Algebra and Discrete Mathematics Number 4. **(2006).** pp. 126 – 140 © Journal "Algebra and Discrete Mathematics"

Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree

Anna Stronska

Communicated by B. V. Novikov

ABSTRACT. This paper deals with a semigroup of orderdecreasing transformations of a rooted tree. Such are the transformations α of some rooted tree G satisfying following condition: for any x from $G \alpha(x)$ belongs to a simple path from x to the root vertex of G. We describe all subsemigroups of the mentioned semigroup, which are maximal among nilpotent subsemigroups of nilpotency class k in our semigroup. In the event when rooted tree is a ray we prove that all these maximal subsemigroups are pairwise nonisomorphic.

Introduction

Let T be a rooted tree with a natural partial order defined on the set of vertices (i.e. x < y if x belongs to a simple path from y to the root of the tree). Let \mathcal{T}_T be a symmetric semigroup of all transformations of set of vertices of the rooted tree T. We do transformation from left to right, i.e. $(\varphi \cdot \psi)(x) = \psi(\varphi(x))$. A transformation $\alpha \in \mathcal{T}_T$ is called an orderdecreasing transformation if for any x from T an inequality $\alpha(x) \leq x$ holds. It is easy to see that the set D_T of all order-decreasing transformations from \mathcal{T}_T forms a semigroup. In case of T is a finite chain this semigroup is called D_n . The semigroup D_n has been studied by many algebraists. Being introduced in Pin's monograph([4]) in connection with some problems of formal languages it was later considered by Howie at

²⁰⁰⁰ Mathematics Subject Classification: 20M20.

Key words and phrases: semigroup, order-decreasing, non-isomorphic.

his lectures given in the University of Lisbon on combinatoric and arithmetical problems of the theory of transformation semigroup (some combinatoric results on D_n can be viewed in [3]) and also by Higgings. Umar wrote a series of papers (see, e.g. [5], [6]), investigating ideals, Rees congruences, idempotent rank and Green relations on D_n . More general semigroup of all contraction endomorphisms of arbitrary finite graph was considered by Vernitskii ([7]).

As D_T contains a zero 0, a transformation mapping all the vertices into the root, a question on study of non-trivial nilpotent subsemigroups from D_T naturally arises. For any mapping s from some nilpotent subsemigroup of D_T , we name by domain of s (doms) the set of vertices, which s does not map into the root; by the range of s (rans) we name the set of non-root vertices from s(T); and by the rank of s we name the number of elements of rans. Let Nil(T, k) denote the set of subsemigroups from D_T , which are maximal among nilpotent subsemigroups from D_T of nilpotency class k. The case when the tree is a finite chain was investigated in [8]. In our paper we describe all the semigroups from Nil(T, k), and prove that all these semigroups are pairwise nonisomorphic in case when rooted tree T is a ray. Proving that we used the method of matching of nilpotent subsemigroups of the transformations semigroup to special partially ordered sets, this method first appeared in [2] and is explicitly described in [1].

1. The structure of maximal nilpotent subsemigroups from D_T

Let m be a vertex of T and A be a subset of the set of all vertices of T and $m \notin A$. Then we denote by Less(m, A) the set of all vertices from A less than m; by Up(m, A) we denote the set of all vertices from A greater than m. By less(m, A) and up(m, A) we denote cardinalities of sets Less(m, A) and Up(m, A) correspondingly; by the Less(m) and Up(m) the sets $Less(m, T \setminus \{m\})$ and $Up(m, T \setminus \{m\})$ correspondingly. We fix some natural k less than the number of vertices of T and define $\Lambda(T, k)$ as a set of ordered partitions (i.e. with defined order of blocks (subsets)) of the non-root vertices of T into k nonempty non-overlapping blocks Q_1, \ldots, Q_k , such that

$$\forall 1 \leq i < k, \quad \forall l \in Q_i \quad \exists m \in Q_{i+1} \quad m < l; \tag{1.1}$$

and $\forall 1 < i \leq k, \ \forall h \in Q_i$

 $(Q_i \cap Less(h) \neq \emptyset) \Rightarrow (\exists l_1 \in Q_1, \cdots, \exists l_{i-1} \in Q_{i-1} \quad l_1 > \cdots > l_{i-1} > h)(1.2)$

Let's denote the root of tree T as r. For some partition λ from $\Lambda(T, k)$ with blocks Q_1, \ldots, Q_k we consider

 $\mathcal{T}_{\lambda} = \{ \varphi \in D_T | \forall m \leq k, \forall i \in Q_m \quad \varphi(i) \in (Q_{m+1} \cup \cdots \cup Q_k \cup \{r\}) \cap Less(i) \}.$ It is easy to verify that \mathcal{T}_{λ} is a subsemigroup from D_T .

Lemma 1. $T_{\lambda} \in Nil(T, k)$.

Proof. For any $\varphi_1, \ldots, \varphi_k$ from \mathcal{T}_{λ} and for any non-root vertex *i* from *T* we have:

$$\varphi_1(i) \in Q_2 \cup \cdots \cup Q_k \cup \{r\}; \quad \varphi_2(\varphi_1(i)) \in Q_3 \cup \cdots \cup Q_k \cup \{r\}; \ldots;$$
$$\varphi_k(\varphi_{k-1}(\ldots \varphi_1(i) \ldots)) \in \{r\}.$$

Therefore \mathcal{T}_{λ} is nilpotent of nilpotency class not greater than k. Simultaneously, one can choose k-1 elements from \mathcal{T}_{λ} , such that their product is not equal to zero. (e.g., one can select $\varphi_1^*, \ldots, \varphi_{k-1}^*$, such that for some l_1 from $Q_1 \ \varphi_1^*(l_1) = l_2 \in Q_2, \ \varphi_2^*(l_2) = l_3 \in Q_3, \ldots, \varphi_{k-1}^*(l_{k-1}) = l_k \in Q_k, \ l_k \neq r$. The existence of $l_2 \in Q_2, \ldots, l_k \in Q_k$ such that $l_1 < l_2 < \ldots < l_k$, follows from the definition of λ , (1.1). Then $\varphi_1^* \cdot \varphi_1^* \cdots \varphi_{k-1}^* \neq 0$.

Hence we have that \mathcal{T}_{λ} is of nilpotency class k. Now we show the maximality of \mathcal{T}_{λ} . Indeed, let \mathcal{T}_{λ} be contained in some semigroup \mathcal{T} from Nil(T,k) and $\mathcal{T} \neq \mathcal{T}_{\lambda}$. We consider ψ from $\mathcal{T} \smallsetminus \mathcal{T}_{\lambda}$. Then there exist block Q_m and vertex $i \in Q_m$, such that $\xi = \psi(i)$ belongs to $Q_1 \cup \cdots \cup Q_m$. From (1.1) it follows that

there exists $\varphi_1 \in \mathcal{T}_{\lambda} \setminus \{0\}$ such that $\varphi_1(\xi) \in Q_{m+1}$; there exists $\varphi_2 \in \mathcal{T}_{\lambda} \setminus \{0\}$ such that $\varphi_2(\varphi_1(\xi)) \in Q_{m+2}$;

· · ·;

there exists $\varphi_{k-m} \in \mathcal{T}_{\lambda} \setminus \{0\}$ such that $\varphi_{k-m}(\ldots \varphi_1(\xi) \ldots) \in Q_k$. Next, if m = 1 then $\psi \cdot \varphi_1 \cdot \ldots \cdot \varphi_{k-m}(i) \in Q_k$, otherwise from $\xi \in Q_1 \cup \ldots \cup Q_m$ and (1.1) it follows that $Q_m \cap Less(i) \neq \emptyset$. Then there exist $\psi_1 \in \mathcal{T}_{\lambda}$, $i_1 \in Q_{m-1}$, such that $\psi_1(i_1) = i$; there exist $\psi_2 \in \mathcal{T}_{\lambda}$, $i_2 \in Q_{m-2}$; such that $\psi_2(i_2) = i_1$; \ldots ;

there exist $\psi_{m-1} \in \mathcal{T}_{\lambda}$, $i_{m-1} \in Q_1$, such that $\psi_{m-1}(i_{m-1}) = i_{m-2}$. Then $\psi_1 \cdot \psi_2 \ldots \cdot \psi_{m-1} \cdot \psi \cdot \varphi_1 \cdot \ldots \cdot \varphi_{k-m}(i_{m-1}) \in Q_k$. So, we have come to contradiction with the condition $\mathcal{T} \in Nil(T, k)$.

Let \mathcal{T} be a semigroup from Nil(T,k). We define partial order $<^{\mathcal{T}}$ on T as following:

$$i <^T j \Leftrightarrow \exists \varphi \in \mathcal{T} \quad \varphi(j) = i.$$

Since \mathcal{T} is a subsemigroup from D_T then obviously $i <^{\mathcal{T}} j$ implies i < j. For some vertex m from T let $Less_{\mathcal{T}}(m)$ stand for the set of all vertices j from T such that $j <^{\mathcal{T}} m$. Next we consider following sets

$$P_{1} = \{i \in T \smallsetminus \{r\} \mid Less_{\mathcal{T}}(i) = \{r\}\};$$

$$P_{2} = \{i \in T \smallsetminus (\{r\} \cup P_{1}) \mid Less_{\mathcal{T}}(i) \subset (P_{1} \cup \{r\})\};$$

$$P_{3} = \{i \in T \smallsetminus (\{r\} \cup P_{1} \cup P_{2}) \mid Less_{\mathcal{T}}(i) \subset (P_{1} \cup P_{2} \cup \{r\})\};$$

$$\cdots;$$

$$P_{p} = \{i \in T \smallsetminus (\{r\} \cup P_{1} \cup \cdots \cup P_{p-1}) \mid Less_{\mathcal{T}}(i) \subset (P_{1} \cup P_{2} \cdots \cup P_{p-1} \cup \{r\})\};$$

Obviously, $P_1 \cup \cdots \cup P_p \cup \cdots = T \setminus \{r\}$. Let p_{max} be the greatest among indices p, for which $P_p \neq \emptyset$. From the fact, that \mathcal{T} is a semigroup of nilpotency class k we conclude that $p_{max} = k$. What is more, for any i, j less than k we have that $P_i \cap P_j = \emptyset$.

Sets $Q_1 = P_{p_{max}}, \dots, Q_{p_{max}} = P_1$ form a partition of set $T \smallsetminus \{1\}$ written in following as λ_T . (3)

Lemma 2. For any semigroup $\mathcal{T} \in Nil(T,k)$, partition $\lambda_{\mathcal{T}}$ belongs to $\Lambda(T,k)$.

Proof. Let *i* be from Q_l , l < k. Then there exist $\varphi \in \mathcal{T}$, $j \in Q_{l+1}$, such that $\varphi(i) = j$; hence j < i. Thus $\lambda_{\mathcal{T}}$ meets the requirement (1.1). Next, if for all w > 1 there are no vertices *m* and *l* from the block Q_w such that m < l, then $\lambda_{\mathcal{T}}$ satisfies condition (1.2). Now, let $m, h \in Q_w$ and h < m. We take a transformation φ with $dom\varphi = m$, $ran\varphi =$ *h*. It is easy to see that φ belongs to D_T . Let there be no sequence $q_1 \in Q_1, \ldots, q_{w-1} \in Q_{w-1}$ satisfying $q_1 > \ldots > q_{w-1} > m$. Then for any $\phi_1, \phi_2, \ldots, \phi_k$ elements from the semigroup $< \mathcal{T}, \varphi >$ (obtained from adjoining φ to \mathcal{T}) it is true that $\phi_1 \cdot \phi_2 \cdot \ldots \cdot \phi_k = 0$. Since \mathcal{T} is maximal, we have come to the contradiction. Thus (1.2) must be satisfied and $\lambda_{\mathcal{T}}$ belongs to $\Lambda(T, k)$.

Theorem 1. There are reciprocal mappings φ and ψ which set up oneto-one correspondence between $\Lambda(T, k)$ and Nil(T, k) defined as follows

1.
$$\varphi : \Lambda(T,k) \to Nil(T,k), \forall \lambda \in \Lambda(T,k) \ \varphi(\lambda) = \mathcal{T}_{\lambda} \ (see \ (1.1)-(1.2))$$

2.
$$\psi: Nil(T,k) \to \Lambda(T,k), \forall T \in Nil(T,k) \ \psi(T) = \lambda_T \ (see \ (3)).$$

Proof. Let λ be a partition from $\Lambda(T, k)$ with blocks Q_1, \ldots, Q_k . We consider $\psi(\varphi(\lambda)) = \psi(\mathcal{T}_{\lambda})$. It is a partition from $\Lambda(n, k)$ with blocks $Q_1^{\psi}, \ldots, Q_k^{\psi}$. For any j from the block Q_k we have: $Less_{\mathcal{T}_{\lambda}}(j) = \{r\}$. Therefore $Q_k \subset Q_k^{\psi}$. Now we take an arbitrary i from $T \smallsetminus Q_k$. From the

definition of \mathcal{T}_{λ} it follows that there exists β from \mathcal{T}_{λ} , such that $i \in dom\beta$. Therefore $Less_{\mathcal{T}_{\lambda}}(i) \neq \{r\}$ and $Q_k = Q_k^{\psi}$. Next, for any j from Q_{k-1} we have: $Less_{\mathcal{T}_{\lambda}}(j) \subset Q_k \cup \{r\} = Q_k^{\psi} \cup \{r\}$. Therefore $Q_{k-1} \subset Q_{k-1}^{\psi}$. Now we take an arbitrary i from $\mathcal{T} \setminus (Q_k \cup Q_{k-1})$. From the definition of \mathcal{T}_{λ} it follows that there exists β from \mathcal{T}_{λ} , such that $i \in dom\beta$ and $\beta(i) \in Q_{k-1}$. Therefore $i \notin Q_{k-1}^{\psi}$ and $Q_{k-1} = Q_{k-1}^{\psi}$.

Further we move by induction. Let an equality $Q_{k-l+1} = Q_{k-l+1}^{\psi}$ be held. For any *i* from Q_{k-l} an inclusion $Less_{\mathcal{T}_{\lambda}}(i) \subset Q_{k} \cup \cdots \cup Q_{k-l+1} \cup \{r\}$ holds. Simultaneously, for any *i* from $T \setminus (Q_{k} \cup \ldots \cup Q_{k-l})$ there exists β from \mathcal{T}_{λ} , such that $i \in dom\beta$ and $\beta(i) \in Q_{k-l}$. Therefore $Q_{k-l} = Q_{k-l}^{\psi}$. Hence $\psi(\varphi(\lambda)) = \lambda$. Now let us take some \mathcal{T} from Nil(T, k). We consider $\varphi(\psi(\mathcal{T})) = \varphi(\lambda_{\mathcal{T}})$. It is a semigroup from Nil(T, k). $\lambda_{\mathcal{T}}$ is a partition from $\Lambda(T, k)$ with blocks Q_1, \ldots, Q_k . Let us take some α from \mathcal{T} . For any element *j* from the block Q_k we have that $\alpha(j) = r$ (for the definition of $\lambda_{\mathcal{T}}$). Let now $j \in Q_{k-1}$. Then $\alpha(j)$ belongs to the set $Q_k \cup \{r\}$ (for the definition of $\lambda_{\mathcal{T}}$). Next, for the definition of $\lambda_{\mathcal{T}}$ for any element *i* from the block Q_{k-l} we have that $\alpha(i)$ does not belong to any of the sets $Q_1, Q_2, \ldots, Q_{k-l}$. Hence we get that \mathcal{T} belongs to $\varphi(\lambda_{\mathcal{T}})$. As \mathcal{T} is maximal among the nilpotent subsemigroups from D_n of nilpotency class k, then $\mathcal{T} = \varphi(\psi(\mathcal{T})) = \varphi(\mathcal{T}_{\lambda})$.

2. Equivalence relations \sim^{R} and \sim^{L} and their properties

Here and in the following we consider the case when T is a ray. Surely, one can number vertices in such a way that T is isomorphic to the set of natural numbers \mathbb{N} . Let's define relations \sim^R and \sim^L on some $\mathcal{T} \in$ $Nil(\mathbb{N}, k)$ as follows: for any elements x, y from $\mathcal{T} \in Nil(\mathbb{N}, k)$

- 1. $x \sim^R y \Leftrightarrow$ for all $t \in \mathcal{T}$ tx = ty;
- 2. $x \sim^L y \Leftrightarrow$ for all $t \in \mathcal{T} xt = yt$.

It is easy to prove that \sim^R and \sim^L are equivalence relations.

Proposition 1. 1. $x \sim^{R} y \Leftrightarrow \forall m \in \mathbb{N} \setminus Q_1 \quad (x(m) = y(m));$

2.
$$x \sim^{L} y \Leftrightarrow \forall m \in \mathbb{N} \text{ if } x(m) \in \bigcup_{i=1}^{k-1} Q_i \text{ then } x(m) = y(m),$$

if $x(m) \in Q_k$ then $y(m) \in Q_k.$

Proof. Let x and y be from the semigroup \mathcal{T} and $\forall t \in \mathcal{T} : tx = ty$. For any m from $\mathbb{N} \setminus Q_1$ let s be from \mathcal{T} such that rans = m. Then sx = sy implies x(m) = y(m).

Simultaneously, let x and y be from \mathcal{T} and for any m from $\mathbb{N} \setminus Q_1$ x(m) = y(m). Let's take an arbitrary element s from \mathcal{T} . Then domsx = domsy and $domsx \in \mathbb{N} \setminus Q_1$, so sx = sy and $x \sim^R y$. The second part of the proposition can be proved analogously.

Corollary 1. Let \mathcal{T} be a semigroup from $Nil(\mathbb{N}, k)$ with the correspondent partition λ from $\Lambda(\mathbb{N}, k)$. Then all the blocks of the partition λ except Q_1 are finite if and only if the number of equivalency classes generated by the equivalency relation \sim^R on the semigroup \mathcal{T} is finite.

Proof. It is obvious that if at least one of the blocks Q_2, \ldots, Q_k is infinite, then \mathcal{T} has infinite number of equivalence classes for the relation \sim^R . Simultaneously, if all the blocks Q_2, Q_3, \ldots, Q_k are finite then the number of equivalence classes is also finite and equals

$$\prod_{m \in Q_i, \ 2 \leq i \leq k} (less(m, Q_{i+1} \cup \dots \cup Q_k) + 1).$$

3. Non-isomorphism theorem

Theorem 2. Let k > 2. Then all semigroups from $Nil(\mathbb{N},k)$ are pairwise non-isomorphic.

Proof. We show that it is possible to restore the correspondent partition λ from $\Lambda(\mathbb{N}, k)$ from the properties of an arbitrary semigroup from $Nil(\mathbb{N}, k)$ as an abstract semigroup. To do this, we use induction for nilpotency class k. First we consider the case of k = 3. Let \mathcal{T} be a semigroup from $Nil(\mathbb{N}, 3)$ with a correspondent partition $\lambda \in \Lambda(\mathbb{N}, 3)$, which consists of the blocks

$$Q_1 = \{\dots, a_i, \dots, a_2, a_1\} \quad (a_1 < a_2 < \dots < a_i < \dots),$$
$$Q_2 = \{\dots, b_i, \dots, b_2, b_1\} \quad (b_1 < b_2 < \dots < b_i < \dots),$$
$$Q_3 = \{\dots, c_i, \dots, c_2, c_1\} \quad (c_1 < c_2 < \dots < c_i < \dots).$$

Let's show that

$$\min_{s \in \mathcal{T}, |s\mathcal{T}| \neq 1, |s\mathcal{T}| < \infty} |s\mathcal{T}| = less(b_1, Q_3) + 1.$$

Indeed, if $|s\mathcal{T}| \neq 1$, then there exist a and b $(a \in Q_1, b \in Q_2)$ such that s(a) = b. Then for any $c \in Q_3 \cap Less(b, Q_3)$ an ideal $s\mathcal{T}$ contains an element of rank 1 that maps a into c. Therefore $|s\mathcal{T}| \ge less(b, Q_3) + 1 \ge$

 $less(b_1, Q_3) + 1.$

On the other hand, \mathcal{T} contains a mapping of range b_1 . At the same time, $|s_0\mathcal{T}| = less(b_1, Q_3) + 1$. Therefore we have:

$$\min_{s \in \mathcal{T}, |s\mathcal{T}| \neq 1, |s\mathcal{T}| < \infty} |s\mathcal{T}| = less(b_1, Q_3) + 1.$$

For each subset A of Q_1 there is a right ideal $s\mathcal{T}$, satisfying $|s\mathcal{T}| = less(b_1, Q_3) + 1$:

$$s\mathcal{T} = \{\varphi \in \mathcal{T}, |ran\varphi| = 1, dom\varphi = A, ran\varphi \in Less(b_1, Q_3)\},\$$

and there is no other ideal $s\mathcal{T}$ of cardinality $less(b_1, Q_3) + 1$. We denote the set of such ideals by Θ_1 . By B_1 we stand for the set of all numbers bof Q_2 , for which $less(b, Q_3) = less(b_1, Q_3)$. Next, let

 $W = \{s \in \mathcal{T} | \text{if for some } t_1 \in \mathcal{T} \ st_2 \neq 0 \text{ and } t_1t_2 \neq 0 \text{ then for all } t_3 \in \mathcal{T}, st_3 \neq 0 \Rightarrow t_1t_3 \neq 0 \}.$

It is easy to verify that for all s from $W |rans \cap Q_2| = 1$.

For any set X from Θ_1 we consider the number of equivalence classes of \sim^L on the set of elements s from W such that $s\mathcal{T} = X$. If $s\mathcal{T} \in \Theta_1$ for some s of W, then there exists only one b of Q_2 , which belongs to rans, and $b \in B_1 \cap Less\left(\min_{a \in s^{-1}(b)} a, Q_2\right)$, as $B_1 \cap \left(\bigcap_{a \in s^{-1}(b)} Less(a, Q_2)\right) = B_1 \cap$ $Less\left(\min_{a \in s^{-1}(b)} a, Q_2\right)$ holds. Using proposition 1 we can conclude that among the numbers $\left|\{s \in W, sT = X\}/_{\sim^L}\right|$ of equivalency classes for the relation \sim^L on the set $\{s \in W | s\mathcal{T} = X\}$ where $X \in \Theta_1$ one can find only the numbers $|B_1|$ and $|less(a, Q_2)|$, where $|less(a, Q_2)| < |B_1|, a \in Q_1$. Hence we can say whether the set B_1 is finite or not. Next, from the abstract properties of \mathcal{T} we can get numbers

 $less(b_1, Q_3) = \dots = less(b_{|B_1|}, Q_3), |B_1|$ and the set of numbers $\Omega_1 = \{\alpha_1, \dots, \alpha_{i_1}\} = \{less(a, Q_2) | a \in Less(b_{|B_1|}, Q_1)\}.$ Now we consider

$$\Theta_2 = \bigg\{ s\mathcal{T} : \exists X \in \Theta_1, \ s\mathcal{T} = \bigcap_{\tau \in \mathcal{T}, \ \tau\mathcal{T} \cap \Theta_1 = X, \ X \neq \tau\mathcal{T}} \tau\mathcal{T} \bigg\}.$$

If Θ_2 is an empty set, then $B_1 = Q_2$. If $\Theta_2 \neq \emptyset$, then $Q_2 \smallsetminus B_1 \neq \emptyset$ and for every X from Θ_2 equality $|X| = less(b_{|B_1|+1}, Q_3)$ holds. Indeed, if $X = s\mathcal{T}$ belongs to Θ_2 , then there exists only one element b from the second block of the partition λ , which belongs to rans, because otherwise X would have two different ideals from Θ_1 . It is easy to see that $b \in$ $Q_2 \smallsetminus B_1$. In such a case $|X| = less(b, Q_3) \ge less(b_{|B_1|+1}, Q_3)$. Let s_0 be an element of rank 1 and $rans_0 = b_{|B_1|+1}$. Then $|s_0\mathcal{T}| = less(b_{|B_1|+1}, Q_3)$ and so $|X| = less(b_{|B_1|+1}, Q_3)$.

We define set B_2 as following:

$$B_2 = \Big\{ b \in Q_2, less(b, Q_3) = less(b_{|B_1|+1}, Q_3) \Big\}.$$

For any set X of Θ_2 we consider the number of equivalency classes for the relation \sim^L on the set of elements s from \mathcal{T} such that $s\mathcal{T} = X$. If $s\mathcal{T} \in \Theta_2$ for s of \mathcal{T} , then there exists only one b of Q_2 , which belongs to rans, and as $B_2 \cap \left(\bigcap_{a \in s^{-1}(b)} Less(a, Q_2)\right) = B_2 \cap Less\left(\min_{a \in s^{-1}(b)} a, Q_2\right)$, then $b \in B_2 \cap \left(\bigcap_{a \in s^{-1}(b)} Less(a, Q_2)\right)$. Hence we conclude that among the numbers $\left|\{s \in \mathcal{T} | s\mathcal{T} = X\}/_{\sim^L}\right|$ of equivalence classes for the relation \sim^L on the set $\{s \in \mathcal{T} | s\mathcal{T} = X\}$ for all $X \in \Theta_2$ there are numbers $|B_2|$ and $|less(a, Q_2)| - |B_1|$ (where $a \in (Less(b_{|B_2|+|B_1|}, Q_1) \setminus Less(b_{|B_1|}, Q_1)))$ only. Hence for the general properties of semigroup \mathcal{T} we can say whether the set B_2 is finite or not. Next, we get numbers $less(b_{|B_1|+1}, Q_3) = \ldots$ $= less(b_{|B_1|+|B_2|}, Q_3), |B_2|$ and the set of numbers $\Omega_2 = \{\alpha_1^2, ..., \alpha_{i_2}^2\} =$

$$= \{ less(a, Q_2) | a \in (Less(b_{|B_2|+|B_1|}, Q_1) \setminus Less(b_{|B_1|+1}, Q_1)) \}$$
$$(\alpha_1^2 < \alpha_2^2 < \ldots < \alpha_i^2 < \alpha_{i+1}^2 < \ldots)$$

Then we define sets

$$\Theta_{j} = \{ s\mathcal{T} \mid \exists X \in \Theta_{j-1}, \ s\mathcal{T} = \bigcap_{\tau \in \mathcal{T}, \ \tau\mathcal{T} \cap (\bigcup_{m=1}^{j-1} \Theta_{m}) = X, \ \tau\mathcal{T} \neq X} \tau\mathcal{T}) \}$$

$$B_{j} = \Big\{ b \in Q_{2}, \ less(b, Q_{3}) = less\big(b_{|B_{1}|+\ldots+|B_{j-1}|+1}, Q_{3}\big) \Big\}.$$

If Θ_j is an empty set, then $\bigcup_{i=1}^{j-1} B_i = Q_2$ and the process of considering Θ_j is finished. If not, then $Q_2 \setminus \bigcup_{i=1}^{j-1} B_i \neq \emptyset$ and it is easy to prove by induction that for each set X of $\Theta_j |X| = less(b_{|B_1|+|B_2|+...+|B_{j-1}|+1}, Q_3)$. Indeed, if $X = s\mathcal{T}$ belongs to Θ_j , then there exists only one element b from the second block of the partition λ , which belongs to rans, because otherwise X has two different ideals from Θ_1 for some i < j. It is clear that $b \in Q_2 \setminus \bigcup_{i=1}^{j-1} B_i$. In such a case $|X| = less(b, Q_3) \geq less(b_{|B_1|+|B_2|+...+|B_{j-1}|+1}, Q_3)$. Let s_0 be an element of rank 1 and $rans_0 = less(b_{|B_1|+|B_2|+...+|B_{j-1}|+1}, Q_3)$. $b_{|B_1|+|B_2|+\ldots+|B_{i-1}|+1}$. Then

$$|s_0\mathcal{T}| = less(b_{|B_1|+|B_2|+\ldots+|B_{j-1}|+1}, Q_3)$$

and so $|X| = less(b_{|B_1|+|B_2|+...+|B_{j-1}|+1}, Q_3).$

For each set X of Θ_j we consider number of equivalency classes for the relation \sim^L on the set $\{s \in \mathcal{T} \mid s\mathcal{T} = X\}$. If $s\mathcal{T} \in \Theta_j$ for some s from \mathcal{T} , then there exists only one b of Q_2 which belongs to doms, and at that $b \in B_j \cap \left(\bigcap_{a \in s^{-1}(b)} Less(a, Q_2)\right) = B_j \cap Less\left(\min_{a \in s^{-1}(b)} a, Q_2\right)$. Hence we have that among the numbers of equivalency classes for the relation \sim^L on the set $\{s \in Ann_L\mathcal{T} \mid s\mathcal{T} = X\}$, where X is an element of Θ_j , there are numbers $|B_j|$ and $|less(a, Q_2)| - \sum_{i=1}^{j-1} |B_i|$ (where $a \in (Less(b_{|B_1|+\dots+|B_j|}, Q_1) \setminus Less(b_{|B_1|+\dots+|B_{j-1}|}, Q_1)))$ only. Hence we can say whether the set B_j is finite or not. So, for the general properties of \mathcal{T} we can obtain numbers $less\left(b_{|B_1|+\dots+|B_{j-1}|+1}, Q_3\right) = \dots =$ $less(b_{|B_1|+\dots+|B_j|}, Q_3), |B_j|$ and the set of numbers $\Omega_j = \{\alpha_1^j, \dots, \alpha_{i_j}^j\} =$

$$= \{ less(a, Q_2) - \sum_{i=1}^{j-1} B_i | : a \in Less(b_{|B_1| + \dots + |B_j|}, Q_1) \setminus Less(b_{|B_1| + \dots + |B_{j-1}|}, Q_1) \}$$

At last we have next sets of numbers:

1.
$$\{less(b,Q_3), b \in Q_2\}$$

2. $\{|B_1|, \dots, |B_i|, \dots\}$
3. $\Omega_j = \{less(a,Q_2) - \sum_{i=1}^{j-1} B_i| : a \in Less(b_{(\sum_{i=1}^{j} |B_i|)}, Q_1) \setminus Less(b_{(\sum_{i=1}^{j-1} |B_i|)}, Q_1)\}$.

It is clear that $\forall a \in Q_1$ either there exists α_m^l from some Ω_m such that $less(a, Q_2) = \alpha_m^l + |B_1| + \cdots + |B_{m-1}|$ or there exists such j that $less(a, Q_2) = |B_j|$.

Let's now consider such ideals X from Θ_1 , for which

- 1. number of equivalence classes for the relation \sim^{L} on the set $\{s \in \mathcal{T}, s\mathcal{T} = X\}$ equals α_{2}^{1} the next to the least number of Ω_{1} ;
- 2. the set $\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}$ is finite.

To each such ideal we conform a number $|\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}|$. Considering all sets X satisfying 1-2, we get some set of numbers $|\{s \in$ $Ann_L \mathcal{T}, s\mathcal{T} = X$ with repetition, which we denote by $\Psi_{\alpha_1^1}$ (under a set with a repetition we mean a set where each number has it's repetition factor). If number of equivalence classes for the relation \sim^{L} on the set $\{s \in \mathcal{T}, s\mathcal{T} = X\}$ is equal to α_2^1 , then for $A_{\alpha_1}^1 = \{a \in Q_1 : less(a, Q_2) =$ α_1^1 }, $((s \in Ann_L \mathcal{T}) \land (s\mathcal{T} = X))$ implies $s(A_{\alpha_1}^1) \subset Q_3$. Also for some a from Q_1 less $(a, Q_2) < |B_1|$ implies $Less(a, Q_3) = Less(b_{k_2}, Q_3)$ and therefore $less(a, Q_3) = less(b_{k_2}, Q_3)$. Thus the least element of Ψ_{α_1} is the number $\alpha_2^1 \left(less(b_{k_2}, Q_3) + 1 \right)^{\left| A_{\alpha_1^1}^1 \right|}$. Hence we can get $|A_{\alpha_1^1}^1|$ from the general properties of semigroup \mathcal{T} . Now let's consider ideals X from Θ_1 such that the number of equivalence classes for the relation \sim^{L} on the set $\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}$ equals α_3^1 – the number from Ω_1 , next to α_2^1 , and the set $\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}$ is finite. To each such ideal we conform the number $|\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}|$, considering all such X, we get some set of natural numbers $|\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}|$ with repetition, which we denote by $\Psi_{\alpha_2^1}$. Let $A_{\alpha_2^1}^1 = \{a \in Q_1 : less(a, Q_2) = \alpha_2^1\}$. The least element of $\Psi_{\alpha_2^1}$ is the number $\alpha_3(less(b_{k_2},Q_3)+1)^{|A_{\alpha_1}^1|+|A_{\alpha_2}^1|}$. Hence we get the number $|A_{\alpha_2}^1|$ from the abstract properties of \mathcal{T} . Now let $A_{\alpha_i}^1 =$ $\left\{a \in Q_1 : less(a, Q_2) = \alpha_i^1\right\}$ for every α_i^1 of Ω_1 . Next we consider ideals X from Θ_1 such that the number of equivalence classes for the relation \sim^{L} on the set $\{s \in \mathcal{T}, s\mathcal{T} = X\}$ is equal to an element α_{i}^{1} from Ω_{1} , and the set $\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}$ is finite. To each such ideal we conform a number $|\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}|$; taking all such X, we get some set of natural numbers $|\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}|$ with repetition, which we denote by $\Psi_{\alpha_i^1}$. The least element of $\Psi_{\alpha_i^1}$ is $\alpha_3 \left(less(b_{k_2}, Q_3) + 1 \right)^{\sum_{l=1}^{i-1} |A_{\alpha_l}^1|}$. Therefore we can set $|A_{\alpha_l}^1| = |A_{\alpha_l}^1|$. Therefore we can get $|A_{\alpha_{i-1}}^1|$ from the general properties of our semigroup. Let $A_{|B_1|}$ denote the set of all a from Q_1 such that $less(a, Q_2) = |B_1|$. Now let's assume that the set B_1 is finite. We investigate ideals X of Θ_1 for which equivalence classes for the relation \sim^L on the set $\{s \in$ $Ann_L\mathcal{T}, s\mathcal{T} = X$ equals $|B_1|$, and the set $\{s \in Ann_L\mathcal{T}, s\mathcal{T} = X\}$ is finite. To each such ideal we conform the number $|\{s \in Ann_L \mathcal{T}, s\mathcal{T} =$ X}. We get the set of numbers $|\{s \in Ann_L \mathcal{T}, s\mathcal{T} = X\}|$ with repetition, let's denote it by Γ . Clearly, each mapping s from the left annulator \mathcal{T} , for which $s\mathcal{T} = X$, maps some nonempty subset from $Q_1 \smallsetminus \bigcup A_{\alpha_1}$ into $\alpha_i^1 \in \Omega_1$

an element from B_1 , and all the other elements from Q_1 — into elements

from $Q_3 \cup \{1\}$. At that *s* maps elements $a \in \bigcup_{\alpha \in \Omega_1} A_\alpha$ into $Q_3 \cup \{1\}$, and at least one element of $A_{|B_1|}$ must be mapped into Q_2 . Therefore Γ contains numbers of type $|B_1| \left(\prod_{a \in A} (less(a, Q_3) + 1) \right)$, where $A \subset Q_1, A \cap A_{|B_1|} \neq A_{|B_1|}$, and $\bigcup_{\alpha_i^1 \in \Omega_1} A_{\alpha_i^1} \subset A$. The least element among all elements of Γ

is $|B_1| \left(less(b_{k_2}, Q_3) + 1 \right)^{\sum_{\alpha_i^1 \in \Omega_1} |A_{\alpha_i^1}|}$. Hence we get $|A_{\alpha_{i_1}}|$ (α_{i_1} is the greatest number of Ω .) Let's denote the least element of Γ by ξ and

greatest number of Ω_1). Let's denote the least element of Γ by ξ , and $\bigcup_{\alpha_i^1 \in \Omega_1} A_{\alpha_i^1}$ by A_{Ω_1} . Now we consider ideals X from Θ_2 such that number

of equivalence classes for the relation \sim^{L} on the set $\{s \in Ann_{L}\mathcal{T}, s\mathcal{T} = X\}$ is equal to the least element α_{1}^{2} of Ω_{2} ; and the set $\{s \in Ann_{L}\mathcal{T} : s\mathcal{T} = X\}$ is finite. To each such ideal we conform the number $|\{s \in Ann_{L}\mathcal{T}, s\mathcal{T} = X\}|$. We get some set of numbers with repetition, which we denote by $\Psi_{\alpha_{1}^{2}}$. If Θ_{2} is empty, then $\Psi_{\alpha_{1}^{2}}$ is also empty and thus Q_{2} is finite and for all $a \in Q_{1}$ less $(a, Q_{3}) = less(b_{1}, Q_{3})$. If Θ_{2} is not empty, then $\Psi_{\alpha_{1}^{2}}$ is not empty too, and the least element of $\Psi_{\alpha_{1}^{2}}$ is the number

 $\alpha_1^2 \left(less(b_1, Q_3) + 1 \right)^{\alpha \in \Omega_1} \left| \begin{array}{c} A_{\alpha}^{1} \\ \left(\prod_{a \in Q_1, \ less(s, Q_2) = |B_1|} (less(a, Q_3) + 1) \right), \text{ in } \\ \text{case of the set } A_{|B_1|} = \left\{ a \in Q_1 : \ less(a, Q_2) = |B_1| \right\} \text{ is nonempty, and } \\ \sum_{\substack{\Delta \\ 1}} |A_{\alpha}^{1}| \\ \alpha_1^2 (less(b_1, Q_3) + 1)^{\alpha \in \Omega_1} \\ \text{otherwise. Hence we can say whether the set } \\ A_{|B_1|} \text{ is empty, and if not we have the number} \end{array} \right)$

$$\prod_{a \in A_{|B_1|}} (less(a, Q_3) + 1).$$

Let

$$\eta = \begin{cases} \prod_{a \in A_{|B_1|}} \left(less(a, Q_3) + 1 \right), & A_{|B_1|} = \emptyset; \\ 1, & A_{|B_1|} <> \emptyset. \end{cases}$$

Let's remove one number ξ from Γ . Now the least element of Γ and the one next to it are $\xi \cdot (less(a_{|A_{\Omega_1}|+1}, Q_3)+1)$ and $\xi \cdot (less(a_{|A_{\Omega_1}|+2}, Q_3)+1)$. So, we get numbers $less(a_{|A_{\Omega_1}|+1}, Q_3)$ and $less(a_{|A_{\Omega_1}|+2}, Q_3)$. We remove the number $\xi \cdot (less(a_{|A_{\Omega_1}|+2}, Q_3)+1)$ from Γ ; if $\eta \neq (less(a_{|A_{\Omega_1}|+1}, Q_3)+2)$ then we take away a number $\xi \cdot less(a_{|A_{\Omega_1}|+1}, Q_3)$ from Γ . Next, if $\eta \neq (less(a_{|A_{\Omega_1}|+2}, Q_3)+1)(less(a_{|A_{\Omega_1}+1|}, Q_3)+1)$ and $\eta \neq (less(a_{|A_{\Omega_1}|}, Q_3)+1)$, then we take away the number $\xi \cdot \left(less(a_{|A_{\Omega_1}|+1}, Q_3) + 1 \right) \left(less(a_{|A_{\Omega_1}|+2}, Q_3) + 1 \right) \text{ from } \Gamma.$ Now the least element of Γ is $\xi \left(less(a_{|A_{\Omega_1}|+3}, Q_3) + 1 \right)$. So we get $less(a_{|A_{\Omega_1}|+3}, Q_3)$. We remove next numbers from Γ

- $\xi(less(a_{|A_{\Omega_1}|+3}, Q_3) + 1);$
- $\xi (less(a_{|A_{\Omega_1}|+3}, Q_3) + 1) (less(a_{|A_{\Omega_1}|+1}, Q_3) + 1);$
- $\xi (less(a_{|A_{\Omega_1}|+3}, Q_3) + 1) (less(a_{|A_{\Omega_1}|+1}, Q_3) + 1),$ if $(less(a_{|A_{\Omega_1}|+1}, Q_3) + 1) \neq \eta);$
- $\bullet (less(a_{|A_{\Omega_1}|+3}, Q_3)+1) (less(a_{|A_{\Omega_1}|+1}, Q_3)+1) (less(a_{|A_{\Omega_1}|+2}, Q_3)+1), \\ \text{if } (less(a_{|A_{\Omega_1}|+1}, Q_3)+1) (less(a_{|A_{\Omega_1}|+2}, Q_3)+1) \neq \eta \text{ and} \\ (less(a_{|A_{\Omega_1}|+3}, Q_3)+1) (less(a_{|A_{\Omega_1}|+1}, Q_3)+1) (less(a_{|A_{\Omega_1}|+2}, Q_3)+1) \neq \eta.$

Now the least element of Γ is $|B_1| \left(less(a_{|A_{\Omega_1}|+4}, Q_3) + 1 \right)$. We remove each time the least element and it's products with already removed numbers from Γ . Gradually we obtain numbers $less(a, Q_3)$ for all numbers aof the first block of the partition.

Now let B_1 be an infinite set. Obviously, in such a case Q_3 must be finite and thus for every element a from Q_1 an equality $less(a, Q_3) = less(b_1, Q_3) + 1$ holds. Next, Ω_1 also is an infinite set and $Q_1 = \bigcup_{\alpha \in \Omega_1} A_{\alpha}$ (implies from the definition of the set $\Lambda(\mathbb{N}, k)$); considering minimal elements of described above sets $\Psi_{\alpha_i^1}(\alpha_i^1 \in \Omega_1)$ we can get cardinalities of sets $|A_{\alpha^1}|$.

For any natural n we denote by A_n the set

$$\{a \in A : less(a, Q_2) = n\}.$$

To each of sets Ω_j we add the number $\alpha_m^j = |B_j|, m = \max_{\alpha_i^j \in \Omega_j} i + 1$. Now we have some set Ω'_j . We consider ideals X of Θ_j such that the number of equivalence classes for the relation \sim^L on the set $\{s \in Ann_L\mathcal{T}, s\mathcal{T} = X\}$ equals some $\alpha_l^j \in \Omega'_j$, and the set $\{s \in Ann_L\mathcal{T} : s\mathcal{T} = X\}$ is finite. To every such ideal we conform the number $|\{s \in Ann_L\mathcal{T}, s\mathcal{T} = X\}|$. Hence we get some set of numbers with repetition $\Phi_{\alpha_j^j}$ with the least element

$$\alpha_l^j \bigg(\prod_{a \in Q_1: \ less(a,Q_2) \leqslant |B_{j-1}|} (less(a,Q_3) + 1) \bigg) \bigg(less \bigg(b_{|B_1| + \dots + |B_{j-1}| + 1}, Q_3 \bigg) + 1 \bigg)^{\sum_{q=1}^{l-1} |A_{\alpha_q}^j|},$$

if α_l^j is not the least element of Ω_j' ; and

$$\alpha_l^j \cdot \bigg(\prod_{a \in Q_1: less(a,Q_2) \leq |B_{j-1}|} (less(a,Q_3) + 1)\bigg),$$

if α_l^j is the least element of Ω'_j . Hence we gradually get numbers $|A_{\alpha_l^j}|$ for all α_i^j from Ω_j . Now we divide the least element of the set $\Phi_{\alpha_m^{j-1}}$ by the least element of the set $\Phi_{\alpha_1^j}$ ($\alpha_m^{j-1} = \max_{\alpha \in \Omega'_{j-1}} \alpha$). If the obtained number equals 1, then the set $A_{|B_j|}$ is empty; otherwise we get the number $\prod_{a \in A_{|B_j|}} (less(a, Q_3) + 1)$. As we already know numbers $A_{|\alpha|}$ where $\alpha \in$ $\Omega'_1 \cup \Omega_2$ and $less(a, Q_3)$ for each $a \in Q_1$, then we can find i such that the

obtained number $\prod_{a \in A_{|B_j|}} (less(a, Q_3) + 1)$ is equal to the number

$$\prod_{\substack{\alpha \in \Omega_1' \cup \Omega_2}} less(a_l, Q_3).$$

So, we get $|A_{|B_j|}| = i$. Analogously we get numbers $|A_{|B_j|}|$, j > 2. It is necessary to note that if at some step B_j is an infinite set, then it means that the block Q_3 is finite and $Q_1 = \bigcup_{\substack{\alpha \in \bigcup_{1 \le i \le j} \Omega_i}} A_{\alpha}$. As for any a

from $Q_1 \ less(a, Q_3)$ belongs to $\bigcup_{i=1}^{\infty} \Omega'_i$, then for any *a* from Q_1 we have the number $less(a, Q_2)$. So, we get such numbers :

- $less(a, Q_2) \forall a \in Q_1;$
- $less(a, Q_3) \forall a \in Q_1;$
- $less(b, Q_3) \forall b \in Q_2.$

Now we show that one can obtain the elements of the blocks Q_1 , Q_2 , Q_3 from these numbers. Really, we can get all the numbers of the first block. Indeed, for some $a_i \in Q_1$ we have:

$$a_j = less(a_j, Q_3) + less(a_j, Q_2) + 1 + j.$$

Next, for $b_j \in Q_2$ we have that $less(b_j, Q_3) = |\{a \in Q_1 : less(a, Q_2) < j\}|$; and for $c_j \in Q_3$ it is true that $less(c_j, Q_2) = |\{b \in Q_2 : less(b, Q_3) < j\}|$ and $less(c_j, Q_1) = |\{b \in Q_1 : less(b, Q_3) < j\}|$. Hence we get elements of blocks Q_2 and Q_3 :

$$b_{j} = less(b_{j}, Q_{3}) + less(b_{j}, Q_{1}) + j + 1;$$

$$c_{j} = less(c_{j}, Q_{1}) + less(c_{j}, Q_{2}) + j + 1.$$

So, for abstract properties of semigroup \mathcal{T} it is possible to restore the corresponding partition from $\Lambda(\mathbb{N},3)$; then it means that non-isomorphic semigroups correspond to different partitions, so the theorem is proved for k = 3.

Now suppose the statement of the theorem holds for all $k \leq k_0$. Let \mathcal{T} be a semigroup from $Nil(\mathbb{N}, k_0 + 1)$, and partition λ is the respective partition from $\Lambda(\mathbb{N}, k_0 + 1)$ with blocks $Q_1, Q_2, \ldots, Q_{k_0}, Q_{k_0+1}$. Now let's consider the set

$$S_1 = \{ s \in \mathcal{T} : \forall a_1, \dots, a_{k_0-1} \in \mathcal{T} \quad s \cdot a_1 \cdot \dots \cdot a_{k_0-1} = 0 \}.$$

It is easy to see that a transformation of \mathcal{T} belongs to S_1 if and only if its range has empty intersection with the second block of the partition λ . It is also obvious that S is a subsemigroup of \mathcal{T} . More, S_1 belongs to $Nil(\mathcal{T}, k_0)$. Really, there is a correspondent partition from $\Lambda(\mathcal{T}, k_0)$ with blocks $Q_1 \cup Q_2, \ldots, Q_{k_0+1}$. Then for the induction assumption one can obtain the numbers of blocks $Q_1 \cup Q_2, Q_3, \ldots, Q_{k_0+1}$. Next, let's consider the set

$$S_2 = \{ s \in \mathcal{T} : \forall a_1, \dots, a_{k_0-1} \in \mathcal{T} \mid a_1 \cdot \dots \cdot a_{k_0-1} \cdot s = 0 \}.$$

Analogously, a transformation of \mathcal{T} belongs to S_2 if and only if its domain has empty intersection with the next to the last block of the partition λ ; and S_2 is a maximal nilpotent subsemigroup of nilpotency class k_0 with a corresponding partition having blocks $Q_1, Q_2, \ldots, Q_{k_0} \cup Q_{k_0+1}$. For the induction assumption one can obtain the numbers of the first block Q_1 . So, we have the numbers of all the blocks of the partition λ . So, for the properties \mathcal{T} as abstract semigroup we get elements of the blocks of the correspondent partition, so the theorem is proved.

Corollary 2. Let Nil(n,k) denote the set of all maximal nilpotent subsemigroups of the semigroup of oreder-decreasing transformations of the set $\{1, \ldots, n\}$. Then all the semigroups from $\bigcup_{\substack{n \ge 4\\ 3 \le k \le n-1}} Nil(n,k)$ are pairewise

non-isomorphic.

References

- [1] O.G. Ganyushkin, V.S. Mazorchuk. On the structure of IO_n . Semigroup Forum, Vol.66, 455-483(2003).
- [2] O.G. Ganyushkin, T.V. Kormysheva. Isolated and nilpotent subsemigroups of a finite inverse symmetric semigroup(Ukrainian), Dopov. Akad. Nauk Ukrainy 9(1993), 5-9.
- [3] J. M. Howie. Combinatorial and probabilistic results in transformation semigroups. (English) Ito, Masami (ed.) et al., Words, languages and combinatorics II. Proceedings of the 2nd international conference, Kyoto, Japan, August 25-28, 1992. Singapore: World Scientific. 200-206 (1994).
- J.E. Pin. Varieties of formal languages(Paris: Masson,1984); English translation, translated by A.Howie(Oxford: North Oxford Academic Publishers Ltd.,1986).
- [5] A. Umar. On the ranks of certain finite semigroups of order-decreasing transformations. Portugalie Mathematica, Vol. 53, Fasc.1, 23-34(1996).
- [6] A. Umar. On the semigroups of order-decreasing finite full transformations. Proceeding of the Royal Society of Edinburgh, 120A, 129-142(1992).
- [7] A. Vernitskii. Semigroups of order-decreasing graph endomorphism. Semigroup Forum Vol. 58, 222-240(1999).
- [8] A.Stronska. Nilpotent subsemigroups of the semigroup of order-decreasing transformations. Matematychni Studii, Vol. 22, No. 2 (2004).

CONTACT INFORMATION

 A. Stronska
 Kyiv National Taras Shevchenko University, department of algebra and mathematical logics, Glushkova st., 6, Kyiv.
 E-Mail: astra@univ.kiev.ua

Received by the editors: 12.12.2004 and in final form 29.03.2007.