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In this paper we give a short overview of operator semigroups. These objects are widely used for proving well-posedness of 
partial differential equations and for investigating qualitative properties of the solutions. 
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1. Operator (semi)groups 
 Many physical phenomena can be described by so-called dynamical systems. Here we investigate the 
following model. The elements of the state space describe completely the temporal change of the system and 
they include all factors important for the observant. They also determine unambiguously the further motion of 

the system. The time is parameterized by R  or +R  (it depends whether we want to handle the past or not). We 

assume that to each time )( +∈ RRt  belongs a state of the system Ztz ∈)(  from the state space Z . We also 

assume that the motion is deterministic, that is, for every time instant 0t  and initial state 0z  there exists a unique 

motion 

Zz zt →R:
00 ,  

such that  

.00, )(
00

ztz zt =  

We further assume that the system is autonomous that means 

)()( 1,0, 0100
htzhtz ztzt +=+  

holds for any R∈htt ,, 10  and Zzz ∈10 , . This implies that the orbits of the motion do not intersect each other. 

Using this model, we can define the operators ZZtT →:)(  for )( +∈ RRt  acting as 

),(:)( 0,0
ttzztT zt +=  

where 0t  can be chosen arbitrary since the system is autonomous. Then clearly 

zzT =)0(  

holds because 

.)( 0,0
ztz zt =  

In this way we have defined a one-parameter (semi)group of operators satisfying 

( )
ZIdT

stsTtTstT

=

∈=+ +

)0(

,),()()( RR
 

since the system is deterministic. 
 
Looking for the solutions of the Cauchy functional equation in C  





=

≥=+

1)0(

0,),()()(
)(

T

stsTtTstT
CFE  

we find that tatT e)( =  is a solution for any C∈a . It is easy to see that tatT e)( =  satisfies the following differential 

equation, too. 








=

≥=

.1)0(

0),()(
)(

T

ttaTtT
dt

d

CDE  
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If we suppose the solution )(tT  of )(CFE  to be continuous, we obtain that it is unique (see Engel-Nagel, 2000). 

 
Theorem—Assume that CR →⋅ +:)(T  is a continuous solution of )(CFE . Then there exists a unique C∈a  such that 

tatT e)( = . 

 

We now generalize the above result in an arbitrary Banach (complete normed) space X , e.g., in ,nX C=  ],,[ baCX =  

or )(1 RLX = . By )(XL  we denote the space of bounded linear operators on X . Let us look for solutions 

)(:)( XLT →⋅ +R  of the following problem 





=
≥=+

XIdT

stsTtTstT
FE

)0(

0,),()()(
)(  

 
 
Definition—Let )(:)( XLT →⋅ +R  be a solution of )(FE  satisfying 

.)(lim
0

XxxxtT
t

∈∀=
+→

 

Then 0))(( ≥ttT  is called a strongly continuous (one-parameter) semigroup (or C0-semigroup). If these properties 

hold for R  instead of +R , we call 0))(( ≥ttT  a strongly continuous (one-parameter) group (or C0-group) . For 

details see Engel-Nagel (2000) and Pazy (1983). 

2. Generator 

 If )(XLA∈  – e.g. n
n XMA CC =∈ ),(  – then using the exponential series we can define )(e XLtA ∈ . It is 

easy to see that the operator family 0,e:)( ≥= ttT tA   forms a C0-semigroup satisfying )(FE . Furthermore, )(tT  is a 

solution of the following differential equation: 








=

≥=

XIdT

ttATtT
dt

d
DE

)0(

0),()(
)(  

In this case 

0
)( ==

t
tT

dt

d
A  

and A  is called the generator of the semigroup. 
 
In general, we can define the generator of a strongly continuous semigroup as follows (see Engel-Nagel, 2000 and Pazy, 
1983).  
 
Definition—Let 0))(( ≥ttT  be a strongly continuous semigroup. The linear (but not necessarly bounded) operator 

00

0

))((
)(

lim:

)(
lim::)(

=+→

+→

=−=







 ∈−∃∈=

tt

t

xtTt
dt

d

t

xxtT
Ax

X
t

xxtT
XxAD

a

 

is called the generator of 0))(( ≥ttT . 

 
Since ))(,( ADA  is defined as the derivative of the orbits of the semigroup in 0 , )(tT  is in some ways the 

generalization of the exponential function of A . Of course, in this case tAe  can not be defined by the exponential series 
because ))(,( ADA  is not bounded and the series not necessarily converges in norm. But one can prove that )(AD  is 

always dense in X  and ))(,( ADA  is closed. 

3. Abstract Cauchy problems 
 Up to now it is not clear how operator semigroups can be used for solving problems in the applications. The 
clue is the abstract Cauchy problem. It is well-known that many physical phenomena can be formulated mathematically 
as a system of partial differential equations, see e.g. the air pollution transport model in the next section. These systems 
can often be rewritten as an abstract Cauchy problem, that is 





=
≥=

0)0(

0),()(
)(

uu

ttAutu
ACP

&
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The operator A  on the right-hand side is usually an (unbounded) differential operator on a function (Banach) space X , 
0,)( ≥∈ tXtx . One can prove the following (see e.g. in Engel-Nagel, 2000). 

 
Theorem—Let ))(,( ADA  be a closed, densely defined linear operator on X  and let )(ACP  be the associated abstract 

Cauchy problem defined as above. Then the following assertions are equivalent. 
a) For every )(0 ADx ∈  there exists a unique solution of )(ACP  depending continuously on the initial data 0x . 

b) ))(,( ADA  is the generator of a strongly continuous semigroup 0))(( ≥ttT  on X . 

In this case the solution is .0,)()( 0 ≥= txtTtx  

 
Hence, to prove well-posedness of a problem written in the form of an abstract Cauchy problem one has to verify that 
the operator on the right-hand side is the generator of a C0-semigroup. In general it is not easy, but in many important 
cases it is possible. 

4. Examples 
 The next examples can be found in Engel-Nagel (2000). 
 
Diffusion semigroup 
Let us take a look at the one-dimensional heat conduction equation with Neumann boundary conditions: 

.0,0)1,()0,(

]1,0[),(),0(

)1,0(,0),,(),(
2

2

≥=
∂
∂=

∂
∂

∈=

∈≥
∂
∂=

∂
∂

ttu
s

tu
s

ssfsu

ststu
s

stu
t

 

We can rewrite it as 





=
≥=

0)0(

0),()(
)(

xx

ttAxtx
ACP

&
 

with 

}.0)1()0(:]1,0[{:)(

:
2 =′=′∈=

′′=

ffCfAD

fAf
 

Here the Banach space is ]1,0[CX =  and ),()( ⋅= tutx . Observe that the boundary conditions appear in the domain of 

A  hence the operator becomes unbounded – but still it is closed and densely defined in X . 

Using the eigenvalues 22nπ−  and eigenfunctions 2,cos2,1 ≥nnsπ  of A  and the theory of linear ordinary 

differential equations, one can prove the following. 
 
Theorem—The operator ))(,( ADA  defined above generates a strongly continuous semigroup 0))(( ≥ttT  on ]1,0[CX =  

with 

.coscose21:),(

]1,0[],1,0[,)(),())()((

0

1

0

22

nrnsrsk

sCfdrrfrsksftT

n

tn
t

t

πππ ⋅∑+=

∫ ∈∈=

∞+

=

−
 

This semigroup is called the one-dimensional diffusion semigroup. 
 

In nR  one can prove the following. 
 
Theorem—Consider the closure of the Laplace operator 

,),,,(),,,(∆

1
212

2

21 ∑
∂
∂=

=

n

j
n

j
n sssf

s
sssf KK  

defined for every f  from the Schwartz space of rapidly decreasing, infinitely many times differentiable functions on 
nR . It generates a strongly continuous semigroup 0))(( ≥ttT   on )(1 nLX R=  with 

.)0(

,0,)(e
4

1
))()(( 4

|| 2

IdT

tdf
t

ftT n
t

n

=

∈>∫=
−

− Rsrrs
rs

Rπ  

This semigroup is called the n-dimensional diffusion semigroup. 
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Translation semigroup 
Let us investigate the closure of the following first order differential operator 

).(:)(

:
1 n
cCAD

fAf

R=

∇=
 

Here )(1 n
cC R  denotes the space of continuously differentiable functions having compact support in nR . One can 

easily prove that ))(,( ADA  generates a strongly continuous semigroup 0))(( ≥ttT  on )(0
nCX R=  (the space of 

continuous functions vanishing at infinity on nR ) with 

,),())()(( ntfftT Rss1s ∈+⋅=  

called the translation semigroup on nR . 
 
Multiplication semigroup 
Let CR →nq :  be a continuous function. We can define the following closed, densely defined linear operator on 

)(0
nCX R= . 

)}.(:)({:)(M

:M

00
nn

q

q

CqfCfD

qff

RR ∈∈=

=
 

If 
∞<

∈
)(Resup sq

s nR
 

then 

)(,0,e:)( 0
ntq

q CftfftT R∈≥=  

defines the strongly continuous multiplication semigroup, generated by ))(M,(M qq D . 

 
 
Air pollution transport model 
We now turn to a concrete problem that is treated in details in Csomós, Faragó (2005), 
Dimov, Faragó, Havasi, Zlatev (2001, 2006). Air pollution transport can be modeled by the following partial differential 
equation. 









∈=

∈+−++−∇=
∂
∂

.),()0,(

],0(),(∆)(
)(

0
ncc

TtcRcEcc
t

c

APM

Rxxx

u σ
 

Here ),( tcc x=  denotes the concentration of the air pollutant, ),( txuu =  describes the wind velocity, ),( tEE x=  is the 

emission function, ),( txσσ =  the deposition and )(cR  the chemistry operator. For the sake of simplicity we assumed 

the diffusion coefficient to be 1. If we look at the right-hand side of )(APM  we find that all the operators acting on c  

are of type discussed above, hence generate strongly continuous semigroups on appropriate spaces. Using the 
perturbation theory of semigroups (see Engel-Nagel, 2000) we obtain well-posedness for )(APM . 

5. Qualitative behaviour 
 The importance of the operator semigroup theory is revealed especially in proving qualitative properties of 
solutions of partial differential equations (abstract Cauchy problems, resp.). A rich theory for qualitative properties of 
C0 –semigroups has been developed in the last 50 years that can be useful also in the applications. 
 
Here we mention only one example. Let us recall the famous Liapunov Stability Theorem for matrices (1892). 
 
Theorem—Let )(CnMA∈  an be an nn×  matrix. Then the following assertions are equivalent. 

a) 0||e||lim =
∞→

tA

t
 

b) All eigenvalues of A  have negative real part, i.e., 0Re <λ  for all )(Aσλ ∈ . 

 
This result can be generalized for the asymptotic of semigroups having bounded generator (see Engel-Nagel, 2000 and 
Pazy, 1983). 
 
Theorem—Let )(XLA∈  on some Banach space X  and 0,e:)( ≥= ttT tA  the strongly continuous semigroup 

generated by A . Then the following assertions are equivalent. 
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a) 0||)(||lim =
∞→

tT
t

 

b) 0Re <λ  for all )(Aσλ ∈ . 

 
If the semigroup is regular enough, we also can characterize stability with the spectrum of the unbounded generator A . 
 
Theorem—Let A  be the generator of an eventually norm-continuous semigroup 0))(( ≥ttT  on X , that is, there exists 

00 ≥t  such that the function )(tTt a  is norm continuous from ),( 0 ∞t  into )(XL . Then the following assertions are 

equivalent. 
a) 0||)(||lim =

∞→
tT

t
 

b) 0)}(:sup{Re <∈ Aσλλ . 

 
The same holds if the semigroup is positive on a function space, that is, it maps positive (i.e. greater or equal to zero) 
functions into positive functions. This is the case in many important applications such as heat diffusion etc. 
 
Hence, to prove that the solutions of an abstract Cauchy problem converge to 0 if ∞→t  it is enough to investigate the 
spectrum of the operator on the right-hand side. 

6. A few words about applications in numerical analysis 
 In the numerical solution of (complicated) partial differential equations the operator splitting method is often 
used. Here we divide the spatial differential operator of the system into simpler operators and solve the corresponding 
problems one after the other, by connecting them through their initial conditions (see e.g. Faragó, 2005). To use this 
method one has to assume that the sub-problems are well-posed which in practice is often hard to prove. We also have 
to know the error caused by the operator splitting and by the use of numerical methods. Applying operator semigroup 
techniques helps a lot to answer these questions. 
 
 
1. Csomós, P. and Faragó I., 2005: Error analysis of the numerical solution obtained by applying operator splitting. Preprint. 
2. Csomós, P., Faragó, I. and Havasi, Á., 2005: Weighted sequential splittings and their analysis. Comput. Math. Appl. 50, 1017–1031. 
3. Dimov, I., Faragó, I., Havasi, Á. and Zlatev, Z., 2001: L–commutativity of the operators in splitting methods for air pollution models. Annales 

Univ. Sci. Sec. Math. 44, 127–148. 
4. Dimov, I., Faragó, I., Havasi, Á. and Zlatev, Z., 2006:  Different splitting techniques with application to air pollution models, Int. J. 

Environmental Pollution (to appear). 
5. Engel, K.-J. and Nagel, R., 2000: One-parameter Semigroups for Linear Evolution Equations, Springer, New York. 
6. Faragó, I., 2005: Splitting methods for abstract Cauchy problems, Lect. Notes Comp. Sci. 3401, Springer Verlag, Berlin, 35–45. 
7. Pazy, A., 1983: Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York.



Прикладне програмне забезпечення 

© K. Georgiev, E. Donev, 2006 

ISSN 1727-4907. Проблеми програмування. 2006. №2-3. Спеціальний випуск 674 

1.  


