Definition 5.4. Let G be a finitely generated group, acting on a set A. Growth degree of the G-action is the number

$$
\gamma=\sup _{w \in A} \limsup _{r \rightarrow \infty} \frac{\log |\{g(w): l(g) \leq r\}|}{\log r}
$$

where $l(g)$ is the length of a group element with respect to some fixed finite generating set of G.

One can show, in the same way as before, that the growth degree γ does not depend on the choice of the generating set of G.
Proposition 5.10. Suppose that a standard action of a group G on X^{*} is contracting. Then the growth degree of the action on X^{ω} is not greater than $\frac{\log |X|}{-\log \rho}$, where ρ is the contraction coefficient of the action on X^{*}.
Proof. The statement is more or less classical. See, for instance the similar statements in [Gro81, BG00, Fra70].

Let ρ_{1} be such that $\rho<\rho_{1}<1$. Then there exists $C>0$ and $n \in \mathbb{N}$ such that for all $g \in G$ we have $l\left(\left.g\right|_{x_{1} x_{2} \ldots x_{n}}\right)<\rho_{1}^{n} \cdot l(g)+C$.

Then cardinality of the set $B(w, r)=\{g(w): l(g) \leq r\}$, where $w=x_{1} x_{2} \ldots \in X^{\omega}$ is not greater than

$$
|X|^{n} \cdot \mid\left\{B\left(x_{n+1} x_{n+2} \ldots, \rho_{1}^{n} \cdot r+C\right) \mid,\right.
$$

since the map $\sigma^{n}: x_{1} x_{2} \ldots \mapsto x_{n+1} x_{n+2} \ldots$ maps $B(w, r)$ into

$$
B\left(x_{n+1} x_{n+2} \ldots, \rho_{1}^{n} \cdot r+C\right)
$$

and every point of X^{ω} has exactly $|X|^{n}$ preimages under σ^{n}. The map σ^{n} is the nth iteration of the shift map $\sigma\left(x_{1} x_{2} \ldots\right)=x_{2} x_{3} \ldots$..

Let $k=\left[\frac{\log r}{-n \log \rho_{1}}\right]+1$. Then $\rho_{1}^{n k} \cdot r<1$ and the number of the points in the ball $B(w, r)$ is not greater than

$$
|X|^{n k} \cdot\left|B\left(\sigma^{n k}(w), R\right)\right|
$$

where

$$
R=\rho_{1}^{n k} \cdot r+\rho_{1}^{n(k-1)} \cdot C+\rho_{1}^{n(k-2)} \cdot C+\cdots+\rho_{1}^{n} \cdot C+C<1+\frac{C}{1-\rho_{1}^{n}}
$$

But $|B(u, R)|$ for all $u \in X^{\omega}$ is less than $K_{1}=|S|^{R}$, where S is the generating set of G (we assume that $S=S^{-1} \ni 1$). Hence,

$$
\begin{aligned}
& |B(w, r)|<K_{1} \cdot|X|^{n\left(\frac{\log r}{-n \log \rho_{1}}+1\right)}= \\
& =K_{1} \cdot \exp \left(\frac{\log |X| \log r}{-\log \rho_{1}}+n \log |X|\right)=K_{2} \cdot r^{\frac{\log |X|}{-\log \rho_{1}}}
\end{aligned}
$$

where $K_{2}=K_{1} \cdot|X|^{n}$. Thus, the growth degree is not greater than $\frac{\log |X|}{-\log \rho_{1}}$ for every $\rho_{1} \in(\rho, 1)$, so it is not greater than $\frac{\log |X|}{-\log \rho}$.

Lemma 5.11. Let ϕ be a contracting virtual endomorphism of a ϕ-simple infinite finitely generated group G. Then the contraction coefficient of its standard action is greater or equal to $1 /$ ind ϕ.

Proof. Consider the standard action on the set X^{*} for a standard basis X, containing the element $x_{0}=\phi(1) 1$. Then the parabolic subgroup $P(\phi)=\cap_{n \geq 0} \operatorname{Dom} \phi^{n}$ is the stabilizer of the word $w=x_{0} x_{0} x_{0} \ldots \in X^{\omega}$. The subgroup $P(\phi)$ has infinite index in G, otherwise $\cap_{g \in G} g^{-1} P g=\mathcal{C}(\phi)$ will have finite index, and G will be not ϕ-simple. Consequently, the G orbit of w is infinite. Then there exists an infinite sequence of generators s_{1}, s_{2}, \ldots of the group G such that the elements of the sequence

$$
w, s_{1}(w), s_{2} s_{1}(w), s_{3} s_{2} s_{1}(w), \ldots
$$

are pairwise different. This implies that the growth degree of the orbit $G w$

$$
\gamma=\limsup _{r \rightarrow \infty} \frac{|\{g(w): l(g) \leq r\}|}{\log r}
$$

is greater or equal to 1 , thus the growth degree of the action of G on X^{ω} is not less than 1 , and by Proposition $5.10,1 \leq \frac{\log |X|}{-\log \rho}$.

Proposition 5.12. If there exists a faithful contracting action of a fini-tely-generated group G then for any $\epsilon>0$ there exists an algorithm of polynomial complexity of degree not greater than $\frac{\log |X|}{-\log \rho}+\epsilon$ solving the word problem in G.

Proof. We assume that the generating set S is symmetric (i.e., that $S=$ S^{-1}) and contains all the restrictions of all its elements, so that always $l\left(\left.g\right|_{v}\right)$ is not greater than $l(g)$.

We will denote by F the free group generated by S and for every $g \in F$ by \hat{g} we denote the canonical image of g in G.

Let $1>\rho_{1}>\rho$. Then $\rho_{1} \cdot|X|>1$, since by Lemma 5.11, $\rho \cdot|X| \geq 1$. There exist n_{0} and l_{0} such that for every word $v \in X^{*}$ of the length n_{0} and every $g \in G$ of the length $\geq l_{0}$ we have

$$
l\left(\left.g\right|_{v}\right)<\rho_{1}^{n} l(g)
$$

Assume that we know for every $g \in F$ of the length less than l_{0} if \hat{g} is trivial or not. Assume also that we know all the relations $g \cdot v=u \cdot h$ for all $g, l(g) \leq l_{0}$ and $v \in X^{n_{0}}$.

Then we can compute in $l(\hat{g})$ steps, for any $g \in F$ and $v \in X^{n}$, the element $h \in F$ and the word $u \in X^{n_{0}}$ such that $\hat{g} \cdot v=u \cdot \hat{h}$. If $v \neq u$ then we conclude that \hat{g} is not trivial and stop the algorithm. If for all $v \in X^{n_{0}}$ we have $v=u$, then \hat{g} is trivial if and only if all the obtained
restrictions $\hat{h}=\left.\hat{g}\right|_{v}$ are trivial. We know, whether \hat{h} is trivial if $l(h)<l_{0}$. We proceed further, applying the above computations for those h, which have the length not less than l_{0}.

But $l(h)<\rho_{1}^{n} l(g)$, if $l(g) \geq l_{0}$. So on each step the length of the elements becomes smaller, and the algorithm stops in not more than $-\log l(g) / \log \rho_{1}$ steps. On each step the algorithm branches into $|X|$ algorithms. Thus, since $\rho_{1} \cdot|X|>1$, the total time is bounded by

$$
\begin{aligned}
& l(g)\left(1+\rho_{1} \cdot|X|+\left(\rho_{1} \cdot|X|\right)^{2}+\cdots+\left(\rho_{1} \cdot|X|\right)^{\left[-\log l(g) / \log \rho_{1}\right]}\right)< \\
& \frac{l(g)}{\rho_{1} \cdot|X|-1}\left(\left(\rho_{1} \cdot|X|\right)^{1-\log l(g) / \log \rho_{1}}-1\right)= \\
& \frac{l(g) \rho_{1} \cdot|X|}{\rho_{1} \cdot|X|-1}\left(\left(\rho_{1} \cdot|X|\right)^{-\log l(g) / \log \rho_{1}}-\left(\rho_{1} \cdot|X|\right)^{-1}\right)= \\
& C_{1} l(g)\left(\exp \left(\log l(g)\left(\frac{\log |X|}{-\log \rho_{1}}-1\right)\right)-C_{2}\right)= \\
& =C_{1} l(g)^{-\log |X| / \log \rho_{1}-C_{1} C_{2} l(g),}
\end{aligned}
$$

where $C_{1}=\frac{\rho_{1} \cdot|X|}{\rho_{1} \cdot|X|-1}$ and $C_{2}=\left(\rho_{1} \cdot|X|\right)^{-1}$.

References

[AB94] N. A'Campo and M. Burger, Réseaux arithmétiques et commensurateur d'après G. A. Margulis, Invent. Math. 116 (1994), no. 1-3, 1-25.
[Ale83] S. V. Aleshin, A free group of finite automata, Vestn. Mosc. Un. Ser. 1. (1983), no. 4, 12-16, in Russian.
[BdlH97] M. Burger and P. de la Harpe, Constructing irreducible representations of discrete groups, Proc. Indian Acad. Sci., Math. Sci. 107 (1997), no. 3, 223235.
[BG00] Laurent Bartholdi and Rostislav I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Proceedings of the Steklov Institute of Mathematics 231 (2000), 5-45.
[BGN02] Laurent Bartholdi, Rostislav I. Grigorchuk, and Volodymyr V. Nekrashevych, From fractal groups to fractal sets, to appear, 2002.
[BSV99] Andrew M. Brunner, Said N. Sidki, and Ana. C. Vieira, A just-nonsolvable torsion-free group defined on the binary tree, J. Algebra 211 (1999), 99-144.
[Fra70] John M. Franks, Anosov diffeomorphisms, Global Analysis, Berkeley, 1968, Proc. Symp. Pure Math., vol. 14, Amer. Math. Soc., 1970, pp. 61-93.
[GNS00] Rostislav I. Grigorchuk, Volodymyr V. Nekrashevich, and Vitaliĭ I. Sushchanskii, Automata, dynamical systems and groups, Proceedings of the Steklov Institute of Mathematics 231 (2000), 128-203.
[Gri80] Rostislav I. Grigorchuk, On Burnside's problem on periodic groups, Funtional Anal. Appl. 14 (1980), no. 1, 41-43.
[Gri83] Rostislav I. Grigorchuk, On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR 271 (1983), no. 1, 30-33.
[Gri00] Rostislav I. Grigorchuk, Just infinite branch groups, New horizons in pro-p groups (Aner Shalev, Marcus P. F. du Sautoy, and Dan Segal, eds.), Progress in Mathematics, vol. 184, Birkhäuser Verlag, Basel, etc., 2000, pp. 121-179.
[Gro81] Mikhael Gromov, Groups of polynomial growth and expanding maps, Publ. Math. I. H. E. S. 53 (1981), 53-73.
[GS83a] Narain D. Gupta and Said N. Sidki, On the Burnside problem for periodic groups, Math. Z. 182 (1983), 385-388.
[GS83b] Narain D. Gupta and Said N. Sidki, Some infinite p-groups, Algebra i Logika 22 (1983), 584-589.
[Mar91] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 17. Berlin etc.: SpringerVerlag, 1991.
[MNS00] Olga Macedońska, Volodymyr V. Nekrashevych, and Vitaliĭ I. Sushchansky, Commensurators of groups and reversible automata, Dopovidi NAN Ukrainy (2000), no. 12, 36-39.
[Neka] Volodymyr V. Nekrashevych, Cuntz-Pimsner algebras of group actions, submitted.
[Nekb] Volodymyr V. Nekrashevych, Iterated monodromy groups, preprint, Geneva University, 2002.
[Nekc] Volodymyr V. Nekrashevych, Limit spaces of self-similar group actions, preprint, Geneva University, 2002.
[Nek00] Volodymyr V. Nekrashevych, Stabilizers of transitive actions on locally finite graphs, Int. J. of Algebra and Computation 10 (2000), no. 5, 591-602.
[NS01] Volodymyr V. Nekrashevych and Said N. Sidki, Automorphisms of the binary tree: state-closed subgroups and dynamics of $1 / 2$-endomorphisms, preprint, 2001.
[Röv02] Claas E. Röver, Commensurators of groups acting on rooted trees, to appear in Geom. Dedicata, 2002.
[Sid97] Said N. Sidki, A primitive ring associated to a Burnside 3-group, J. London Math. Soc. (2) 55 (1997), 55-64.
[Sid98] Said N. Sidki, Regular trees and their automorphisms, Monografias de Matematica, vol. 56, IMPA, Rio de Janeiro, 1998.
[Sid00] Said N. Sidki, Automorphisms of one-rooted trees: growth, circuit structure and acyclicity, J. of Mathematical Sciences (New York) 100 (2000), no. 1, 1925-1943.
[SW02] S. Sidki and J. S. Wilson, Free subgroups of branch groups, (to appear), 2002.

Contact information

V. Nekrashevych Kyiv Taras Shevchenko University, Ukraine
 E-Mail: nazaruk@ukrpack.net

Received by the editors: 21.10.2002.

Metrizable ball structures

I.V. Protasov

Communicated by V.M. Usenko

Dedicated to V. V. Kirichenko on the occasion of his 60th birthday
Abstract. A ball structure is a triple (X, P, B), where X, P are nonempty sets and, for any $x \in X, \alpha \in P, B(x, \alpha)$ is a subset of $X, x \in B(x, \alpha)$, which is called a ball of radius α around x. We characterize up to isomorphism the ball structures related to the metric spaces of different types and groups.

Following [1, 2], by ball structure we mean a triple $\mathbf{B}=(X, P, B)$, where X, P are nonempty sets and, for any $x \in X, \alpha \in P, B(x, \alpha)$ is a subset of X, which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X, \alpha \in P$.

Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be ball structures, $f: X_{1} \rightarrow X_{2}$. We say that f is a \succ-mapping if, for every $\beta \in P_{2}$, there exists $\alpha \in P_{1}$ such that

$$
B_{2}(f(x), \beta) \subseteq f\left(B_{1}(x, \alpha)\right)
$$

for every $x \in X_{1}$. If there exists a \succ-mapping of X_{1} onto X_{2}, we write $\mathbf{B}_{1} \succ \mathbf{B}_{2}$.

A mapping $f: X_{1} \rightarrow X_{2}$ is called a \prec-mapping if, for every $\alpha \in P_{1}$, there exists $\beta \in P_{2}$ such that

$$
f\left(B_{1}(x, \alpha)\right) \subseteq B_{2}(f(x), \beta)
$$

for every $x \in X_{1}$. If there exists an injective \prec-mapping of X_{1} into X_{2}, we write $\mathbf{B}_{1} \prec \mathbf{B}_{2}$.

A bijection $f: X_{1} \rightarrow X_{2}$ is called an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2} if f is a \succ-mapping and f is a \prec-mapping.

We say that a property \mathbf{P} of ball structures is a ball property if a ball structure \mathbf{B} has a property \mathbf{P} provided that \mathbf{B} is isomorphic to some ball structure with property \mathbf{P}.

Example 1. Let (X, d) be a metric space, $\mathbf{R}^{+}=\{x \in \mathbf{R}: x \geq 0\}$. Given any $x \in X, r \in \mathbf{R}^{+}$, put

$$
B_{d}(x, r)=\{y \in X: d(x, y) \leq r\}
$$

A ball structure $\left(X, \mathbf{R}^{+}, B_{d}\right)$ is denoted by $\mathbf{B}(X, d)$.
We say that a ball structure \mathbf{B} is metrizable if \mathbf{B} is isomorphic to $\mathbf{B}(X, d)$ for some metric space (X, d).

To obtain a characterization (Theorem 1) of metrizable ball structures, we need some definitions and technical results.

A ball structure $\mathbf{B}=(X, P, B)$ is called connected if, for any $x, y \in X$, there exists $\alpha \in P$ such that $y \in B(x, \alpha), x \in B(y, \alpha)$.

Lemma 1. Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be ball structures and let f be $a \prec$-mapping of X_{1} onto X_{2}. If \mathbf{B}_{1} is connected, then \mathbf{B}_{2} is connected.

Proof. Given any $y, z \in X_{1}$, choose $\alpha \in P_{1}$ such that $y \in B_{1}(z, \alpha)$, $z \in B_{1}(y, \alpha)$. Since f is a \prec-mapping, then there exists $\beta \in P_{2}$ such that $f\left(B_{1}(x, \alpha)\right) \subseteq B_{2}(f(x), \beta)$ for every $x \in X_{1}$. Hence, $f(y) \in B_{2}(f(z), \beta)$ and $f(z) \in B_{2}(f(y), \beta)$. Since $f\left(X_{1}\right)=X_{2}$, then \mathbf{B}_{2} is connected.

Lemma 2. Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be ball structures and let f be an injective \succ-mapping of X_{1} into X_{2}. If \mathbf{B}_{2} is connected, then \mathbf{B}_{1} is connected.

Proof. Given any $y, z \in X_{1}$, choose $\beta \in P_{2}$ such that $f(y) \in B_{2}(f(z), \beta)$ and $f(z) \in B_{2}(f(y), \beta)$. Since f is a \succ-mapping, then there exists $\alpha \in$ P_{1} such that $B_{2}(f(x), \beta) \subseteq f\left(B_{1}(x, \alpha)\right)$ for every $x \in X_{1}$. Since f is injective, then $z \in B_{1}(y, \alpha)$ and $y \in B_{1}(z, \alpha)$. Hence, \mathbf{B}_{1} is connected.

Let $\mathbf{B}=(X, P, B)$ be a ball structure. For all $x \in X, \alpha \in P$, put

$$
B^{*}(x, \alpha)=\{y \in X: x \in B(y, \alpha)\}
$$

A ball structure $\mathbf{B}^{*}=\left(X, P, B^{*}\right)$ is called dual to \mathbf{B}. Note that $\mathbf{B}^{* *}=\mathbf{B}$.

A ball structure \mathbf{B} is called symmetric if the identity mapping $i: X \rightarrow$ X is an isomorphism between \mathbf{B} and \mathbf{B}^{*}. In other words, \mathbf{B} is symmetric if, for every $\alpha \in P$, there exists $\beta \in P$ such that $B(x, \alpha) \subseteq B^{*}(x, \beta)$ for every $x \in X$, and vice versa.

Lemma 3. Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be ball structures, $f: X_{1} \rightarrow X_{2}$. If f is a \prec-mapping of \mathbf{B}_{1} to \mathbf{B}_{2}, then f is a $\prec-m a p p i n g$ of \mathbf{B}_{1}^{*} to \mathbf{B}_{2}^{*}. If f is an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2}, then f is an isomorphism between \mathbf{B}_{1}^{*} and \mathbf{B}_{2}^{*}.

Proof. Let f be a \prec-mapping of \mathbf{B}_{1} to \mathbf{B}_{2} and let $\alpha \in P_{1}$. Choose $\beta \in P_{2}$ such that $f\left(B_{1}(x, \alpha)\right) \subseteq B_{2}(f(x), \beta)$ for every $x \in X_{1}$. Take any element $y \in B_{1}^{*}(x, \alpha)$. Then $x \in B_{1}(y, \alpha)$ and $f(x) \in B_{2}(f(y), \beta)$. Hence, $f(y) \in B_{2}^{*}(f(x), \beta)$ and $f\left(B_{1}^{*}(x, \alpha)\right) \subseteq B_{2}^{*}(f(x), \beta)$. It means that f is a \prec-mapping of \mathbf{B}_{1}^{*} to \mathbf{B}_{2}^{*}.

Suppose that f is an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2}. By the first statement, f is a \prec-mapping of \mathbf{B}_{1}^{*} to \mathbf{B}_{2}^{*} and f^{-1} is a \prec-mapping of \mathbf{B}_{2}^{*} to \mathbf{B}_{1}^{*}. It follows that f is an isomorphism between \mathbf{B}_{1}^{*} and \mathbf{B}_{2}^{*}.

Lemma 4. Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be isomorphic ball structures. If \mathbf{B}_{1} is symmetric, then \mathbf{B}_{2} is symmetric.

Proof. Let $f: X_{1} \rightarrow X_{2}$ be an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2}. Denote by $i_{1}: X_{1} \rightarrow X_{1}$ and $i_{2}: X_{2} \rightarrow X_{2}$ the identity mappings. Clearly, f^{-1} is an isomorphism between \mathbf{B}_{2} and \mathbf{B}_{1}. By Lemma $3, f$ is an isomorphism between \mathbf{B}_{1}^{*} and \mathbf{B}_{2}^{*}. By assumption, i_{1} is an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{1}^{*}. Since $i_{2}=f i_{1} f^{-1}$, then i_{2} is an isomorphism between \mathbf{B}_{2} and B_{2}^{*}.

A ball structure $\mathbf{B}=(X, P, B)$ is called multiplicative if, for any $\alpha, \beta \in P$, there exists $\gamma(\alpha, \beta) \in P$ such that

$$
B(B(x, \alpha), \beta) \subseteq B(x, \gamma(\alpha, \beta))
$$

for every $x \in X$. Here, $B(A, \alpha)=\bigcup_{a \in A} B(a, \alpha)$ for any $A \subseteq X, \alpha \in P$.
Lemma 5. If a ball structure $\mathbf{B}=(X, P, B)$ is multiplicative, then \mathbf{B}^{*} is multiplicative.

Proof. Given any $\alpha, \beta \in P$, choose $\gamma(\alpha, \beta)$ such that $B(B(x, \alpha), \beta) \subseteq$ $B(x, \gamma(\alpha, \beta))$. Take any element $z \in B^{*}\left(B^{*}(x, \alpha), \beta\right)$ and pick $y \in$ $B^{*}(x, \alpha)$ such that $z \in B^{*}(y, \beta)$. Then $x \in B(y, \alpha)$ and $y \in B(z, \beta)$, so $x \in B(B(z, \beta), \alpha)$. Since $B(B(z, \beta), \alpha) \subseteq B(z, \gamma(\beta, \alpha))$, then $x \in$ $B(z, \gamma(\beta, \alpha))$. Hence, $B^{*}\left(B^{*}(x, \alpha), \beta\right) \subseteq B^{*}(x, \gamma(\beta, \alpha))$ and \mathbf{B}^{*} is multiplicative.

Lemma 6. Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be isomorphic ball structures. If \mathbf{B}_{1} is multiplicative, then \mathbf{B}_{2} is multiplicative.

Proof. Denote by $f_{1}: X_{1} \rightarrow X_{2}$ the isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2}. Fix any $\beta_{1}, \beta_{2} \in P_{2}$. Since f is a bijection, it suffices to prove that there exists $\beta \in P_{2}$ such that

$$
B_{2}\left(B_{2}\left(f(x), \beta_{1}\right), \beta_{2}\right) \subseteq B_{2}(f(x), \beta)
$$

for every $x \in X_{1}$.
Since f is a \succ-mapping, then there exist $\alpha_{1}, \alpha_{2} \in P_{1}$ such that

$$
B_{2}\left(f(x), \beta_{1}\right) \subseteq f\left(B_{1}\left(x, \alpha_{1}\right)\right), B_{2}\left(f(x), \beta_{2}\right) \subseteq f\left(B_{1}\left(x, \alpha_{2}\right)\right)
$$

for every $x \in X_{1}$.
Since \mathbf{B}_{1} is multiplicative, then there exists $\alpha \in P_{1}$ such that

$$
B_{1}\left(B_{1}\left(x, \alpha_{1}\right), \alpha_{2}\right) \subseteq B_{1}(x, \alpha)
$$

for every $x \in X_{1}$.
Since f is a \prec-mapping, then there exists $\beta \in P_{2}$ such that

$$
f\left(B_{1}(x, \alpha)\right) \subseteq B_{2}(f(x), \beta)
$$

for every $x \in X_{1}$.
Now fix $x \in X_{1}$ and take any element $f(z) \in B_{2}\left(B_{2}\left(f(x), \beta_{1}\right), \beta_{2}\right)$. Pick $f(y) \in B_{2}\left(f(x), \beta_{1}\right)$ with $f(z) \in B_{2}\left(f(y), \beta_{2}\right)$. Then $y \in B_{1}\left(x, \alpha_{1}\right)$, $z \in B_{1}\left(y, \alpha_{2}\right)$ and $z \in B_{1}\left(B_{1}\left(x, \alpha_{1}\right), \alpha_{2}\right)$. Hence, $z \in B_{1}(x, \alpha)$ and $f(z) \in B_{2}(f(x), \beta)$.

For an arbitrary ball structure $\mathbf{B}=(X, P, B)$, we define a preodering \leq on the set P by the rule

$$
\alpha \leq \beta \text { if and only if } B(x, \alpha) \subseteq B(x, \beta)
$$

for every $x \in X$. A subset P^{\prime} of P is called cofinal if, for every $\alpha \in P$, there exists $\beta \in P^{\prime}$ such that $\alpha \leq \beta$. A cofinality $c f \mathbf{B}$ of \mathbf{B} is a minimum of cardinalities of cofinal subsets of P. Thus, $c f \mathbf{B} \leq \aleph_{0}$ if and only if there exists a cofinal sequence $<\alpha_{n}>_{n \in \omega}$ in P such that $\alpha_{0} \leq \alpha_{1} \leq$ $\ldots \leq \alpha_{n} \leq \ldots$
Lemma 7. If the ball structures $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}\right.$, P_{2}, B_{2}) are isomorphic, then $c f \mathbf{B}_{1}=c f \mathbf{B}_{2}$.

Proof. Let $f: X_{1} \rightarrow X_{2}$ be an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2} and let P_{1}^{\prime} be a cofinal subset of P_{1}. Since f is a \succ-mapping, then there exists a mapping $h_{1}: P_{2} \rightarrow P_{1}^{\prime}$ such that $B_{2}(f(x), \beta) \subseteq f\left(B_{1}\left(x, h_{1}(\beta)\right)\right)$ for any $x \in X_{1}, \beta \in P_{2}$. Since f is a \prec-mapping, then there exists a mapping $h_{2}: P_{1}^{\prime} \rightarrow P_{2}$ such that $f\left(B_{1}(x, \alpha)\right) \subseteq B_{2}\left(f(x), h_{2}(\alpha)\right)$ for any $x \in X_{1}$, $\alpha \in P_{1}^{\prime}$. From the construction of h_{1}, h_{2} we conclude that $h_{2}\left(P_{1}^{\prime}\right)$ is a cofinal subset of P_{2}. Hence, $c f \mathbf{B}_{2} \leq c f \mathbf{B}_{1}$.

Theorem 1. A ball structure $\mathbf{B}=(X, P, B)$ is metrizable if and only if \mathbf{B} is connected symmetric multiplicative and $c f \mathbf{B} \leq \aleph_{0}$.

Proof. First suppose that \mathbf{B} is isomorphic to $\mathbf{B}(X, d)$ for an appropriate metric space (X, d). Obviously, $\mathbf{B}(X, d)$ is connected symmetric multiplicative and $c f \mathbf{B} \leq \aleph_{0}$. By Lemma 1, 4, 6, $7 \mathbf{B}$ has the same properties.

Now assume that \mathbf{B} is connected symmetric multiplicative and $c f \mathbf{B} \leq$ \aleph_{0}. Let $<\alpha_{n}>_{n \in \omega}$ be a cofinal sequence in P. Put $\beta_{0}=\alpha_{0}$ and choose $\beta_{1} \in P$ such that $\beta_{1} \geq \alpha_{1}, \beta_{1} \geq \beta_{0}, \beta_{1} \geq \gamma\left(\beta_{0}, \beta_{0}\right)$, where γ is a function from definition of multiplicativity. Suppose that the elements $\beta_{0}, \beta_{1}, \ldots, \beta_{n}$ have been chosen. Take $\beta_{n+1} \in P$ such that

$$
\beta_{n+1} \geq \alpha_{n+1}, \beta_{n+1} \geq \beta_{n}, \beta_{n+1} \geq \gamma\left(\beta_{i}, \beta_{j}\right)
$$

for all $i, j \in\{0,1, \ldots, n\}$. Then $<\beta_{n}>_{n \in \omega}$ is a nondecreasing cofinal sequence in P and $B\left(B\left(x, \beta_{n}\right), \beta_{m}\right) \subseteq B\left(x, \beta_{n+m}\right)$ for all $x \in X, n, m \in$ N.

Define a mapping $d: X \times X \rightarrow \omega$ by the rule $d(x, x)=0$ and

$$
d(x, y)=\min \left\{n \in \mathbf{N}: y \in B\left(x, \beta_{n}\right), x \in B\left(y, \beta_{n}\right)\right\}
$$

for all distinct elements $x, y \in X$. Since the sequence $<\beta_{n}>_{n \in \omega}$ is cofinal in P and \mathbf{B} is connected, then the mapping d is well defined. To show that d is a metric we have only to check a triangle inequality. Let x, y, z be distinct elements of X and let $d(x, y)=n, d(y, z)=m$. Since $y \in B\left(x, \beta_{n}\right)$ and $z \in B\left(y, \beta_{m}\right)$, then $z \in B\left(B\left(x, \beta_{n}\right), \beta_{m}\right) \subseteq B\left(x, \beta_{n+m}\right)$. Since $y \in B\left(z, \beta_{m}\right)$ and $x \in B\left(y, \beta_{n}\right)$, then $x \in B\left(B\left(z, \beta_{m}\right), \beta_{n}\right) \subseteq B\left(z, \beta_{n+m}\right)$. Hence, $d(x, z) \leq n+m$.

Consider the ball structure $\mathbf{B}(X, d)$ and note that

$$
B_{d}(x, n)=B\left(x, \beta_{n}\right) \bigcap B^{*}\left(x, \beta_{n}\right) .
$$

Since \mathbf{B} is symmetric, then the identity mapping of X is an isomorphism between \mathbf{B} and $\mathbf{B}(X, d)$.

Remark 1. A metric d on a set X is called integer if $d(x, y)$ is an integer number for all $x, y \in X$. It follows from the proof of Theorem 1 that, for every metrizable ball structure $\mathbf{B}=(X, P, B)$, there exists an integer metric d on X such that \mathbf{B} and $\mathbf{B}(X, d)$ are isomorphic.

Remark 2. Let $\mathbf{B}=(X, P, B)$ be an arbitrary ball structure. Consider a metric d on X defined by the rule $d(x, x)=0$ and $d(x, y)=1$ for all distinct elements of X. Then the identity mapping $i: X \rightarrow X$ is a $\prec-m a p p i n g$ of \mathbf{B} onto $\mathbf{B}(X, d)$. In particular, for every ball structure \mathbf{B}, there exists a metric space (X, d) such that $\mathbf{B} \prec \mathbf{B}(X, d)$.

Remark 3. Let $\mathbf{B}=(X, P, B)$ be a connected multiplicative ball structure, $c f \mathbf{B} \leq \aleph_{0}$. Repeating arguments of Theorem 1, we can prove that there exists a metric d on X such that the identity mapping $i: X \rightarrow X$ is a \prec-mapping of $\mathbf{B}(X, d)$ onto \mathbf{B}.

Question 1. Characterize the ball structure $\mathbf{B}=(X, P, B)$, which admit a metric d on X such that the identity mapping $i: X \rightarrow X$ is $a \prec$ mapping of $\mathbf{B}(X, d)$ onto \mathbf{B}.

By Remark 2, every ball structure can be strengthened to some mertizable ball structure, so Question 1 asks about ball structure, which can be weekened to metrizable.

Example 2. Let $G r=(V, E)$ be a connected graph with a set of vertices V and a set of edges $E, E \subseteq V \times V$. Endow V with a path metric d, where $d(x, y), x, y \in V$ is a length of the shortest path between x and y. Denote by $\mathbf{B}(G r)$ the ball structure $\mathbf{B}(V, d)$. Obviously, $\mathbf{B}(G r)$ is metrizable.

Our next target is a description of the ball structures, isomorphic to $\mathbf{B}(G r)$ for an appropriate graph $G r$.

Let $\mathbf{B}=(X, P, B)$ be an arbitrary ball structure, $\alpha \in P$. We say that a finite sequence $x_{0}, x_{1}, \ldots, x_{n}$ of elements of X is an α-path of length n if $x_{i-1} \in B\left(x_{i}, \alpha\right), x_{i} \in B\left(x_{i-1}, \alpha\right)$ for every $i \in\{1,2, \ldots, n\}$. A ball structure \mathbf{B} is called an α-path connected if, for every $\beta \in P$, there exists $\mu(\beta) \in \omega$ such that $x \in B(y, \beta), y \in B(x, \beta)$ imply that there exists an α-path of length $\leq \mu(\beta)$ between x and y. Note that $\mathbf{B}(G r)$ is 1-path connected for every connected graph $G r$.

A ball structure $\mathbf{B}=(X, P, B)$ is called path connected if \mathbf{B} is α-path connected for some $\alpha \in P$.

Lemma 8. Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be isomorphic ball structures. If \mathbf{B}_{1} is path connected, then \mathbf{B}_{2} path connected.

Proof. Let $f: X_{1} \rightarrow X_{2}$ be an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2}. Choose $\alpha \in P_{1}$ such that \mathbf{B}_{1} is α-path connected and fix a corresponding mapping $\mu: P_{1} \rightarrow \omega$. Since f is a \prec-mapping, then there exists $\beta \in P_{2}$ such that

$$
f\left(B_{1}(x, \alpha)\right) \subseteq B_{2}(f(x), \beta)
$$

for every $x \in X_{1}$. Since f is a \succ-mapping, then there exists a mapping $h: P_{2} \rightarrow P_{1}$ such that

$$
B_{2}(f(x), \lambda) \subseteq f\left(B_{1}(x, h(\lambda))\right.
$$

for any $x \in X_{1}, \lambda \in P_{2}$.

Fix any $\lambda \in P_{2}$ and suppose that

$$
f(x) \in B_{2}(f(y), \lambda), f(y) \in B_{2}(f(x), \lambda)
$$

Since f is a bijection, then $x \in B_{1}(y, h(\lambda)), y \in B_{1}(x, h(\lambda))$. Since \mathbf{B}_{1} is α-path connected, then there exists an α-path $x=x_{0}, x_{1}, \ldots, x_{m}=y$ of length $\leq \mu(h(\lambda))$. Then $f(x)=f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{m}\right)=f(y)$ is a β-path of length $\leq \mu(h(\lambda))$ between $f(x)$ and $f(y)$.

Theorem 2. For every ball structure B, the following statements are equivalent
(i) \mathbf{B} is metrizable and path connected;
(ii) \mathbf{B} is isomorphic to a ball structure $\mathbf{B}(G r)$ for some connected graph $G r$.

Proof. (ii) \Rightarrow (i). Clearly, $\mathbf{B}(G r)$ is metrizable and path connected. Hence, \mathbf{B} is metrizable and path connected by Lemma 8.
$(\mathrm{i}) \Rightarrow($ ii $)$. Fix a path connected metric space (X, d) such that \mathbf{B} is isomorphic to $\mathbf{B}(X, d)$. Then there exists $m \in \omega$ such that (X, d) is m path connected. Consider a graph $G r=(X, E)$ with the set E of edges defined by the rule

$$
(x, y) \in E \text { if and only if } x \neq y \text { and } d(x, y) \leq m
$$

Since $\mathbf{B}(X, d)$ is path connected, then the graph $G r$ is connected.
Let d^{\prime} be a path metric on the graph $G r$. By assumption, for every $n \in \omega$, there exists $\mu(n) \in \omega$ such that $d(x, y) \leq n$ implies that there exists a m-path of length $\leq \mu(n)$ in (X, d) between x and y. Hence, $d(x, y) \leq n$ implies $d^{\prime}(x, y) \leq \mu(n)$. On the other side, $d^{\prime}(x, y) \leq k$ implies that $d(x, y) \leq k m$. Therefore, the identity mapping of X is an isomorphism between the ball structures $\mathbf{B}(X, d)$ and $\mathbf{B}(G r)$.

Example 3. Let $X=\left\{2^{n}: n \in \omega\right\}, d(x, y)=|x-y|$ for any $x, y \in X$. By Theorem 2, there are no connected graphs $G r$ such that $\mathbf{B}(X, d)$ is isomorphic to $\mathbf{B}(G r)$.

Example 4. Let d be an euclidean metric on \mathbf{R}^{n}. By Theorem 2, there exists a connected graph $G r_{n}=\left(\mathbf{R}^{n}, E_{n}\right)$ such that $\mathbf{B}\left(\mathbf{R}^{n}, d\right)$ is isomorphic to $\mathbf{B}\left(G r_{n}\right)$.

By Remark 2, for every ball structure $\mathbf{B}=(X, P, B)$, there exists a connected graph $G r=(X, E), E=\{(x, y): x, y \in X, x \neq y\}$ such that the identity mapping $i: X \rightarrow X$ is a \succ-mapping of $\mathbf{B}(G r)$ onto \mathbf{B}.

Question 2. Characterize the ball structure, which admit $a \succ$-bijection to the ball structure $\mathbf{B}(G r)$ for an appropriate graph $G r$.

A metric d on a set X is called non-Archimedian if

$$
d(x, z) \leq \max \{d(x, y), d(y, z)\}
$$

for all $x, y, z \in X$. The following definitions will be used to describe the ball structures isomorphic to $\mathbf{B}(X, d)$ for an appropriate non-Archimeian metric space (X, d).

Let $\mathbf{B}=(X, P, B)$ be an arbitrary ball structure, $x \in X, \alpha \in P$. We say that a ball $B(x, \alpha)$ is a cell if $B(y, \alpha)=B(x, \alpha)$ for every $y \in B(x, \alpha)$. If (X, d) is a non-Archimedian metric space, then each ball $B(x, r), x \in$ $X, r \in \mathbf{R}^{+}$is a cell.

Given any $x \in X, \alpha \in P$, denote
$B^{c}(x, \alpha)=\{y \in X:$ there exists an $\alpha-$ path between x and $y\}$.
A ball structure $\mathbf{B}^{c}=\left(X, P, B^{c}\right)$ is called a cellularization of \mathbf{B}. Note that each ball $B^{c}(x, \alpha)$ is a cell.

We say that a ball structure \mathbf{B} is cellular if the identity mapping $i: X \rightarrow X$ is an isomorphism between \mathbf{B} and \mathbf{B}^{c}. In other words, \mathbf{B} is cellular if and only if, for every $\alpha \in P$, there exists $\beta \in P$ such that $B(x, \alpha) \subseteq B^{c}(x, \beta)$ for every $x \in X$ and, for every $\beta \in P$, there exists $\alpha \in P$ such that $B^{c}(x, \beta) \subseteq B(x, \alpha)$ for every $x \in X$.

A ball structure $\mathbf{B}=(X, P, B)$ is called directed if, for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that $\alpha \leq \gamma, \beta \leq \gamma$.

Lemma 9. If $\mathbf{B}=(X, P, B)$ is a directed symmetric ball structure, then the identity mapping $i: X \rightarrow X$ is $a \prec$-mapping of \mathbf{B} onto \mathbf{B}^{c}.

Proof. Given any $\alpha \in P$, choose $\beta, \gamma \in P$ such that

$$
B(x, \alpha) \subseteq B^{*}(x, \beta) \subseteq B(x, \gamma)
$$

for every $x \in X$. Since \mathbf{B} is directed, we may assume that $\beta \leq \gamma$. Take any element $y \in B(x, \alpha)$. Then $x \in B(y, \beta) \subseteq B(y, \gamma)$. Thus, $y \in B(x, \gamma), x \in B(y, \gamma)$. Hence, there exists a β-path of length ≤ 1 between x and y. It means that $y \in B^{c}(x, \gamma)$, so $B(x, \alpha) \subseteq B^{c}(x, \gamma)$.

Lemma 10. Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be ball structures. If $f: X_{1} \rightarrow X_{2}$ is a \prec-mapping of \mathbf{B}_{1} to \mathbf{B}_{2}, then f is a \prec-mapping of \mathbf{B}_{1}^{c} to \mathbf{B}_{2}^{c}. If f is an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2}, then f is a isomorphism between \mathbf{B}_{1}^{c} and \mathbf{B}_{2}^{c}.

Proof. Given any $\alpha \in P_{1}$, choose $\beta \in P_{2}$ such that $f\left(B_{1}(x, \alpha)\right) \subseteq$ $B_{2}(f(x), \beta)$ for every $x \in X$. Take any $y \in B_{1}^{c}(x, \alpha)$ and choose an α-path $x=x_{0}, x_{1}, \ldots, x_{n}=y$ between x and y. Then

$$
f(x)=f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)=f(y)
$$

is a β-path between $f(x)$ and $f(y)$. Hence, $f(y) \in B_{2}^{c}(f(x), \beta)$ and $f\left(B_{1}^{c}(x, \alpha)\right) \subseteq B_{2}^{c}(f(x), \beta)$ for every $x \in X_{1}$.

Suppose that f is an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2}. By the first statement, f is a \prec-mapping of \mathbf{B}_{1}^{c} to \mathbf{B}_{2}^{c} and f^{-1} is a \prec-mapping of \mathbf{B}_{2}^{c} to \mathbf{B}_{1}^{c}. Hence, f is an isomorphism between \mathbf{B}_{1}^{c} and \mathbf{B}_{2}^{c}.

Lemma 11. Let $\mathbf{B}_{1}=\left(X_{1}, P_{1}, B_{1}\right)$ and $\mathbf{B}_{2}=\left(X_{2}, P_{2}, B_{2}\right)$ be isomorphic ball structures. If \mathbf{B}_{1} is cellular, then \mathbf{B}_{2} is cellular.

Proof. Let $f: X_{1} \rightarrow X_{2}$ be an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{2}. Denote by $i_{1}: X_{1} \rightarrow X_{1}$ and $i_{2}: X_{2} \rightarrow X_{2}$ the identity mappings. Clearly, f^{-1} is an isomorphism between \mathbf{B}_{2} and \mathbf{B}_{1}. By the Lemma $10, f$ is an isomorphism between \mathbf{B}_{1}^{c} and \mathbf{B}_{2}^{c}. By assumption, i_{1} is an isomorphism between \mathbf{B}_{1} and \mathbf{B}_{1}^{c}. Since $i_{2}=f i_{1} f^{-1}$, then i_{2} is an isomorphism between \mathbf{B}_{2} and \mathbf{B}_{2}^{c}.

Theorem 3. For every ball structure B, the following statements are equivalent
(i) \mathbf{B} is metrizable and cellular;
(ii) there exists a non-Archimedian metric space (X, d) such that \mathbf{B} is isomorphic to $\mathbf{B}(X, d)$.

Proof. (ii) \Rightarrow (i). Clearly, $\mathbf{B}(X, d)$ is metrizable and cellular. Hence, \mathbf{B} is metrizable and cellular by Lemma 11.
(i) \Rightarrow (ii). Fix a metric space $\left(X, d^{\prime}\right)$ such that $\mathbf{B}\left(X, d^{\prime}\right)$ is cellular and isomorphic to \mathbf{B}. Define a mapping $d: X \times X \rightarrow \omega$ by the rule

$$
d(x, y)=\min \left\{m \in \omega: y \in B^{c}(x, m)\right\}
$$

Obviously, $d(x, x)=0$ and $d(x, y)=d(y, x)$ for all $x, y \in X$.
Let $x, y, z \in X$ and let $d(x, y)=m, d(y, z)=n, m \leq n$. Then $y \in B^{c}(x, m), z \in B^{c}(y, n)$. It follows that there exists a n-path between x and z. Hence, $z \in B^{c}(x, n)$ and $d(x, z) \leq n$. Thus, we have proved that d is a non-Archimedian metric on X.

Since $d(x, y) \leq d^{\prime}(x, y)$, then the identity mapping $i: X \rightarrow X$ is a \prec-mapping of $\mathbf{B}(X, d)$ to $\mathbf{B}\left(X, d^{\prime}\right)$. Since $\mathbf{B}\left(X, d^{\prime}\right)$ is cellular, then there exists a mapping $h: \omega \rightarrow \omega$ such that $B^{c}(x, m) \subseteq B(x, h(m))$ for all $x \in X, m \in \omega$. Hence, i is a \succ-mapping of $\mathbf{B}(X, d)$ to $\mathbf{B}\left(X, d^{\prime}\right)$. Hence, $\mathbf{B}(X, d)$ and $\mathbf{B}\left(X, d^{\prime}\right)$ are isomorphic.

By Remark 2, for every ball structure $\mathbf{B}=(X, P, B)$, there exists a non-Archimedian metric d on X such that the identity mapping of X is a \succ-mapping of $\mathbf{B}(X, d)$ to \mathbf{B}.

Lemma 12. For every metric space (X, d), there exists a family $\left\{\mathcal{P}_{n}\right.$: $n \in \omega\}$ of partitions of X with the following properties
(i) every partition \mathcal{P}_{n+1} is an enlargement of \mathcal{P}_{n}, i.e. every cell of the partition \mathcal{P}_{n+1} is a union of some cells of the partition \mathcal{P}_{n};
(ii) there exists a function $f: \omega \rightarrow \omega$ such that, for every $C \in \mathcal{P}_{n}$ and every $x \in C, C \subseteq B(x, f(n))$;
(iii) for any $x, y \in X$, there exists $n \in \omega$ such that x, y are in the same cell of the partition \mathcal{P}_{n}.

Proof. Fix any well-ordering $\left\{x_{\alpha}: \alpha<\gamma\right\}$ of X. Choose a subset $Y_{0} \subseteq$ $X, x_{0} \in Y_{0}$ such that the family $\left\{B(y, 1): y \in Y_{0}\right\}$ is disjoint and maximal. For every $x \in X$, pick a minimal element $f_{0}(x) \in Y_{0}$ such that $B(x, 1) \bigcap B\left(f_{0}(x), 1\right) \neq \emptyset$. Put $H(x, 1)=\left\{z \in X: f_{0}(z)=f_{0}(x)\right\}$ and note that the family $\left\{H(y, 1): y \in Y_{0}\right\}$ is a partition of X. If $x, z \in$ $H(y, 1)$, then $d(x, y) \leq 2, d(x, z) \leq 2$. Therefore, $H(y, 1) \subseteq B(x, 4)$ for every $x \in H(y, 1)$. Put $\mathcal{P}_{0}=\left\{H(y, 1): y \in Y_{0}\right\}, f(0)=4$.

Assume that the partitions $\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{n-1}$ have been constructed and the values $f(0), f(1), \ldots, f(n-1)$ have been determined. Choose a subset $Y_{n} \subseteq X, x_{0} \in Y_{n}$ such that the family $\left\{B(y, n+1): y \in Y_{n}\right\}$ is disjoint and maximal. Define a mapping $f_{n}: X \rightarrow Y_{n}$ inductively such that f_{n} is constant on each cell of the partition \mathcal{P}_{n-1}. Put $f_{n}(x)=x_{0}$ for every $x \in X$ such that $H(x, n) \bigcap B\left(x_{0}, n+1\right) \neq \emptyset$. Then take the minimal element $x \in X$ such that $f_{n}(x)$ is not determined. Choose the minimal element $y \in Y_{n}$ such that $B(x, n+1) \bigcap B(y, n+1) \neq \emptyset$. Put $f_{n}(x)=y$ and $f_{W}(z)=y$ for every $z \in H(x, n)$. After this transfinite procedure, we denote $H(x, n+1)=\left\{z \in X: f_{n}(z)=f_{n}(x)\right\}$. Put $\mathcal{P}_{n}=\left\{H(y, n+1): y \in Y_{n}\right\}$. Then \mathcal{P}_{n} is a partition of X and each cell of \mathcal{P}_{n} is a union of some cells of \mathcal{P}_{n-1}. Thus, (i) is satisfied.

If $z \in H(y, n+1)$, then $d(z, y) \leq f(n-1)+2(n+1)$. Hence, to satisfy (ii), put $f(n)=2(f(n-1)+2(n+1))$.

At last, given any $x, y \in X$, choose $m \in \omega$ such that $d\left(x_{0}, x\right) \leq m+1$, $d\left(x_{0}, y\right) \leq m+1$. Thus x, y are in the same cell of the partition \mathcal{P}_{m} and we have verified (iii).

Theorem 4. For every metric space (X, d), there exists a non-Archimedian metric d^{\prime} on X such that the identity mapping $i: X \rightarrow X$ is a $\prec-$ mapping of $\mathbf{B}\left(X, d^{\prime}\right)$ to $\mathbf{B}(X, d)$.

Proof. Fix a family $\left\{\mathcal{P}_{n}: n \in \omega\right\}$ of partitions of X, satisfying (i), (ii), (iii) from Lemma 12. Define a mapping $d^{\prime}: X \times X \rightarrow \omega$ by the rule

$$
d^{\prime}(x, y)=\min \left\{n: x \text { and } y \text { are in the same cell of } \mathcal{P}_{n}\right\} .
$$

By (iii), d^{\prime} is well defined. By (i), d^{\prime} is a non-Archimedian metric. By (ii), the identity mapping of X is a \prec-mapping of $\mathbf{B}\left(X, d^{\prime}\right)$ onto $\mathbf{B}(X, d)$.

Now we consider non-metrizable versions of Lemma 12 and Theorem 4.

Lemma 13. Let $\mathbf{B}=(X, P, B)$ be a directed symmetric multiplicative ball structure. Then there exists a family $\left\{\mathcal{P}_{\alpha}: \alpha \in P\right\}$ of partitions of X such that
(i) for every $\alpha \in P$, there exists $\beta \in P$ such that $C \subseteq B(x, \beta)$ for every $C \in \mathcal{P}_{\alpha}$ and every $x \in C$.

Moreover, if \mathbf{B} is connected then
(ii) for any $x, y \in X$, there exists $\alpha \in P$ such that x, y are in the same cell of the partition \mathcal{P}_{α}.

Proof. Fix any well-ordering of X and denote by x_{0} its minimal element. Fix $\alpha \in P$ and choose a subset $Y \subseteq X, x_{0} \in Y$ such that the family $\{B(y, \alpha): y \in Y\}$ is disjoint and maximal. For every $x \in X$, pick a minimal element $f(x) \in Y$ such that $B(x, \alpha) \bigcap B(f(x), \alpha) \neq \emptyset$. Put $H(x, \alpha)=\{z \in X: f(z)=f(x)\}$. Then the family $\mathcal{P}_{\alpha}=\{H(y, \alpha): y \in$ $Y\}$ is a partition of X.

Since \mathbf{B} is directed and symmetric, then there exists $\alpha^{\prime}>\alpha$ such that $y \in B(x, \alpha)$ implies $x \in B\left(y, \alpha^{\prime}\right)$.

Fix $x \in X$ and take $x^{\prime} \in B(x, \alpha) \bigcap B(f(x), \alpha)$. Then $x, x^{\prime}, f(x)$ is an α^{\prime}-path. Hence, for every $z \in H(x, \alpha)$, we can find an α^{\prime}-path of length 4 between x and z. Using multiplicativity of \mathbf{B}, choose $\beta \in P$ such that $y_{4} \in B\left(y_{0}, \beta\right)$ for every α^{\prime}-path $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}$ in X. Then $H(x, \alpha) \subseteq B(x, \beta)$.

Suppose that \mathbf{B} is connected and $x, y \in X$. Since \mathbf{B} is directed, then there exists $\alpha \in P$ such that $x_{0} \in B(x, \alpha), x_{0} \in B(y, \alpha)$. Hence, x, y belong to the cell $H\left(x_{0}, \alpha\right)$ of the partition \mathcal{P}_{α}.

Theorem 5. If a ball structure $\mathbf{B}=(X, P, B)$ is directed symmetric and multiplicative, then there exists a cellular ball structure $\mathbf{B}^{\prime}=\left(X, P, B^{\prime}\right)$ such that the identity mapping of X is a \prec-mapping of \mathbf{B}^{\prime} onto \mathbf{B}. Moreover, if \mathbf{B} is connected, then \mathbf{B}^{\prime} is connected.

Proof. Use the family of the partitions $\left\{\mathcal{P}_{\alpha}: \alpha \in P\right\}$ from Lemma 13 and put $B^{\prime}(x, \alpha)=H(x, \alpha)$. Clearly, each ball $B^{\prime}(x, \alpha)$ is a cell. By (i), the identity mapping of X is a \prec-mapping of \mathbf{B}^{\prime} onto \mathbf{B}. If \mathbf{B} is connected, then \mathbf{B}^{\prime} is connected by (ii).

Example 5. Let G be a group and let $\operatorname{Fin}_{e}(G)$ be a family of all finite subsets of G containing the identity e. Given any $g \in G, F \in \operatorname{Fin}_{e}(G)$, put $B(g, F)=F g$. A ball structure $\mathbf{B}(G)=\left(G, \operatorname{Fin}_{e}(G), B\right)$ is denoted by $\mathbf{B}(G)$. It is easy to show, that $\mathbf{B}(G)$ is directed connected symmetric and multiplicative.

Now we apply the above results to the ball structures of groups.
Theorem 6. Let G be a group. Then a ball structure $\mathbf{B}(G)$ is metrizable if and only if $|G| \leq \aleph_{0}$.

Proof. Apply Theorem 1.
Theorem 7. For every group G, the following statements are equivalent
(i) G is finitely generated;
(ii) $\mathbf{B}(G)$ is isomorphic to $\mathbf{B}(G r)$ for some connected graph $G r$

Proof. (i) \Rightarrow (ii). Let S be a finite set of generators of G. Consider a Cayley graph $G r=(G, E)$ of G determined by S. By definition, $(x, y) \in$ E if and only if $x \neq y$ and $x=t y$ for some $t \in S \bigcup S^{-1}$. Clearly, the identity mapping of G is an isomorphism between $\mathbf{B}(G)$ and $\mathbf{B}(G r)$.
$($ ii $) \Rightarrow($ i). By Theorem 2, there exists $F \in$ Fin such that $\mathbf{B}(G)$ is F-path connected. In particular, for every $g \in G$, there exists a F-path between e and g. Hence, F generates G.

A group G is called locally finite if every finite subset of G generates a finite subgroup.

Theorem 8. Let G be a group. Then a ball structure $\mathbf{B}(G)$ is cellular if and only if G is locally finite.

Proof. Let G be locally finite. Denote by Fins $_{s}$ the family of all finite subgroups of G. Then Fins is cofinal in Fin and each ball $B(g, F)$, $F \in F i n_{s}$ is a cell. Hence, $\mathbf{B}(G)$ is cellular.

Assume that $\mathbf{B}(G)$ is cellular. Note that $B^{c}(e, F)=g p F$ for every $F \in F i n$, where $g p F$ is a subgroup of G generated by F. Since \mathbf{B} is isomorphic to \mathbf{B}^{c}, then each ball $B^{c}(g, F)$ is finite. In particular, $g p F$ is finite for every $F \in$ Fin.

Remark 4. Let G_{1}, G_{2} be countable locally finite group. By [2, Theorem 4], $\mathbf{B}\left(G_{1}\right) \succ \mathbf{B}\left(G_{2}\right)$ and $\mathbf{B}\left(G_{1}\right) \prec \mathbf{B}\left(G_{2}\right)$. By [2, Theorem 5], $\mathbf{B}\left(G_{1}\right)$ and $\mathbf{B}\left(G_{2}\right)$ are isomorphic if and only if, for every finite subgroup F of G_{1}, there exists a finite subgroup H of G_{2} such that $|F|$ is a divisor of $|H|$, and vice versa. A problem of classification up to an isomorphism of ball structures of uncountable locally finite groups is open.

Theorem 9. For every countable group G, there exists a non-Archimedian metric d on G with the following property
(i) for each $n \in \omega$, there exists $F \in$ Fin such that $d(x, y) \leq n$ implies $x \in F y$.

Proof. Apply Theorem 6 and Theorem 4.
Theorem 10. For every group G, there exists a cellular ball structure $\mathbf{B}^{\prime}=\left(G, F i n, B^{\prime}\right)$ such that the identity mapping of G is a \prec-mapping of \mathbf{B}^{\prime} onto $\mathbf{B}(G)$.

Proof. Apply Theorem 5.
Question 3. Characterize the ball structures isomorphic to the ball structures of groups.
M.Zarichnyi has pointed out that Theorem 1 has a counterpart in the asymptotic topology [3]. This theorem answers the Open Question 1 from [4]. The results of this paper was announced in [5].

References

[1] I.V. Protasov. Combinatorial size of subsets of groups and graphs// Algebraic systems and applications. Proc. Inst. math. NAN Ukraine, 2002.
[2] I.V. Protasov. Morphisms of ball's structures of groups and graphs// Ukr. Math. J. 53, 2002, 6, 847-855.
[3] G. Skandalis, J.L.Tu, G.Yu. Coarse Baum - Connes conjecture and groupoids// Preprint, 2000.
[4] N. Nekrashevych. Uniformly bounded spaces// Voprosy algebry, 1999, 14, 47-67.
[5] I.V. Protasov. On metrizable ball's structures// Intern. Conf. on Funct. Analysis and its Appl. Book of abstracts, Lviv, 2002, 162-164.

Contact information

I.V. Protasov Kyiv Taras Shevchenko University, Ukraine
E-Mail: kseniya@profit.net.ua

Received by the editors: 24.09.2002.

