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Abstract. This paper deals with a semigroup of order-

decreasing transformations of a rooted tree. Such are the trans-

formations α of some rooted tree G satisfying following condition:

for any x from G α(x) belongs to a simple path from x to the

root vertex of G. We describe all subsemigroups of the mentioned

semigroup, which are maximal among nilpotent subsemigroups of

nilpotency class k in our semigroup. In the event when rooted tree

is a ray we prove that all these maximal subsemigroups are pairwise

nonisomorphic.

Introduction

Let T be a rooted tree with a natural partial order defined on the set of
vertices (i.e. x < y if x belongs to a simple path from y to the root of
the tree). Let TT be a symmetric semigroup of all transformations of set
of vertices of the rooted tree T . We do transformation from left to right,
i.e. (ϕ · ψ)(x) = ψ(ϕ(x)). A transformation α ∈ TT is called an order-
decreasing transformation if for any x from T an inequality α(x) 6 x
holds. It is easy to see that the set DT of all order-decreasing transfor-
mations from TT forms a semigroup. In case of T is a finite chain this
semigroup is called Dn. The semigroup Dn has been studied by many
algebraists. Being introduced in Pin’s monograph([4]) in connection with
some problems of formal languages it was later considered by Howie at
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his lectures given in the University of Lisbon on combinatoric and arith-
metical problems of the theory of transformation semigroup (some com-
binatoric results on Dn can be viewed in [3]) and also by Higgings. Umar
wrote a series of papers (see, e.g. [5], [6]), investigating ideals, Rees
congruences, idempotent rank and Green relations on Dn. More general
semigroup of all contraction endomorphisms of arbitrary finite graph was
considered by Vernitskii ([7]).

As DT contains a zero 0, a transformation mapping all the vertices
into the root, a question on study of non-trivial nilpotent subsemigroups
from DT naturally arises. For any mapping s from some nilpotent sub-
semigroup of DT , we name by domain of s (doms) the set of vertices,
which s does not map into the root; by the range of s (rans) we name
the set of non-root vertices from s(T ); and by the rank of s we name
the number of elements of rans. Let Nil(T, k) denote the set of sub-
semigroups from DT , which are maximal among nilpotent subsemigroups
from DT of nilpotency class k. The case when the tree is a finite chain
was investigated in [8]. In our paper we describe all the semigroups from
Nil(T, k), and prove that all these semigroups are pairwise nonisomor-
phic in case when rooted tree T is a ray. Proving that we used the method
of matching of nilpotent subsemigroups of the transformations semigroup
to special partially ordered sets, this method first appeared in [2] and is
explicitly described in [1].

1. The structure of maximal nilpotent subsemigroups

from DT

Let m be a vertex of T and A be a subset of the set of all vertices of
T and m 6∈ A. Then we denote by Less(m,A) the set of all vertices
from A less than m; by Up(m,A) we denote the set of all vertices from
A greater than m. By less(m,A) and up(m,A) we denote cardinalities
of sets Less(m,A) and Up(m,A) correspondingly; by the Less(m) and
Up(m) the sets Less(m,T r {m}) and Up(m,T r {m}) correspondingly.
We fix some natural k less than the number of vertices of T and define
Λ(T, k) as a set of ordered partitions (i.e. with defined order of blocks
(subsets)) of the non-root vertices of T into k nonempty non-overlapping
blocks Q1, . . . , Qk, such that

∀1 6 i < k, ∀l ∈ Qi ∃m ∈ Qi+1 m < l; (1.1)

and ∀1 < i 6 k, ∀h ∈ Qi

(Qi ∩ Less(h) 6= ∅) ⇒ (∃l1 ∈ Q1, · · · ,∃li−1 ∈ Qi−1 l1 > · · · > li−1 > h).(1.2)
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Let’s denote the root of tree T as r. For some partition λ from Λ(T, k)
with blocks Q1, . . . , Qk we consider
Tλ={ϕ ∈ DT |∀m 6 k,∀i ∈ Qm ϕ(i) ∈ (Qm+1∪· · ·∪Qk∪{r})∩Less(i)}.

It is easy to verify that Tλ is a subsemigroup from DT .

Lemma 1. Tλ ∈ Nil(T, k).

Proof. For any ϕ1, . . . , ϕk from Tλ and for any non-root vertex i from T
we have:

ϕ1(i)∈Q2 ∪ · · · ∪Qk ∪ {r}; ϕ2(ϕ1(i))∈Q3 ∪ · · · ∪Qk ∪ {r}; . . . ;

ϕk(ϕk−1(. . . ϕ1(i) . . .))∈{r}.

Therefore Tλ is nilpotent of nilpotency class not greater than k. Simulta-
neously, one can choose k − 1 elements from Tλ, such that their product
is not equal to zero. (e.g., one can select ϕ∗

1, . . . , ϕ
∗
k−1, such that for some

l1 from Q1 ϕ
∗
1(l1) = l2 ∈ Q2, ϕ

∗
2(l2) = l3 ∈ Q3, . . . , ϕ

∗
k−1(lk−1) = lk ∈

Qk, lk 6= r. The existence of l2 ∈ Q2, . . . , lk ∈ Qk such that l1 < l2 <
. . . < lk, follows from the definition of λ, (1.1). Then ϕ∗

1·ϕ
∗
1·. . .·ϕ

∗
k−1 6= 0).

Hence we have that Tλ is of nilpotency class k. Now we show the
maximality of Tλ. Indeed, let Tλ be contained in some semigroup T from
Nil(T, k) and T 6= Tλ. We consider ψ from T r Tλ. Then there exist
block Qm and vertex i ∈ Qm, such that ξ = ψ(i) belongs to Q1∪· · ·∪Qm.
From (1.1) it follows that
there exists ϕ1 ∈ Tλ r {0} such that ϕ1(ξ) ∈ Qm+1;
there exists ϕ2 ∈ Tλ r {0} such that ϕ2(ϕ1(ξ)) ∈ Qm+2;
. . .;
there exists ϕk−m ∈ Tλ r {0} such that ϕk−m(. . . ϕ1(ξ) . . .) ∈ Qk.
Next, if m = 1 then ψ · ϕ1 · . . . · ϕk−m(i) ∈ Qk, otherwise from ξ ∈
Q1 ∪ . . . ∪Qm and (1.1) it follows that Qm ∩ Less(i) 6= ∅. Then
there exist ψ1 ∈ Tλ, i1 ∈ Qm−1, such that ψ1(i1) = i;
there exist ψ2 ∈ Tλ, i2 ∈ Qm−2; such that ψ2(i2) = i1;
. . .;
there exist ψm−1 ∈ Tλ, im−1 ∈ Q1, such that ψm−1(im−1) = im−2.
Then ψ1 ·ψ2 . . . ·ψm−1 ·ψ ·ϕ1 · . . . ·ϕk−m(im−1) ∈ Qk. So, we have come
to contradiction with the condition T ∈ Nil(T, k).

Let T be a semigroup from Nil(T, k). We define partial order <T on
T as following:

i <T j ⇔ ∃ϕ ∈ T ϕ(j) = i.

Since T is a subsemigroup from DT then obviously i <T j implies i < j.
For some vertex m from T let LessT (m) stand for the set of all vertices
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j from T such that j <T m. Next we consider following sets

P1 = {i ∈ T r {r} | LessT (i) = {r}};

P2 = {i ∈ T r ({r} ∪ P1) | LessT (i) ⊂ (P1 ∪ {r})};

P3 = {i ∈ T r ({r} ∪ P1 ∪ P2) | LessT (i) ⊂ (P1 ∪ P2 ∪ {r})};

· · · ;

Pp = {i ∈ Tr({r}∪P1∪· · ·∪Pp−1) | LessT (i) ⊂ (P1∪P2 · · ·∪Pp−1∪{r})};

· · ·

Obviously, P1 ∪ · · · ∪Pp ∪ · · · = T r {r}. Let pmax be the greatest among
indices p, for which Pp 6= ∅. From the fact, that T is a semigroup of
nilpotency class k we conclude that pmax = k. What is more, for any i, j
less than k we have that Pi ∩ Pj = ∅.

Sets Q1 = Ppmax , . . . , Qpmax = P1 form a partition of set T r{1} writ-
ten in following as λT . (3)

Lemma 2. For any semigroup T ∈ Nil(T, k), partition λT belongs to
Λ(T, k).

Proof. Let i be from Ql, l < k. Then there exist ϕ ∈ T , j ∈ Ql+1,
such that ϕ(i) = j; hence j < i. Thus λT meets the requirement (1.1).
Next, if for all w > 1 there are no vertices m and l from the block Qw
such that m < l, then λT satisfies condition (1.2). Now, let m,h ∈ Qw
and h < m. We take a transformation ϕ with domϕ = m, ranϕ =
h. It is easy to see that ϕ belongs to DT . Let there be no sequence
q1 ∈ Q1, . . . , qw−1 ∈ Qw−1 satisfying q1 > . . . > qw−1 > m. Then for
any φ1, φ2, . . . , φk elements from the semigroup < T , ϕ > (obtained from
adjoining ϕ to T ) it is true that φ1 ·φ2 · . . . ·φk = 0. Since T is maximal,
we have come to the contradiction. Thus (1.2) must be satisfied and λT
belongs to Λ(T, k).

Theorem 1. There are reciprocal mappings ϕ and ψ which set up one-
to-one correspondence between Λ(T, k) and Nil(T, k) defined as follows

1. ϕ : Λ(T, k) → Nil(T, k), ∀λ ∈ Λ(T, k) ϕ(λ) = Tλ (see (1.1)-(1.2))

2. ψ : Nil(T, k) → Λ(T, k), ∀T ∈ Nil(T, k) ψ(T ) = λT (see (3)).

Proof. Let λ be a partition from Λ(T, k) with blocks Q1, . . . , Qk. We
consider ψ(ϕ(λ)) = ψ(Tλ). It is a partition from Λ(n, k) with blocks

Qψ1 , . . . , Q
ψ
k . For any j from the block Qk we have: LessTλ

(j) = {r}.

Therefore Qk ⊂ Qψk . Now we take an arbitrary i from T rQk. From the
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definition of Tλ it follows that there exists β from Tλ, such that i ∈ domβ.
Therefore LessTλ

(i) 6= {r} and Qk = Qψk . Next, for any j from Qk−1 we

have: LessTλ
(j) ⊂ Qk ∪ {r} = Qψk ∪ {r}. Therefore Qk−1 ⊂ Qψk−1. Now

we take an arbitrary i from T r(Qk∪Qk−1). From the definition of Tλ it
follows that there exists β from Tλ, such that i ∈ domβ and β(i) ∈ Qk−1.

Therefore i 6∈ Qψk−1 and Qk−1 = Qψk−1.

Further we move by induction. Let an equality Qk−l+1 = Qψk−l+1 be
held. For any i from Qk−l an inclusion LessTλ

(i) ⊂ Qk∪· · ·∪Qk−l+1∪{r}
holds. Simultaneously, for any i from T r (Qk ∪ . . .∪Qk−l) there exists β

from Tλ, such that i ∈ domβ and β(i) ∈ Qk−l. Therefore Qk−l = Qψk−l.
Hence ψ(ϕ(λ)) = λ. Now let us take some T from Nil(T, k). We consider
ϕ(ψ(T )) = ϕ(λT ). It is a semigroup from Nil(T, k). λT is a partition
from Λ(T, k) with blocks Q1, . . . , Qk. Let us take some α from T . For
any element j from the block Qk we have that α(j) = r (for the definition
of λT ). Let now j ∈ Qk−1. Then α(j) belongs to the set Qk ∪ {r} (for
the definition of λT ). Next, for the definition of λT for any element i
from the block Qk−l we have that α(i) does not belong to any of the
sets Q1, Q2, . . . , Qk−l. Hence we get that T belongs to ϕ(λT ). As T is
maximal among the nilpotent subsemigroups from Dn of nilpotency class
k, then T = ϕ(ψ(T )) = ϕ(Tλ).

2. Equivalence relations ∼R and ∼L and their properties

Here and in the following we consider the case when T is a ray. Surely,
one can number vertices in such a way that T is isomorphic to the set
of natural numbers N. Let’s define relations ∼R and ∼L on some T ∈
Nil(N, k) as follows: for any elements x, y from T ∈ Nil(N, k)

1. x ∼R y ⇔ for all t ∈ T tx = ty;

2. x ∼L y ⇔ for all t ∈ T xt = yt.

It is easy to prove that ∼R and ∼L are equivalence relations.

Proposition 1. 1. x ∼R y ⇔ ∀m ∈ N rQ1 (x(m) = y(m));

2. x ∼L y ⇔ ∀m ∈ N if x(m) ∈
k−1
⋃

i=1
Qi then x(m) = y(m),

if x(m) ∈ Qk then y(m) ∈ Qk.

Proof. Let x and y be from the semigroup T and ∀t ∈ T : tx = ty. For
any m from N rQ1 let s be from T such that rans = m. Then sx = sy
implies x(m) = y(m).
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Simultaneously, let x and y be from T and for any m from N r Q1

x(m) = y(m). Let’s take an arbitrary element s from T . Then domsx =
domsy and domsx ∈ N r Q1, so sx = sy and x ∼R y. The second part
of the proposition can be proved analogously.

Corollary 1. Let T be a semigroup from Nil(N, k) with the correspon-
dent partition λ from Λ(N, k). Then all the blocks of the partition λ except
Q1 are finite if and only if the number of equivalency classes generated by
the equivalency relation ∼R on the semigroup T is finite.

Proof. It is obvious that if at least one of the blocks Q2, . . . , Qk is infinite,
then T has infinite number of equivalence classes for the relation ∼R.
Simultaneously, if all the blocks Q2, Q3,. . . ,Qk are finite then the number
of equivalence classes is also finite and equals

∏

m∈Qi, 26i6k

(less(m,Qi+1 ∪ · · · ∪Qk) + 1).

3. Non-isomorphism theorem

Theorem 2. Let k > 2. Then all semigroups from Nil(N,k)are pairwise
non-isomorphic.

Proof. We show that it is possible to restore the correspondent partition λ
from Λ(N, k) from the properties of an arbitrary semigroup fromNil(N, k)
as an abstract semigroup. To do this, we use induction for nilpotency
class k. First we consider the case of k = 3. Let T be a semigroup from
Nil(N, 3) with a correspondent partition λ ∈ Λ(N, 3), which consists of
the blocks

Q1 = {. . . , ai, . . . , a2, a1} (a1 < a2 < . . . < ai < . . .),

Q2 = {. . . , bi, . . . , b2, b1} (b1 < b2 < . . . < bi < . . .),

Q3 = {. . . , ci, . . . , c2, c1} (c1 < c2 < . . . < ci < . . .).

Let’s show that

min
s∈T , |sT |6=1, |sT |<∞

|sT | = less(b1, Q3) + 1.

Indeed, if |sT | 6= 1, then there exist a and b (a ∈ Q1, b ∈ Q2) such that
s(a) = b. Then for any c ∈ Q3 ∩ Less(b,Q3) an ideal sT contains an
element of rank 1 that maps a into c. Therefore |sT | > less(b,Q3) + 1 >
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less(b1, Q3) + 1.
On the other hand, T contains a mapping of range b1. At the same time,
|s0T | = less(b1, Q3) + 1. Therefore we have:

min
s∈T , |sT |6=1, |sT |<∞

|sT | = less(b1, Q3) + 1.

For each subset A of Q1 there is a right ideal sT , satisfying
|sT | = less(b1, Q3) + 1:

sT =
{

ϕ ∈ T , |ranϕ| = 1, domϕ = A, ranϕ ∈ Less(b1, Q3)
}

,

and there is no other ideal sT of cardinality less(b1, Q3) + 1. We denote
the set of such ideals by Θ1. By B1 we stand for the set of all numbers b
of Q2, for which less(b,Q3) = less(b1, Q3). Next, let
W = {s ∈ T |if for some t1 ∈ T st2 6= 0 and t1t2 6= 0 then for all t3 ∈
T , st3 6= 0 ⇒ t1t3 6= 0}.
It is easy to verify that for all s from W |rans ∩Q2| = 1.

For any set X from Θ1 we consider the number of equivalence classes
of ∼L on the set of elements s from W such that sT = X. If sT ∈ Θ1 for
some s of W , then there exists only one b of Q2, which belongs to rans,

and b ∈ B1 ∩ Less
(

min
a∈s−1(b)

a,Q2

)

, as B1 ∩

(

⋂

a∈s−1(b)

Less(a,Q2)

)

=B1 ∩

Less
(

min
a∈s−1(b)

a,Q2

)

holds. Using proposition 1 we can conclude that

among the numbers
∣

∣

∣
{s ∈W, sT = X}/∼L

∣

∣

∣
of equivalency classes for the

relation ∼L on the set {s ∈W | sT = X} where X ∈ Θ1 one can find only
the numbers |B1| and |less(a,Q2)|, where |less(a,Q2)| < |B1|, a ∈ Q1.
Hence we can say whether the set B1 is finite or not. Next, from the
abstract properties of T we can get numbers
less(b1, Q3) = · · · = less

(

b|B1|, Q3

)

, |B1| and the set of numbers
Ω1 = {α1, . . . , αi1} = {less(a,Q2)|a ∈ Less(b|B1|, Q1)}.
Now we consider

Θ2 =

{

sT : ∃X ∈ Θ1, sT =
⋂

τ∈T , τT ∩Θ1=X, X 6=τT

τT

}

.

If Θ2 is an empty set, then B1 = Q2. If Θ2 6= ∅, then Q2 r B1 6= ∅

and for every X from Θ2 equality |X| = less
(

b|B1|+1, Q3

)

holds. Indeed,
if X = sT belongs to Θ2, then there exists only one element b from the
second block of the partition λ, which belongs to rans, because otherwise
X would have two different ideals from Θ1. It is easy to see that b ∈

Q2 rB1. In such a case |X| = less
(

b,Q3

)

> less
(

b|B1|+1, Q3

)

. Let s0 be
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an element of rank 1 and rans0 = b|B1|+1. Then |s0T | = less(b|B1|+1, Q3)

and so |X| = less
(

b|B1|+1, Q3

)

.

We define set B2 as following:

B2 =
{

b ∈ Q2, less(b,Q3) = less
(

b|B1|+1, Q3

)

}

.

For any set X of Θ2 we consider the number of equivalency classes for
the relation ∼L on the set of elements s from T such that sT = X. If
sT ∈ Θ2 for s of T , then there exists only one b of Q2, which belongs to

rans, and as B2 ∩

(

⋂

a∈s−1(b)

Less(a,Q2)

)

= B2 ∩ Less

(

min
a∈s−1(b)

a,Q2

)

,

then b ∈ B2∩

(

⋂

a∈s−1(b)

Less(a,Q2)

)

. Hence we conclude that among the

numbers
∣

∣

∣
{s ∈ T |sT = X}/∼L

∣

∣

∣
of equivalence classes for the relation ∼L

on the set {s ∈ T | sT = X} for all X ∈ Θ2 there are numbers |B2| and
|less(a,Q2)| − |B1|

(

where a ∈
(

Less(b|B2|+|B1|, Q1) \ Less(b|B1|, Q1)
))

only. Hence for the general properties of semigroup T we can say whether
the set B2 is finite or not. Next, we get numbers less(b|B1|+1, Q3)= . . .
=less

(

b|B1|+|B2|, Q3

)

, |B2| and the set of numbers Ω2 =
{

α2
1, ..., α

2
i2
} =

= {less(a,Q2)|a ∈(Less(b|B2|+|B1|, Q1) \ Less(b|B1|+1, Q1))
}

(α2
1 < α2

2 < . . . < α2
i < α2

i+1 < . . .)

Then we define sets
Θj = {sT | ∃X ∈ Θj−1, sT =

⋂

τ∈T , τT ∩(
j−1
⋃

m=1

Θm)=X, τT 6=X

τT )};

Bj =
{

b ∈ Q2, less(b,Q3) = less
(

b|B1|+...+|Bj−1|+1, Q3

)

}

.

If Θj is an empty set, then
j−1
⋃

i=1
Bi = Q2 and the process of considering

Θj is finished. If not, then Q2 r

j−1
⋃

i=1
Bi 6= ∅ and it is easy to prove by

induction that for each set X of Θj |X|=less(b|B1|+|B2|+...+|Bj−1|+1, Q3).
Indeed, if X = sT belongs to Θj , then there exists only one element b
from the second block of the partition λ, which belongs to rans, be-
cause otherwise X has two different ideals from Θ1 for some i < j.

It is clear that b ∈ Q2 r

j−1
⋃

i=1
Bi. In such a case |X| = less(b,Q3) >

less(b|B1|+|B2|+...+|Bj−1|+1, Q3). Let s0 be an element of rank 1 and rans0 =
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b|B1|+|B2|+...+|Bj−1|+1. Then

|s0T | = less(b|B1|+|B2|+...+|Bj−1|+1, Q3)

and so |X| = less(b|B1|+|B2|+...+|Bj−1|+1, Q3).
For each set X of Θj we consider number of equivalency classes for
the relation ∼L on the set {s ∈ T | sT = X}. If sT ∈ Θj for some
s from T , then there exists only one b of Q2 which belongs to doms,

and at that b ∈ Bj ∩

(

⋂

a∈s−1(b)

Less(a,Q2)

)

=Bj ∩ Less
(

min
a∈s−1(b)

a,Q2

)

.

Hence we have that among the numbers of equivalency classes for the
relation ∼L on the set {s ∈ AnnLT | sT = X}, where X is an ele-

ment of Θj , there are numbers |Bj | and |less(a,Q2)| −
j−1
∑

i=1
|Bi| (where

a ∈ (Less(b|B1|+···+|Bj |, Q1) \ Less(b|B1|+···+|Bj−1|, Q1))) only. Hence we
can say whether the set Bj is finite or not. So, for the general prop-

erties of T we can obtain numbers less
(

b|B1|+···+|Bj−1|+1, Q3

)

= · · · =

less(b|B1|+···+|Bj |, Q3), |Bj | and the set of numbers Ωj = {αj1, . . . , α
j
ij
} =

=
{

less(a,Q2)−

j−1
∑

i=1

|Bi| : a∈Less(b|B1|+···+|Bj |, Q1)\Less(b|B1|+···+|Bj−1|,Q1)
}

At last we have next sets of numbers:

1.
{

less(b,Q3), b ∈ Q2

}

2.
{

|B1|, . . . , |Bi|, . . .
}

3. Ωj =
{

less(a,Q2) −
j−1
∑

i=1
|Bi| : a∈Less

(

b( j
∑

i=1

|Bi|

), Q1

)

\Less
(

b(j−1
∑

i=1

|Bi|

), Q1

)

}

.

It is clear that ∀a ∈ Q1 either there exists αlm from some Ωm such
that less(a,Q2) = αlm + |B1| + · · · + |Bm−1| or there exists such j that
less(a,Q2) = |Bj |.

Let’s now consider such ideals X from Θ1, for which

1. number of equivalence classes for the relation ∼L on the set {s ∈
T , sT = X} equals α1

2 — the next to the least number of Ω1;

2. the set {s ∈ AnnLT , sT = X} is finite.
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To each such ideal we conform a number |{s ∈ AnnLT , sT = X}|.
Considering all sets X satisfying 1-2, we get some set of numbers |{s ∈
AnnLT , sT = X}| with repetition, which we denote by Ψα1

1
(under a

set with a repetition we mean a set where each number has it’s repetition
factor). If number of equivalence classes for the relation ∼L on the set
{s ∈ T , sT = X} is equal to α1

2, then for A1
α1

= {a ∈ Q1 : less(a,Q2) =
α1

1},
(

(s ∈ AnnLT ) ∧ (sT = X)
)

implies s(A1
α1

) ⊂ Q3. Also for some
a from Q1 less(a,Q2) < |B1| implies Less(a,Q3) = Less(bk2 , Q3) and
therefore less(a,Q3) = less(bk2 , Q3). Thus the least element of Ψα1

1
is

the number α1
2

(

less(bk2 , Q3)+1

)

∣

∣

∣
A1

α1
1

∣

∣

∣

. Hence we can get |A1
α1

1

| from the

general properties of semigroup T . Now let’s consider ideals X from Θ1

such that the number of equivalence classes for the relation ∼Lon the set
{s ∈ AnnLT , sT = X} equals α1

3 — the number from Ω1, next to α1
2, and

the set {s ∈ AnnLT , sT = X} is finite. To each such ideal we conform
the number |{s ∈ AnnLT , sT = X}|, considering all such X, we get
some set of natural numbers |{s ∈ AnnLT , sT = X}| with repetition,
which we denote by Ψα1

2
. Let A1

α1
2

= {a ∈ Q1 : less(a,Q2) = α1
2}. The

least element of Ψα1
2

is the number α3(less(bk2 , Q3)+1)|A
1
α1

|+|A1
α2

|. Hence

we get the number |A1
α2
| from the abstract properties of T . Now let A1

αi
=

{

a ∈ Q1 : less(a,Q2) = α1
i

}

for every α1
i of Ω1. Next we consider ideals

X from Θ1 such that the number of equivalence classes for the relation
∼L on the set {s ∈ T , sT = X} is equal to an element α1

i from Ω1, and
the set {s ∈ AnnLT , sT = X} is finite. To each such ideal we conform
a number |{s ∈ AnnLT , sT = X}|; taking all such X, we get some set
of natural numbers |{s ∈ AnnLT , sT = X}| with repetition, which we

denote by Ψα1
i
. The least element of Ψα1

i
is α3

(

less(bk2 , Q3)+1
)

i−1
∑

l=1

|A1
αl

|
.

Therefore we can get |A1
αi−1

| from the general properties of our semigroup.
Let A|B1| denote the set of all a from Q1 such that less(a,Q2) = |B1|.
Now let’s assume that the set B1 is finite. We investigate ideals X of
Θ1 for which equivalence classes for the relation ∼L on the set {s ∈
AnnLT , sT = X} equals |B1|, and the set {s ∈ AnnLT , sT = X} is
finite. To each such ideal we conform the number |{s ∈ AnnLT , sT =
X}|. We get the set of numbers |{s ∈ AnnLT , sT = X}| with repetition,
let’s denote it by Γ. Clearly, each mapping s from the left annulator T ,
for which sT = X, maps some nonempty subset from Q1 r

⋃

α1
i∈Ω1

Aα1
i

into

an element from B1, and all the other elements from Q1 — into elements
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from Q3∪{1}. At that s maps elements a ∈
⋃

α∈Ω1

Aα into Q3∪{1}, and at

least one element of A|B1| must be mapped into Q2. Therefore Γ contains

numbers of type |B1|

(

∏

a∈A

(

less(a,Q3)+1
)

)

, where A ⊂ Q1, A∩A|B1| 6=

A|B1|, and
⋃

α1
i∈Ω1

Aα1
i
⊂ A. The least element among all elements of Γ

is |B1|

(

less(bk2 , Q3) + 1

)

∑

α1
i
∈Ω1

|A
α1

i
|

. Hence we get |Aαi1
| (αi1 is the

greatest number of Ω1). Let’s denote the least element of Γ by ξ, and
⋃

α1
i∈Ω1

Aα1
i

by AΩ1
. Now we consider ideals X from Θ2 such that number

of equivalence classes for the relation ∼L on the set {s ∈ AnnLT , sT =
X} is equal to the least element α2

1 of Ω2; and the set {s ∈ AnnLT :
sT = X} is finite. To each such ideal we conform the number |{s ∈
AnnLT , sT = X}|. We get some set of numbers with repetition, which
we denote by Ψα2

1
. If Θ2 is empty, then Ψα2

1
is also empty and thus Q2

is finite and for all a ∈ Q1 less(a,Q3) = less(b1, Q3). If Θ2 is not empty,
then Ψα2

1
is not empty too, and the least element of Ψα2

1
is the number

α2
1

(

less(b1, Q3) + 1

)

∑

α∈Ω1

|A1
α|
(

∏

a∈Q1, less(s,Q2)=|B1|

(less(a,Q3) + 1)

)

, in

case of the set A|B1| =
{

a ∈ Q1 : less(a,Q2) = |B1|
}

is nonempty, and

α2
1(less(b1, Q3)+1)

∑

α∈Ω1

|A1
α|

otherwise. Hence we can say whether the set
A|B1| is empty, and if not we have the number

∏

a∈A|B1|

(less(a,Q3) + 1).

Let

η =







∏

a∈A|B1|

(

less(a,Q3) + 1
)

, A|B1| = ∅;

1, A|B1| <> ∅.
Let’s remove one number ξ from Γ. Now the least element of Γ and the
one next to it are ξ ·

(

less(a|AΩ1
|+1, Q3)+1

)

and ξ ·
(

less(a|AΩ1
|+2, Q3)+1

)

.

So, we get numbers less
(

a|AΩ1
|+1, Q3

)

and less
(

a|AΩ1
|+2, Q3

)

.

We remove the number ξ ·
(

less(a|AΩ1
|+2, Q3) + 1

)

from Γ;

if η 6=
(

less(a|AΩ1
|+1, Q3) + 2

)

then we take away a number

ξ · less
(

a|AΩ1
|+1, Q3

)

from Γ.

Next, if η 6=
(

less(a|AΩ1
|+2, Q3) + 1

)(

less(a|AΩ1
+1|, Q3) + 1

)

and

η 6=
(

less(a|AΩ1
|, Q3) + 1

)

, then we take away the number
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ξ ·
(

less(a|AΩ1
|+1, Q3) + 1

)(

less(a|AΩ1
|+2, Q3) + 1

)

from Γ.

Now the least element of Γ is ξ
(

less(a|AΩ1
|+3, Q3) + 1

)

. So we get

less
(

a|AΩ1
|+3, Q3

)

. We remove next numbers from Γ

• ξ
(

less(a|AΩ1
|+3, Q3) + 1

)

;

• ξ
(

less(a|AΩ1
|+3, Q3) + 1

)(

less(a|AΩ1
|+1, Q3) + 1

)

;

• ξ
(

less(a|AΩ1
|+3, Q3) + 1

)(

less(a|AΩ1
|+1, Q3) + 1

)

,

if
(

less(a|AΩ1
|+1, Q3) + 1

)

6= η);

•
(

less(a|AΩ1
|+3, Q3)+1

)(

less(a|AΩ1
|+1, Q3)+1

)(

less(a|AΩ1
|+2, Q3)+1

)

,

if
(

less(a|AΩ1
|+1, Q3) + 1

)(

less(a|AΩ1
|+2, Q3) + 1

)

6= η and
(

less(a|AΩ1
|+3, Q3)+1

)(

less(a|AΩ1
|+1, Q3)+1

)(

less(a|AΩ1
|+2, Q3)+1

)

6=η.

Now the least element of Γ is |B1|
(

less
(

a|AΩ1
|+4, Q3

)

+ 1
)

. We remove

each time the least element and it’s products with already removed num-
bers from Γ. Gradually we obtain numbers less(a,Q3) for all numbers a
of the first block of the partition.
Now let B1 be an infinite set. Obviously, in such a case Q3 must be
finite and thus for every element a from Q1 an equality less(a,Q3) =
less(b1, Q3) + 1 holds. Next, Ω1 also is an infinite set and Q1 =

⋃

α∈Ω1

Aα

(implies from the definition of the set Λ(N, k)); considering minimal el-
ements of described above sets Ψα1

i
(α1

i ∈ Ω1) we can get cardinalities of

sets |Aα1
i
|.

For any natural n we denote by An the set

{a ∈ A : less(a,Q2) = n}.

To each of sets Ωj we add the number αjm = |Bj |, m = max
α

j
i∈Ωj

i+ 1. Now

we have some set Ω′
j . We consider ideals X of Θj such that the number of

equivalence classes for the relation ∼L on the set {s ∈ AnnLT , sT = X}
equals some αjl ∈ Ω′

j , and the set {s ∈ AnnLT : sT = X} is finite. To
every such ideal we conform the number |{s ∈ AnnLT , sT = X}|. Hence
we get some set of numbers with repetition Φ

α
j

l

with the least element

αjl

(

∏

a∈Q1: less(a,Q2)6|Bj−1|

(less(a,Q3)+1)

)(

less
(

b|B1|+···+|Bj−1|+1, Q3

)

+1

)

l−1
∑

q=1

|Aj
αq |

,
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if αjl is not the least element of Ω′
j ; and

αjl ·

(

∏

a∈Q1: less(a,Q2)6|Bj−1|

(

less(a,Q3) + 1
)

)

,

if αjl is the least element of Ω′
j . Hence we gradually get numbers |A

α
j

l

|

for all αji from Ωj . Now we divide the least element of the set Φ
α

j−1
m

by the least element of the set Φ
α

j
1

(αj−1
m = max

α∈Ω′
j−1

α). If the obtained

number equals 1, then the set A|Bj | is empty; otherwise we get the number
∏

a∈A|Bj |

(less(a,Q3) + 1). As we already know numbers A|α| where α ∈

Ω′
1 ∪Ω2 and less(a,Q3) for each a ∈ Q1, then we can find i such that the

obtained number
∏

a∈A|Bj |

(less(a,Q3) + 1) is equal to the number

∏

∑

α∈Ω′
1
∪Ω2

|Aα|+16l6
∑

α∈Ω′
1
∪Ω2

|Aα|+1+i

less(al, Q3).

So, we get |A|Bj || = i. Analogously we get numbers |A|Bj ||, j > 2.
It is necessary to note that if at some step Bj is an infinite set, then it
means that the block Q3 is finite and Q1 =

⋃

α∈
⋃

16i6j

Ωi

Aα. As for any a

from Q1 less(a,Q3) belongs to
∞
⋃

i=1
Ω′
i, then for any a from Q1 we have

the number less(a,Q2). So, we get such numbers :

• less(a,Q2) ∀a ∈ Q1;

• less(a,Q3) ∀a ∈ Q1;

• less(b,Q3) ∀b ∈ Q2.

Now we show that one can obtain the elements of the blocks Q1, Q2, Q3

from these numbers. Really, we can get all the numbers of the first block.
Indeed, for some aj ∈ Q1 we have:

aj = less(aj , Q3) + less(aj , Q2) + 1 + j.

Next, for bj∈Q2 we have that less(bj , Q3) = |{a ∈ Q1 : less(a,Q2) < j}|;
and for cj ∈ Q3 it is true that less(cj , Q2) = |{b ∈ Q2 : less(b,Q3) < j}|
and less(cj , Q1) = |{b ∈ Q1 : less(b,Q3) < j}|.
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Hence we get elements of blocks Q2 and Q3:

bj = less(bj , Q3) + less(bj , Q1) + j + 1;

cj = less(cj , Q1) + less(cj , Q2) + j + 1.

So, for abstract properties of semigroup T it is possible to restore the
corresponding partition from Λ(N, 3); then it means that non-isomorphic
semigroups correspond to different partitions, so the theorem is proved
for k = 3.

Now suppose the statement of the theorem holds for all k 6 k0. Let
T be a semigroup from Nil(N, k0 + 1), and partition λ is the respective
partition from Λ(N, k0 +1) with blocks Q1, Q2, . . . , Qk0 , Qk0+1. Now let’s
consider the set

S1 = {s ∈ T : ∀a1, . . . , ak0−1 ∈ T s · a1 · . . . · ak0−1 = 0}.

It is easy to see that a transformation of T belongs to S1 if and only if
its range has empty intersection with the second block of the partition
λ. It is also obvious that S is a subsemigroup of T . More, S1 belongs
to Nil(T , k0). Really, there is a correspondent partition from Λ(T , k0)
with blocks Q1 ∪Q2, . . . , Qk0+1. Then for the induction assumption one
can obtain the numbers of blocks Q1 ∪ Q2, Q3, . . . , Qk0+1. Next, let’s
consider the set

S2 = {s ∈ T : ∀a1, . . . , ak0−1 ∈ T a1 · . . . · ak0−1 · s = 0}.

Analogously, a transformation of T belongs to S2 if and only if its domain
has empty intersection with the next to the last block of the partition λ;
and S2 is a maximal nilpotent subsemigroup of nilpotency class k0 with
a corresponding partition having blocks Q1, Q2, . . . , Qk0 ∪Qk0+1. For the
induction assumption one can obtain the numbers of the first block Q1.
So, we have the numbers of all the blocks of the partition λ. So, for the
properties T as abstract semigroup we get elements of the blocks of the
correspondent partition, so the theorem is proved.

Corollary 2. Let Nil(n, k) denote the set of all maximal nilpotent sub-
semigroups of the semigroup of oreder-decreasing transformations of the
set {1, . . . , n}. Then all the semigroups from

⋃

n>4
36k6n−1

Nil(n, k) are pairewise

non-isomorphic.
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