots, m, \quad j = 1, \dots, r.$$

The proof of the theorem can be obtained from formula (5).

Remark 1. It is easy to see that $\theta_k = \lambda_k \varphi_k$. Formula (10) implies that

$$A(\Phi; x(0), v(0)) = \hat{A}(\hat{\Phi}; a_1, \dots, a_m, \varphi_2 - \varphi_1, \dots, \varphi_m - \varphi_1),$$
(11)

where x(0), v(0) are determined by formula (5) with t = 0, the function $\hat{A}(\hat{\Phi}; \cdot)$ from $R_+^m \times [-2\pi, 2\pi]^{m-1}$ into R is expressed through $A(\Phi; \cdot)$ in a natural way.

Remark 2. Let

$$\Phi(x,v) = \Phi_1(r_1,\ldots,r_m)\Phi_2(\psi_1,\ldots,\psi_m),$$

where

$$x_k = r_k \cos \psi_k$$
, $v_k = -\lambda_k r_k \sin \psi_k$, $k = 1, ..., m$,

and

$$r_k \in R_+, \quad \psi_k \in [0, 2\pi), \quad k = 1, \dots, m.$$

Then

$$\begin{split} \hat{A}(\Phi; \, a_1, \, \dots, \, a_m, \, \varphi_2 - \varphi_1, \, \dots, \, \varphi_m - \varphi_1) \; = \\ & = \; \Phi(r_1, \, \dots, \, r_m) \, \hat{A}(1, \, \dots, \, 1, \, \varphi_2 - \varphi_1, \, \dots, \, \varphi_m - \varphi_1) \; . \end{split}$$

3. Fast Markov perturbations. We consider the stochastic process $(x_{\varepsilon}(t))$ for which $x_{\varepsilon}(t)$ and $v_{\varepsilon}(t)$ satisfy the system of differential equations

$$\frac{d}{dt}x_{\varepsilon}(t) = v_{\varepsilon}(t),$$

$$\frac{d}{dt}v_{\varepsilon}(t) = -\Lambda x_{\varepsilon}(t) + f(x_{\varepsilon}(t), v_{\varepsilon}(t), y_{\varepsilon}(t)),$$
(12)

and $y_{\epsilon}(t) = y\left(\frac{t}{\epsilon}\right)$, where the stochastic process y(t) satisfies condition A of Section 1. We assume that $x_{\epsilon}(0) = x(0)$, $v_{\epsilon}(0) = v(0)$ are non-random. We will use some results related to the Markov process y(t) and the solutions to system (12). Denote

$$R(y,C) = \int_{0}^{\infty} (P(t,y,C) - \rho(C)) dt$$
 (13)

and set

$$Rg(y) = \int g(y') R(y, dy')$$
 (14)

for any measurable bounded function $g: Y \rightarrow R$.

Lemma 1. Let A be the generator of the process y(t):

$$Ag(y) = \lim_{h \to 0} \frac{1}{h} (E_y g(y(h)) - g(y))$$
 (15)

which is defined on all measurable bounded function g(y) for which

$$\frac{1}{h} (E_{y} g(y(h)) - g(y))$$

is bounded and the limit in the right-hand side of relation (15) exists, E_y is the conditional expectation under the condition y(0) = y.

Then for any measurable bounded function g(y) satisfying the condition

$$\int g(y) \rho(dy) = 0$$

we have

$$ARg(y) = -g(y). (16)$$

The proof is obtained by calculation.

Lemma 2. Let a measurable bounded function $\varphi(y)$ satisfies the condition

$$\int \varphi(y) \rho(dy) = 0.$$

Then the stochastic process

$$\xi_T(t) = \frac{1}{\sqrt{T}} \int_0^{tT} \varphi(y(t)) dt$$
 (17)

converges weakly to the Wiener process $\xi(t)$ for which

$$E\xi(t) = 0$$
, $E\xi^{2}(t) = 2t \int \int \varphi(y) R\varphi(y) \rho(dy)$.

The proof can be derived from the general theorem on convergence to a diffusion process ([4, p. 78], theorem 1).

Corollary 1. The stochastic process y(t) satisfying condition A of Section 1 is uniformly ergodic, i.e. for any measurable bounded function g(y) the following relation is fulfilled

$$\lim_{T \to \infty} \sup_{y} E_{y} \left(\frac{1}{T} \int_{0}^{T} g(y(t)) dt - \int g(y) \rho(dy) \right)^{2} = 0.$$
 (18)

In the next theorem the results on averaging and normal deviations which can be derived from [1, 3, 4], Sec. 2.5, are formulated for system (12).

Theorem 2. Let $(x_{\varepsilon}(t); v_{\varepsilon}(t))$ be the solution to system (12), the function f(x, v, y) is bounded continuous in x, v and had bounded continuous in x, v derivatives

$$f_{x}(x, v, y), \quad f_{v}(x, v, y),$$

$$f_{xx}(x, v, y), \quad f_{xv}(x, v, y), \quad f_{vv}(x, v, y),$$

and let (x(t); v(t)) be the solution to system (3) satisfying the same initial conditions. Then

(i) for any T > 0 with probability 1 the relation

$$\lim_{\varepsilon \to 0} \sup_{t \le T} \left(\left| x_{\varepsilon}(t) - x(t) \right| + \left| v_{\varepsilon}(t) - v(t) \right| \right) = 0 \tag{19}$$

is fulfilled;

(ii) set

$$\hat{x}_{\varepsilon}(t) = \frac{1}{\sqrt{\varepsilon}} (x_{\varepsilon}(t) - x(t)),$$

$$\hat{v}_{\varepsilon}(t) = \frac{1}{\sqrt{\varepsilon}} (v_{\varepsilon}(t) - v(t)),$$
(20)

as $\varepsilon \to 0$ the stochastic process $(\hat{x}_{\varepsilon}(t); \hat{v}_{\varepsilon}(t))$ converges weakly to the stochastic process $(\hat{x}(t); \hat{v}(t))$ satisfying the system of stochastic differential equations

$$d\hat{x}(t) = \hat{v}(t) dt,$$

$$d\hat{v}(t) = -\Lambda \hat{x}(t) dt + dz(t)$$
(21)

with the initial condition $\hat{x}(0) = \hat{v}(0) = 0$, where z(t) is the Gaussian process with independent increments with Ez(t) = 0, and

$$E(z(t), u)^{2} = \int_{0}^{t} \int \int (f(x(s), v(s), y), u)(f(x(s), v(s), y'), u) R(y, dy') \rho(dy) ds$$

for all $u \in \mathbb{R}^m$.

Now we consider the composite stochastic process

$$X_{\varepsilon}(t) = \left(x_{\varepsilon}(t); v_{\varepsilon}(t); y_{\varepsilon}(t)\right)$$

in the space $(R^m)^2 \times Y$, here $(x_{\varepsilon}(t); v_{\varepsilon}(t))$ is the solution to system (12). It is easy to see that $X_{\varepsilon}(t)$ is a homogeneous Markov process, and its generator is of the form

$$H_{\varepsilon}g(x, v, y) = H^{0}g(x, v, y) + \frac{1}{\varepsilon}Ag(x, v, y),$$
 (22)

where

$$H^{0}g(x, v, y) = (v, g_{x}(x, v, y)) - (\Lambda x, g_{v}(x, v, y)) + (f(x, v, y), g_{v}(x, v, y))$$
(23)

and A is the generator of the process y(t) which is acting on g as a function of y. The operator H_{ϵ} is defined on the functions $g:(R^m)^2\times Y\to R$ satisfying the condition (\mathcal{H}) :

- a) g(x, v, y), $g_x(x, v, y)$, $g_v(x, v, y)$ are measurable bounded function continuous in x, v uniformly with respect to y,
 - b) the limit

$$\lim_{h\downarrow 0}\frac{1}{h}\left(E_{y}g(x,v,y(h))-g(x,v,y)\right)$$

exists locally uniformly in x, v.

Denote by $E_{x,v,y}$ the conditional expectation under the condition

$$x_{\varepsilon}(0) = x$$
, $v_{\varepsilon}(0) = v$, $y_{\varepsilon}(0) = y$.

For any function g satisfying condition (\mathcal{H}) the following formula is valid

$$E_{x,v,y}g(x_{\varepsilon}(t),v_{\varepsilon}(t),y_{\varepsilon}(t)) - g(x,v,y) = E_{x,v,y} \int_{0}^{t} H_{\varepsilon}f(x_{\varepsilon}(s),v_{\varepsilon}(s),y_{\varepsilon}(s)) ds.$$

$$(24)$$

(25)

(26)

(27)

(28)

(29)

(32)

Denote by $\mathcal{F}_{t}^{\varepsilon}$ the σ -algebra generated by $\{X_{\varepsilon}(s), s \leq t\}$.

Lemma 3. Let g satisfy condition (\mathcal{H}) and $\int g(x, v, y) \rho(dy) = 0$. Set

$$G(x, v, y) = \int g(x, v, y') R(y, dy').$$

Then for $t_1 \le t_2$ the relation

$$E\left(\int_{t_{1}}^{t_{2}} g(x_{\varepsilon}(s), v_{\varepsilon}(t), y_{\varepsilon}(s)) ds \mid \mathcal{F}_{t_{1}}^{\varepsilon}\right) =$$

$$= \varepsilon E\left(G(x_{\varepsilon}(t_{1}), v_{\varepsilon}(t_{1}), y_{\varepsilon}(t_{1})) - G(x_{\varepsilon}(t_{2}), v_{\varepsilon}(t_{2}), y_{\varepsilon}(t_{2})) + \int_{t_{1}}^{t_{2}} H^{0} G(x_{\varepsilon}(s), v_{\varepsilon}(s), y_{\varepsilon}(s)) ds \mid \mathcal{F}_{t_{1}}^{\varepsilon}\right)$$

is valid.

The proof follows from formulas (16), (22), (24).

Corollary 2. Let g satisfy condition (H). Then for $t_1 < t_2$ we have

$$E\left(\int_{t_1}^{t_2} g(x_{\varepsilon}(s), v_{\varepsilon}(t), y_{\varepsilon}(s)) ds \mid \mathcal{F}_{t_1}^{\varepsilon}\right) =$$

 $= E\left[\int_{1}^{t_2} \int g(x_{\varepsilon}(s), v_{\varepsilon}(s), y) \rho(dy) ds \mid \mathcal{F}_{t_1}^{\varepsilon}\right] + O(\varepsilon(1 + (t_2 - t_1))).$

$$\hat{g}(x, v, y) = g(x, v, y) - \int g(x, v, y) \rho(dy).$$

Denote by $\{x_{\varepsilon k}, k=1,\ldots,m\}, \{v_{\varepsilon k}, k=1,\ldots,m\}$

the coordinates of the vectors x_g , v_g . Set

$$z_k^{\varepsilon}(t) = \lambda_k^2 x_{\varepsilon k}^2(t) + v_{\varepsilon k}^2(t).$$

Let $\{\hat{\theta}_k^{\epsilon}, k=1,..., m\}$ be determined by relation

$$x_{ek}(t) = (\lambda_k)^{-1} \sqrt{z_k^{\varepsilon}(t)} \cos \lambda_k \, \hat{\theta}_k^{\varepsilon}(t),$$

$$v_{\varepsilon k}(t) = -\sqrt{z_k^{\varepsilon}(t)} \sin \lambda_k \, \hat{\theta}_k^{\varepsilon}(t)$$
.

Set

$$\theta_k^{\varepsilon}(t) = \hat{\theta}_k^{\varepsilon}(t) - \hat{\theta}_1^{\varepsilon}(t), \quad k = 2, ..., m.$$
(30)

Lemma 4. The stochastic process $z_k^{\varepsilon}(t)$, k = 1, ..., m, and $\theta_k^{\varepsilon}(t)$, k = 2, ...

...,
$$m$$
, satisfy the system of differential equations
$$\frac{d}{dt} z_k^{\varepsilon}(t) = f_k(x_{\varepsilon}(t), v_{\varepsilon}(t), y_{\varepsilon}(t)), \quad k = 1, ..., m, \tag{31}$$

$$\frac{d}{dt} \theta_k^{\varepsilon}(t) = \frac{x_{\varepsilon I}(s) f_1(x_{\varepsilon}(t), v_{\varepsilon}(t), y_{\varepsilon}(t))}{2 z_1^{\varepsilon}(t)} -$$

$$\frac{d}{dt} \theta_k^{\varepsilon}(t) = \frac{x_{\varepsilon 1}(s) f_1(x_{\varepsilon}(t), v_{\varepsilon}(t), v_{\varepsilon}(t))}{2z_1^{\varepsilon}(t)} - \frac{x_{\varepsilon k}(s) f_k(x_{\varepsilon}(t), v_{\varepsilon}(t), v_{\varepsilon}(t))}{2z_{\varepsilon}^{\varepsilon}(t)}, \quad k = 2, \dots, m.$$

The proof follows from formulas (28) - (30). Consider the compound stochastic process

$$\left(\tilde{z}^{\,\varepsilon}(t); \tilde{\theta}^{\,\varepsilon}(t)\right) = \left(z^{\,\varepsilon}\left(\frac{t}{\varepsilon}\right); \theta^{\,\varepsilon}\left(\frac{t}{\varepsilon}\right)\right) \tag{33}$$

in the space $R^m \times R^{m-1}$, where

$$z^{\varepsilon}(t) = (z_1^{\varepsilon}(t), \dots, z_m^{\varepsilon}(t)),$$

$$\theta^{\varepsilon}(t) = (\theta_2^{\varepsilon}(t), \dots, \theta_m^{\varepsilon}(t)).$$

We will prove that the stochastic process given by formula (33) converges weakly in C to a diffusion process. For the description of this process and the proof of the statement we need some notation. Let

$$x \in \mathbb{R}^m$$
, $v \in \mathbb{R}^m$, $x = (x_1, \dots, x_m)$, $v = (v_1, \dots, v_m)$.

We introduce new variables

$$z_k = \lambda_k^2 x_k^2 + v_k^2, \quad k = 1, ..., m,$$

and

$$\theta_k = \hat{\theta}_k - \hat{\theta}_1, \quad k = 2, \dots, m,$$

where

$$\begin{split} x_k &= \lambda_k^{-1} \sqrt{z_k} \cos \lambda_k \, \hat{\theta}_k \,, \\ v_k &= -\sqrt{z_k} \sin \lambda_k \, \hat{\theta}_k \,. \end{split}$$

Denote by B(x, v) a $(m-1) \times m$ matrix with elements which are determined by the relations:

$$b_{ij}(x, v) = \frac{1}{2} \left(\frac{x_1}{z_1} 1_{\{j=1\}} - \frac{x_i}{z_i} 1_{\{j=i\}} \right), \quad i = 1, ..., m, \quad j = 2, ..., m.$$

Let

$$\hat{f}_{ij}(x,v) = \int \int f_i(x,v,y) f_j(x,v,y') R(y,dy') \rho(dy).$$
 (34)

Denote

$$a(x, v) = \int \int f_{v}(x, v, y') f(x, v, y) R(y, dy') \rho(dy'),$$
 (35)

and let the vector b(x, v) be determined by its coordinates

$$b_k(x,v) = \frac{x_k v_k}{z_k^2} \hat{f}_{kk}(x,v) - \frac{x_1 v_1}{z_1^2} \hat{f}_{11}(x,v), \quad k = 2, \dots, m.$$
 (36)

Note that the following formulas are valid for the Jacobians:

$$\frac{Dz}{Dv} = 2V, \quad \frac{D\theta}{Dv} = 2B(x, v),$$

where the elements of the matrix V are given by the relation $v_{ij} = v_i 1_{\{i=i\}}$.

Introduce the matrices $\hat{F}(x, v)$ with elements $\hat{f}_{ij}(x, v)$ and

$$C^{zz}(x,v) = 2V \hat{F}^*(x,v), \quad C^{z\theta}(x,v) = 2B(x,v) \hat{F}^*(x,v),$$

$$C^{\theta z}(x,v) = 2V \hat{F}^*(x,v) B^*(x,v), \quad C^{\theta \theta}(x,v) = B(x,v) \hat{F}^*(x,v) B^*(x,v).$$

Let the vectors $\hat{a}(z,\theta)$, $\hat{b}(z,\theta)$ and matrices

$$\hat{C}^{zz}(z,\theta)$$
, $\hat{C}^{z\theta}(z,\theta)$, $\hat{C}^{\theta z}(z,\theta)$, $\hat{C}^{\theta \theta}(z,\theta)$

are \hat{A} -transformations of the vectors a(x, v), b(x, v) and matrices

$$C^{zz}(x,v), C^{z\theta}(x,v), C^{\theta z}(x,v), C^{\theta \theta}(x,v),$$

for example

$$\hat{a}_i(z,\theta) = \hat{A}(a_i; z_1,..., z_m, \theta_2,..., \theta_m),$$

where the function \hat{A} was introduced in Remark 1. Denote by $L^{z\theta}$ the differential operator which is determined for $\Phi \in C^{(2)}(\mathbb{R}^m \times \mathbb{R}^{m-1})$ by the relation

$$L^{z\theta}\Phi(z,\theta) = (\Phi_{z}(z,\theta), \hat{a}(z,\theta)) + (\Phi_{\theta}(z,\theta), \hat{b}(z,\theta)) +$$

$$+ \operatorname{Tr}\Phi_{zz}(z,\theta) \hat{C}^{zz}(z,\theta) + \operatorname{Tr}\Phi_{z\theta}(z,\theta) (\hat{C}^{\theta z}(z,\theta))^{*} +$$

$$+ \operatorname{Tr}\Phi_{\theta z}(z,\theta) (\hat{C}^{z\theta}(z,\theta))^{*} + \operatorname{Tr}\Phi_{\theta \theta}(z,\theta) \hat{C}^{\theta \theta}(z,\theta)). \tag{37}$$

Theorem 3. The compound stochastic process $(\tilde{z}^{\varepsilon}(t); \tilde{\theta}^{\varepsilon}(t))$ converges weakly in C as $\varepsilon \to 0$ to the diffusion process $(\tilde{z}(t); \tilde{\theta}(t))$ in the same space with the initial value $(z^{0}; \theta^{0})$, where

$$z_k^0 = E_k(x_k(0), v_k(0)), \quad k = 1, ..., m,$$

 $\theta_k^0 = \varphi_k^0 - \varphi_k^0, \quad k = 2, ..., m,$

and the generator $L^{z\theta}$ which is determined by formula (37).

Proof. We will use Theorem 1 on [4, p. 78]. We have to prove the relation

$$\lim_{\varepsilon \to 0} E \left| E \left(\Phi(z^{\varepsilon}(\varepsilon^{-1}t_{2}), \theta^{\varepsilon}(\varepsilon^{-1}t_{2})) - \Phi(z^{\varepsilon}(\varepsilon^{-1}t_{1}), \theta^{\varepsilon}(\varepsilon^{-1}t_{1})) - \int_{t_{1}}^{t_{2}} L^{z\theta}(\tilde{z}^{\varepsilon}(s), \tilde{\theta}^{\varepsilon}(s)) ds \left| \mathcal{F}_{\varepsilon^{-1}t_{1}}^{\varepsilon} \right| \right| = 0$$
(38)

for $t_1 < t_2$. To prove this we use the following sequence of relations

$$\begin{split} E\left(\Phi\left(z^{\varepsilon}\left(t_{2}\right),\theta^{\varepsilon}\left(t_{2}\right)\right) - \Phi\left(z^{\varepsilon}\left(t_{1}\right),\theta^{\varepsilon}\left(t_{1}\right)\right) \,\Big|\,\mathcal{F}_{t_{1}}^{\varepsilon}\right) = \\ &= E\left(\int_{t_{1}}^{t_{2}} \left[\left(\Phi_{z}\left(z^{\varepsilon}\left(s\right),\theta^{\varepsilon}\left(s\right)\right),\frac{dz^{\varepsilon}\left(s\right)}{ds}\right) + \left(\Phi_{\theta}\left(z^{\varepsilon}\left(s\right),\theta^{\varepsilon}\left(s\right)\right),\frac{dz^{\varepsilon}\left(s\right)}{ds}\right)\right]ds \,\Big|\,\mathcal{F}_{t_{1}}^{\varepsilon}\right) = \\ &= E\left(\int_{t_{1}}^{t_{2}} \left(\Phi_{z}\left(z^{\varepsilon}\left(s\right),\theta^{\varepsilon}\left(s\right)\right) \right.\right. \\ &+ \left.\left.\left.\left.\left(\Phi_{z}\left(z^{\varepsilon}\left(s\right),\theta^{\varepsilon}\left(s\right)\right)\right) + \left(\Phi_{\theta}\left(z^{\varepsilon}\left(s\right),\theta^{\varepsilon}\left(s\right)\right)\right)\right.\right] \\ &+ \left.\left.\left(\Phi_{z}\left(z^{\varepsilon}\left(s\right),\theta^{\varepsilon}\left(s\right)\right)\right)\right]ds \,\Big|\,\mathcal{F}_{t_{1}}^{\varepsilon}\right). \end{split}$$

Applying to the last integral Lemmas 4, 3, and Corollary 2 we can obtain the realtion

$$E\left(\Phi(z^{\varepsilon}(t_{2}), \theta^{\varepsilon}(t_{2})) - \Phi(z^{\varepsilon}(t_{1}), \theta^{\varepsilon}(t_{1})) \mid \mathcal{F}_{t_{1}}^{\varepsilon}\right) =$$

$$= O(\varepsilon^{2}(t_{2} - t_{1} + 1)) + \varepsilon E\left(\int_{t_{1}}^{t_{2}} \left[\left(\Phi_{z}, a(x_{\varepsilon}(s), v_{\varepsilon}(s))\right) + \frac{1}{2}\right]\right)$$

$$+ \left(\Phi_{\theta}, b\left(x_{\varepsilon}(s), v_{\varepsilon}(s)\right)\right) + \operatorname{Tr} \Phi_{zz} \left(C^{zz}\left(x_{\varepsilon}(s), v_{\varepsilon}(s)\right)\right)^{*} +$$

$$+ \operatorname{Tr} \Phi_{\theta z} \left(C^{z\theta}\left(x_{\varepsilon}(s), v_{\varepsilon}(s)\right)\right)^{*} + \operatorname{Tr} \Phi_{\theta z} \left(C^{\theta z}\left(x_{\varepsilon}(s), v_{\varepsilon}(s)\right)\right)^{*} +$$

$$+ \operatorname{Tr} \Phi_{\theta \theta} \left(C^{\theta \theta}\left(x_{\varepsilon}(s), v_{\varepsilon}(s)\right)\right)^{*} ds \left|\mathcal{F}_{t_{1}}^{\varepsilon}\right|.$$

$$(39)$$

In this formula the derivatives of the function Φ have as their arguments the functions $z^{\varepsilon}(s)$, $\theta^{\varepsilon}(s)$. It follows from statement (i) of Theorem 2 that for any continuous bounded functions $G: R^m \times R^m \to R$ and $\Psi: R^m \times R^{m-1} \to R$ the formula is fulfilled:

$$\lim_{\varepsilon \to 0} \varepsilon E \left| E \left(\int_{\varepsilon^{-1} t_1}^{\varepsilon^{-1} t_2} \Psi(z^{\varepsilon}(s), \theta^{\varepsilon}(s)) \times \right. \\ \left. \times \left[G(x_{\varepsilon}(s), v_{\varepsilon}(s)) - \hat{G}(z^{\varepsilon}(s), \theta^{\varepsilon}(s)) \right] ds \left| \mathcal{F}_{\varepsilon^{-1} t_1}^{\varepsilon} \right| = 0,$$

$$(40)$$

where

$$\hat{G}(z,\theta) = \hat{A}(G; z_1,..., z_m, \theta_2,..., \theta_m).$$

Formulas (39) and (40) implies the relation

$$E\left(\Phi(\tilde{z}^{\varepsilon}(t_{2}), \tilde{\theta}^{\varepsilon}(t_{2})) - \Phi(\tilde{z}^{\varepsilon}(t_{1}), \tilde{\theta}^{\varepsilon}(t_{1})) - \int_{t_{1}}^{t_{2}} L^{z\theta} \Phi(\tilde{z}^{\varepsilon}(s), \tilde{\theta}^{\varepsilon}(s)) ds \mid \mathcal{F}_{t_{1}}^{\varepsilon}\right) = 0$$

$$= O(\varepsilon) + \alpha(\varepsilon), \tag{41}$$

where

$$\lim_{\varepsilon \to 0} \alpha(\varepsilon) = 0.$$

Formula (41) implies formula (38), so the theorem is proved.

4. Wiener perturbations. We consider the functions $x_{\varepsilon}(t)$, $v_{\varepsilon}(t)$ satisfying the system of stochastic differential equations:

$$dx_{g}(t) = v_{g}(t)dt, \tag{42}$$

$$dv_{\varepsilon}(t) = -\Lambda x_{\varepsilon}(t) + \sqrt{\varepsilon} F(x_{\varepsilon}(t), v_{\varepsilon}(t)) dw(t),$$

where the function

$$F: R^m \times R^m \to L(R^m)$$

is bounded and smooth enough, and w(t) is R^m -valed Wiener process. Let the stochastic processes $z^{\varepsilon}(s)$, $\theta^{\varepsilon}(s)$ are determined by formulas (28) – (30), where $x_{\varepsilon}(t)$, $v_{\varepsilon}(t)$ satisfy the system (42).

Lemma 5. The functions

$$z_k^{\varepsilon}(t)$$
, $k=1,\ldots,m$,
 $\theta_i^{\varepsilon}(t)$, $i=2,\ldots,m$,

satisfy the system of stochastic differential equations

$$dz_{k}^{\varepsilon}(t) = \sqrt{\varepsilon} \sum_{j} \alpha_{kj}(x_{\varepsilon}(t), v_{\varepsilon}(t)) dw_{j}(t) + \varepsilon \beta_{k}(x_{\varepsilon}(t), v_{\varepsilon}(t)) dt,$$

$$d\theta_{i}^{\varepsilon}(t) = \sqrt{\varepsilon} \sum_{j} \gamma_{ij}(x_{\varepsilon}(t), v_{\varepsilon}(t)) dw_{j}(t) + \varepsilon \delta_{i}(x_{\varepsilon}(t), v_{\varepsilon}(t)) dt,$$

$$(43)$$

where

$$\alpha_{kj}(x, v) = 2v_k F_{kj}(x, v), \quad \beta_k(x, v) = 2v_k \sum_j F_{kj}^2(x, v)$$
 (44)

and

$$\gamma_{ij}(x,v) = \frac{x_1}{z_1} F_{ij}(x,v) - \frac{x_i}{z_i} F_{ij}(x,v),$$

$$\delta_i(x,v) = \sum_j \left(\frac{x_1 v_1}{z_1} F_{1j}^2(x,v) - \frac{x_i v_i}{z_i} F_{ij}^2(x,v) \right)$$
(45)

and F_{ij} are the elements of the matrix F.

The proof is obtained by calculation.

Theorem 4. The compound stochastic process

$$(\tilde{z}^{\varepsilon}(t); \tilde{\theta}^{\varepsilon}(t)) = (z^{\varepsilon}(\frac{t}{\varepsilon}); \theta^{\varepsilon}(\frac{t}{\varepsilon}))$$

converges weakly in C as $\varepsilon \to 0$ to the same diffusion process $(z(t); \theta(t))$ as in Theorem 3 for which

$$\begin{split} \hat{a}_k\left(z,\theta\right) &= \hat{A}(\beta_k;z_1,\ldots,z_m,\theta_2,\ldots,\theta_m)\,,\\ \hat{b}_i\left(z,\theta\right) &= \hat{A}(\delta_i;z_1,\ldots,z_m,\theta_2,\ldots,\theta_m)\,,\\ \hat{G}^{zz}_{kl}\left(z,\theta\right) &= \hat{A}\Bigg(\sum_j\alpha_{kj}\alpha_{lj};z_1,\ldots,z_m,\theta_2,\ldots,\theta_m\Bigg),\\ \hat{G}^{z\theta}_{ki}\left(z,\theta\right) &= \hat{G}^{\theta z}_{ik}\left(z,\theta\right) &= \hat{A}\Bigg(\sum_j\alpha_{kj}\gamma_{ij};z_1,\ldots,z_m,\theta_2,\ldots,\theta_m\Bigg),\\ \hat{G}^{z\theta}_{lj}\left(z,\theta\right) &= \hat{A}\Bigg(\sum_k\gamma_{ik};z_1,\ldots,z_m,\theta_2,\ldots,\theta_m\Bigg). \end{split}$$

The proof of the theorem follows from the Itô's formula and the Theorem 1.

- Khasminskii R. Z. On random processes determined by differential equations with a small parameter // Teor. Veroyatnost, i Primenen. – 1966. – 11. – P. 240–259.
- Khasminskii R. Z. A limit theorem for solutions of differential equations with a random right-hand side // Ibid. - P. 444-462.
- Khasminskii R. Z. On the averaging principle for Itô stochastic differential equations // Kybernetika (Prague). – 1968. – 4. – P. 260–279 (in Russian).
- Papanicolau G. C., Strook D., Varadhan S. R. S. Martingale approach to some limit theorem // Stat. Mech. Dynam. Syst. Duke Univ. Math. Ser. Durhan (N. C.). – 1977. – 3. – 20 p.
- Skorokhod A. V. Asymptotic methods in the theory of stochastic differential equations. Providence, Rhod Island: AMS, 1989. – 339 p.
- Freidlin M. I., Wentzell A. D. Random perturbations of Hamiltonian systems // Mem. AMS. 1994. – 523. – P. 1–82.

Received 15.06.2000