Nilpotent subsemigroups of a semigroup of order-decreasing transformations of a rooted tree

Anna Stronska

Communicated by B. V. Novikov

Abstract

This paper deals with a semigroup of orderdecreasing transformations of a rooted tree. Such are the transformations α of some rooted tree G satisfying following condition: for any x from $G \alpha(x)$ belongs to a simple path from x to the root vertex of G. We describe all subsemigroups of the mentioned semigroup, which are maximal among nilpotent subsemigroups of nilpotency class k in our semigroup. In the event when rooted tree is a ray we prove that all these maximal subsemigroups are pairwise nonisomorphic.

Introduction

Let T be a rooted tree with a natural partial order defined on the set of vertices (i.e. $x<y$ if x belongs to a simple path from y to the root of the tree). Let \mathcal{T}_{T} be a symmetric semigroup of all transformations of set of vertices of the rooted tree T. We do transformation from left to right, i.e. $(\varphi \cdot \psi)(x)=\psi(\varphi(x))$. A transformation $\alpha \in \mathcal{T}_{T}$ is called an orderdecreasing transformation if for any x from T an inequality $\alpha(x) \leqslant x$ holds. It is easy to see that the set D_{T} of all order-decreasing transformations from \mathcal{T}_{T} forms a semigroup. In case of T is a finite chain this semigroup is called D_{n}. The semigroup D_{n} has been studied by many algebraists. Being introduced in Pin's monograph([4]) in connection with some problems of formal languages it was later considered by Howie at

Key words and phrases: semigroup, order-decreasing, non-isomorphic.
his lectures given in the University of Lisbon on combinatoric and arithmetical problems of the theory of transformation semigroup (some combinatoric results on D_{n} can be viewed in [3]) and also by Higgings. Umar wrote a series of papers (see, e.g. [5], [6]), investigating ideals, Rees congruences, idempotent rank and Green relations on D_{n}. More general semigroup of all contraction endomorphisms of arbitrary finite graph was considered by Vernitskii ([7]).

As D_{T} contains a zero 0 , a transformation mapping all the vertices into the root, a question on study of non-trivial nilpotent subsemigroups from D_{T} naturally arises. For any mapping s from some nilpotent subsemigroup of D_{T}, we name by domain of s (doms) the set of vertices, which s does not map into the root; by the range of s (rans) we name the set of non-root vertices from $s(T)$; and by the rank of s we name the number of elements of rans. Let $\operatorname{Nil}(T, k)$ denote the set of subsemigroups from D_{T}, which are maximal among nilpotent subsemigroups from D_{T} of nilpotency class k. The case when the tree is a finite chain was investigated in [8]. In our paper we describe all the semigroups from $\operatorname{Nil}(T, k)$, and prove that all these semigroups are pairwise nonisomorphic in case when rooted tree T is a ray. Proving that we used the method of matching of nilpotent subsemigroups of the transformations semigroup to special partially ordered sets, this method first appeared in [2] and is explicitly described in [1].

1. The structure of maximal nilpotent subsemigroups from D_{T}

Let m be a vertex of T and A be a subset of the set of all vertices of T and $m \notin A$. Then we denote by $\operatorname{Less}(m, A)$ the set of all vertices from A less than m; by $\operatorname{Up}(m, A)$ we denote the set of all vertices from A greater than m. By $\operatorname{less}(m, A)$ and $u p(m, A)$ we denote cardinalities of sets $\operatorname{Less}(m, A)$ and $\operatorname{Up}(m, A)$ correspondingly; by the $\operatorname{Less}(m)$ and $U p(m)$ the sets $\operatorname{Less}(m, T \backslash\{m\})$ and $U p(m, T \backslash\{m\})$ correspondingly. We fix some natural k less than the number of vertices of T and define $\Lambda(T, k)$ as a set of ordered partitions (i.e. with defined order of blocks (subsets)) of the non-root vertices of T into k nonempty non-overlapping blocks Q_{1}, \ldots, Q_{k}, such that

$$
\begin{equation*}
\forall 1 \leqslant i<k, \quad \forall l \in Q_{i} \quad \exists m \in Q_{i+1} \quad m<l \tag{1.1}
\end{equation*}
$$

$\left(Q_{i} \cap \operatorname{Less}(h) \neq \varnothing\right) \Rightarrow\left(\exists l_{1} \in Q_{1}, \cdots, \exists l_{i-1} \in Q_{i-1} \quad l_{1}>\cdots>l_{i-1}>h\right) .(1.2)$

Let's denote the root of tree T as r. For some partition λ from $\Lambda(T, k)$ with blocks Q_{1}, \ldots, Q_{k} we consider
$\mathcal{T}_{\lambda}=\left\{\varphi \in D_{T} \mid \forall m \leqslant k, \forall i \in Q_{m} \quad \varphi(i) \in\left(Q_{m+1} \cup \cdots \cup Q_{k} \cup\{r\}\right) \cap \operatorname{Less}(i)\right\}$.
It is easy to verify that \mathcal{T}_{λ} is a subsemigroup from D_{T}.
Lemma 1. $\mathcal{T}_{\lambda} \in \operatorname{Nil}(T, k)$.
Proof. For any $\varphi_{1}, \ldots, \varphi_{k}$ from \mathcal{T}_{λ} and for any non-root vertex i from T we have:

$$
\begin{gathered}
\varphi_{1}(i) \in Q_{2} \cup \cdots \cup Q_{k} \cup\{r\} ; \quad \varphi_{2}\left(\varphi_{1}(i)\right) \in Q_{3} \cup \cdots \cup Q_{k} \cup\{r\} ; \ldots ; \\
\varphi_{k}\left(\varphi_{k-1}\left(\ldots \varphi_{1}(i) \ldots\right)\right) \in\{r\} .
\end{gathered}
$$

Therefore \mathcal{T}_{λ} is nilpotent of nilpotency class not greater than k. Simultaneously, one can choose $k-1$ elements from \mathcal{T}_{λ}, such that their product is not equal to zero. (e.g., one can select $\varphi_{1}^{*}, \ldots, \varphi_{k-1}^{*}$, such that for some l_{1} from $Q_{1} \varphi_{1}^{*}\left(l_{1}\right)=l_{2} \in Q_{2}, \varphi_{2}^{*}\left(l_{2}\right)=l_{3} \in Q_{3}, \ldots, \varphi_{k-1}^{*}\left(l_{k-1}\right)=l_{k} \in$ $Q_{k}, l_{k} \neq r$. The existence of $l_{2} \in Q_{2}, \ldots, l_{k} \in Q_{k}$ such that $l_{1}<l_{2}<$ $\ldots<l_{k}$, follows from the definition of $\lambda,(1.1)$. Then $\left.\varphi_{1}^{*} \cdot \varphi_{1}^{*} \ldots \cdot \varphi_{k-1}^{*} \neq 0\right)$.

Hence we have that \mathcal{T}_{λ} is of nilpotency class k. Now we show the maximality of \mathcal{T}_{λ}. Indeed, let \mathcal{T}_{λ} be contained in some semigroup \mathcal{T} from $\operatorname{Nil}(T, k)$ and $\mathcal{T} \neq \mathcal{T}_{\lambda}$. We consider ψ from $\mathcal{T} \backslash \mathcal{T}_{\lambda}$. Then there exist block Q_{m} and vertex $i \in Q_{m}$, such that $\xi=\psi(i)$ belongs to $Q_{1} \cup \cdots \cup Q_{m}$. From (1.1) it follows that there exists $\varphi_{1} \in \mathcal{T}_{\lambda} \backslash\{0\}$ such that $\varphi_{1}(\xi) \in Q_{m+1} ;$ there exists $\varphi_{2} \in \mathcal{T}_{\lambda} \backslash\{0\}$ such that $\varphi_{2}\left(\varphi_{1}(\xi)\right) \in Q_{m+2}$;
...;
there exists $\varphi_{k-m} \in \mathcal{T}_{\lambda} \backslash\{0\}$ such that $\varphi_{k-m}\left(\ldots \varphi_{1}(\xi) \ldots\right) \in Q_{k}$.
Next, if $m=1$ then $\psi \cdot \varphi_{1} \cdot \ldots \cdot \varphi_{k-m}(i) \in Q_{k}$, otherwise from $\xi \in$ $Q_{1} \cup \ldots \cup Q_{m}$ and (1.1) it follows that $Q_{m} \cap \operatorname{Less}(i) \neq \varnothing$. Then there exist $\psi_{1} \in \mathcal{T}_{\lambda}, i_{1} \in Q_{m-1}$, such that $\psi_{1}\left(i_{1}\right)=i$;
there exist $\psi_{2} \in \mathcal{T}_{\lambda}, i_{2} \in Q_{m-2}$; such that $\psi_{2}\left(i_{2}\right)=i_{1}$;
...;
there exist $\psi_{m-1} \in \mathcal{T}_{\lambda}, i_{m-1} \in Q_{1}$, such that $\psi_{m-1}\left(i_{m-1}\right)=i_{m-2}$.
Then $\psi_{1} \cdot \psi_{2} \ldots \cdot \psi_{m-1} \cdot \psi \cdot \varphi_{1} \cdot \ldots \cdot \varphi_{k-m}\left(i_{m-1}\right) \in Q_{k}$. So, we have come to contradiction with the condition $\mathcal{T} \in \operatorname{Nil}(T, k)$.

Let \mathcal{T} be a semigroup from $\operatorname{Nil}(T, k)$. We define partial order $<^{\mathcal{T}}$ on T as following:

$$
i<^{\mathcal{T}} j \Leftrightarrow \exists \varphi \in \mathcal{T} \quad \varphi(j)=i
$$

Since \mathcal{T} is a subsemigroup from D_{T} then obviously $i<^{\mathcal{T}} j$ implies $i<j$. For some vertex m from T let $\operatorname{Lessi}_{\mathcal{T}}(m)$ stand for the set of all vertices
j from T such that $j<^{\mathcal{T}} m$. Next we consider following sets

$$
\begin{gathered}
P_{1}=\left\{i \in T \backslash\{r\} \mid \operatorname{Less}_{\mathcal{T}}(i)=\{r\}\right\} \\
P_{2}=\left\{i \in T \backslash\left(\{r\} \cup P_{1}\right) \mid \operatorname{Less}_{\mathcal{T}}(i) \subset\left(P_{1} \cup\{r\}\right)\right\} ; \\
P_{3}=\left\{i \in T \backslash\left(\{r\} \cup P_{1} \cup P_{2}\right) \mid \operatorname{Less}_{\mathcal{T}}(i) \subset\left(P_{1} \cup P_{2} \cup\{r\}\right)\right\} ; \\
\cdots ; \\
P_{p}=\left\{i \in T \backslash\left(\{r\} \cup P_{1} \cup \cdots \cup P_{p-1}\right) \mid \operatorname{Less}_{\mathcal{T}}(i) \subset\left(P_{1} \cup P_{2} \cdots \cup P_{p-1} \cup\{r\}\right)\right\} ;
\end{gathered}
$$

Obviously, $P_{1} \cup \cdots \cup P_{p} \cup \cdots=T \backslash\{r\}$. Let $p_{\max }$ be the greatest among indices p, for which $P_{p} \neq \varnothing$. From the fact, that \mathcal{T} is a semigroup of nilpotency class k we conclude that $p_{\max }=k$. What is more, for any i, j less than k we have that $P_{i} \cap P_{j}=\varnothing$.

Sets $Q_{1}=P_{p_{\max }}, \ldots, Q_{p_{\max }}=P_{1}$ form a partition of set $T \backslash\{1\}$ written in following as $\lambda_{\mathcal{T}}$.

Lemma 2. For any semigroup $\mathcal{T} \in \operatorname{Nil}(T, k)$, partition $\lambda_{\mathcal{T}}$ belongs to $\Lambda(T, k)$.

Proof. Let i be from $Q_{l}, l<k$. Then there exist $\varphi \in \mathcal{T}, j \in Q_{l+1}$, such that $\varphi(i)=j$; hence $j<i$. Thus $\lambda_{\mathcal{T}}$ meets the requirement (1.1). Next, if for all $w>1$ there are no vertices m and l from the block Q_{w} such that $m<l$, then $\lambda_{\mathcal{T}}$ satisfies condition (1.2). Now, let $m, h \in Q_{w}$ and $h<m$. We take a transformation φ with $\operatorname{dom} \varphi=m$, $\operatorname{ran} \varphi=$ h. It is easy to see that φ belongs to D_{T}. Let there be no sequence $q_{1} \in Q_{1}, \ldots, q_{w-1} \in Q_{w-1}$ satisfying $q_{1}>\ldots>q_{w-1}>m$. Then for any $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ elements from the semigroup $<\mathcal{T}, \varphi>$ (obtained from adjoining φ to \mathcal{T}) it is true that $\phi_{1} \cdot \phi_{2} \cdot \ldots \cdot \phi_{k}=0$. Since \mathcal{T} is maximal, we have come to the contradiction. Thus (1.2) must be satisfied and $\lambda_{\mathcal{T}}$ belongs to $\Lambda(T, k)$.

Theorem 1. There are reciprocal mappings φ and ψ which set up one-to-one correspondence between $\Lambda(T, k)$ and $\operatorname{Nil}(T, k)$ defined as follows

1. $\varphi: \Lambda(T, k) \rightarrow \operatorname{Nil}(T, k), \forall \lambda \in \Lambda(T, k) \varphi(\lambda)=\mathcal{T}_{\lambda}$ (see (1.1)-(1.2))
2. $\psi: \operatorname{Nil}(T, k) \rightarrow \Lambda(T, k), \forall \mathcal{T} \in \operatorname{Nil}(T, k) \psi(\mathcal{T})=\lambda_{\mathcal{T}}$ (see (3)).

Proof. Let λ be a partition from $\Lambda(T, k)$ with blocks Q_{1}, \ldots, Q_{k}. We consider $\psi(\varphi(\lambda))=\psi\left(\mathcal{T}_{\lambda}\right)$. It is a partition from $\Lambda(n, k)$ with blocks $Q_{1}^{\psi}, \ldots, Q_{k}^{\psi}$. For any j from the block Q_{k} we have: $\operatorname{Less}_{\mathcal{T}_{\lambda}}(j)=\{r\}$. Therefore $Q_{k} \subset Q_{k}^{\psi}$. Now we take an arbitrary i from $T \backslash Q_{k}$. From the
definition of \mathcal{T}_{λ} it follows that there exists β from \mathcal{T}_{λ}, such that $i \in \operatorname{dom} \beta$. Therefore $\operatorname{Less}_{\mathcal{T}_{\lambda}}(i) \neq\{r\}$ and $Q_{k}=Q_{k}^{\psi}$. Next, for any j from Q_{k-1} we have: $\operatorname{Less}_{\mathcal{I}_{\lambda}}(j) \subset Q_{k} \cup\{r\}=Q_{k}^{\psi} \cup\{r\}$. Therefore $Q_{k-1} \subset Q_{k-1}^{\psi}$. Now we take an arbitrary i from $T \backslash\left(Q_{k} \cup Q_{k-1}\right)$. From the definition of \mathcal{T}_{λ} it follows that there exists β from \mathcal{T}_{λ}, such that $i \in \operatorname{dom} \beta$ and $\beta(i) \in Q_{k-1}$. Therefore $i \notin Q_{k-1}^{\psi}$ and $Q_{k-1}=Q_{k-1}^{\psi}$.

Further we move by induction. Let an equality $Q_{k-l+1}=Q_{k-l+1}^{\psi}$ be held. For any i from Q_{k-l} an inclusion $\operatorname{Less}_{\mathcal{T}_{\lambda}}(i) \subset Q_{k} \cup \cdots \cup Q_{k-l+1} \cup\{r\}$ holds. Simultaneously, for any i from $T \backslash\left(Q_{k} \cup \ldots \cup Q_{k-l}\right)$ there exists β from \mathcal{T}_{λ}, such that $i \in \operatorname{dom} \beta$ and $\beta(i) \in Q_{k-l}$. Therefore $Q_{k-l}=Q_{k-l}^{\psi}$. Hence $\psi(\varphi(\lambda))=\lambda$. Now let us take some \mathcal{T} from $\operatorname{Nil}(T, k)$. We consider $\varphi(\psi(\mathcal{T}))=\varphi\left(\lambda_{\mathcal{T}}\right)$. It is a semigroup from $\operatorname{Nil}(T, k)$. $\lambda_{\mathcal{T}}$ is a partition from $\Lambda(T, k)$ with blocks Q_{1}, \ldots, Q_{k}. Let us take some α from \mathcal{T}. For any element j from the block Q_{k} we have that $\alpha(j)=r$ (for the definition of $\lambda_{\mathcal{T}}$). Let now $j \in Q_{k-1}$. Then $\alpha(j)$ belongs to the set $Q_{k} \cup\{r\}$ (for the definition of $\lambda_{\mathcal{T}}$). Next, for the definition of $\lambda_{\mathcal{T}}$ for any element i from the block Q_{k-l} we have that $\alpha(i)$ does not belong to any of the sets $Q_{1}, Q_{2}, \ldots, Q_{k-l}$. Hence we get that \mathcal{T} belongs to $\varphi\left(\lambda_{\mathcal{T}}\right)$. As \mathcal{T} is maximal among the nilpotent subsemigroups from D_{n} of nilpotency class k, then $\mathcal{T}=\varphi(\psi(\mathcal{T}))=\varphi\left(\mathcal{T}_{\lambda}\right)$.

2. Equivalence relations \sim^{R} and \sim^{L} and their properties

Here and in the following we consider the case when T is a ray. Surely, one can number vertices in such a way that T is isomorphic to the set of natural numbers \mathbb{N}. Let's define relations \sim^{R} and \sim^{L} on some $\mathcal{T} \in$ $\operatorname{Nil}(\mathbb{N}, k)$ as follows: for any elements x, y from $\mathcal{T} \in \operatorname{Nil}(\mathbb{N}, k)$

1. $x \sim^{R} y \Leftrightarrow$ for all $t \in \mathcal{T} t x=t y$;
2. $x \sim^{L} y \Leftrightarrow$ for all $t \in \mathcal{T} x t=y t$.

It is easy to prove that \sim^{R} and \sim^{L} are equivalence relations.
Proposition 1. 1. $x \sim^{R} y \Leftrightarrow \forall m \in \mathbb{N} \backslash Q_{1} \quad(x(m)=y(m)) ;$
2. $x \sim^{L} y \Leftrightarrow \forall m \in \mathbb{N}$ if $x(m) \in \bigcup_{i=1}^{k-1} Q_{i}$ then $x(m)=y(m)$, if $x(m) \in Q_{k}$ then $y(m) \in Q_{k}$.

Proof. Let x and y be from the semigroup \mathcal{T} and $\forall t \in \mathcal{T}: t x=t y$. For any m from $\mathbb{N} \backslash Q_{1}$ let s be from \mathcal{T} such that rans $=m$. Then $s x=s y$ implies $x(m)=y(m)$.

Simultaneously, let x and y be from \mathcal{T} and for any m from $\mathbb{N} \backslash Q_{1}$ $x(m)=y(m)$. Let's take an arbitrary element s from \mathcal{T}. Then doms $x=$ domsy and domsx $\in \mathbb{N} \backslash Q_{1}$, so $s x=s y$ and $x \sim^{R} y$. The second part of the proposition can be proved analogously.

Corollary 1. Let \mathcal{T} be a semigroup from $\operatorname{Nil}(\mathbb{N}, k)$ with the correspondent partition λ from $\Lambda(\mathbb{N}, k)$. Then all the blocks of the partition λ except Q_{1} are finite if and only if the number of equivalency classes generated by the equivalency relation \sim^{R} on the semigroup \mathcal{T} is finite.

Proof. It is obvious that if at least one of the blocks Q_{2}, \ldots, Q_{k} is infinite, then \mathcal{T} has infinite number of equivalence classes for the relation \sim^{R}. Simultaneously, if all the blocks $Q_{2}, Q_{3}, \ldots, Q_{k}$ are finite then the number of equivalence classes is also finite and equals

$$
\prod_{m \in Q_{i}, 2 \leqslant i \leqslant k}\left(\operatorname{less}\left(m, Q_{i+1} \cup \cdots \cup Q_{k}\right)+1\right)
$$

3. Non-isomorphism theorem

Theorem 2. Let $k>2$. Then all semigroups from $\operatorname{Nil}(\mathbb{N}, k)$ are pairwise non-isomorphic.

Proof. We show that it is possible to restore the correspondent partition λ from $\Lambda(\mathbb{N}, k)$ from the properties of an arbitrary semigroup from $\operatorname{Nil}(\mathbb{N}, k)$ as an abstract semigroup. To do this, we use induction for nilpotency class k. First we consider the case of $k=3$. Let \mathcal{T} be a semigroup from $\operatorname{Nil}(\mathbb{N}, 3)$ with a correspondent partition $\lambda \in \Lambda(\mathbb{N}, 3)$, which consists of the blocks

$$
\begin{aligned}
& Q_{1}=\left\{\ldots, a_{i}, \ldots, a_{2}, a_{1}\right\} \\
&\left(a_{1}<a_{2}<\ldots<a_{i}<\ldots\right), \\
& Q_{2}=\left\{\ldots, b_{i}, \ldots, b_{2}, b_{1}\right\} \\
&\left(b_{1}<b_{2}<\ldots<b_{i}<\ldots\right) \\
& Q_{3}=\left\{\ldots, c_{i}, \ldots, c_{2}, c_{1}\right\} \\
&\left(c_{1}<c_{2}<\ldots<c_{i}<\ldots\right)
\end{aligned}
$$

Let's show that

$$
\min _{s \in \mathcal{T},|s \mathcal{T}| \neq 1,|s \mathcal{T}|<\infty}|s \mathcal{T}|=\operatorname{less}\left(b_{1}, Q_{3}\right)+1
$$

Indeed, if $|s \mathcal{T}| \neq 1$, then there exist a and $b\left(a \in Q_{1}, b \in Q_{2}\right)$ such that $s(a)=b$. Then for any $c \in Q_{3} \cap \operatorname{Less}\left(b, Q_{3}\right)$ an ideal $s \mathcal{T}$ contains an element of rank 1 that maps a into c. Therefore $|s \mathcal{T}| \geqslant \operatorname{less}\left(b, Q_{3}\right)+1 \geqslant$
$\operatorname{less}\left(b_{1}, Q_{3}\right)+1$.
On the other hand, \mathcal{T} contains a mapping of range b_{1}. At the same time, $\left|s_{0} \mathcal{T}\right|=\operatorname{less}\left(b_{1}, Q_{3}\right)+1$. Therefore we have:

$$
\min _{s \in \mathcal{T},|s \mathcal{T}| \neq 1,|s \mathcal{T}|<\infty}|s \mathcal{T}|=\operatorname{less}\left(b_{1}, Q_{3}\right)+1
$$

For each subset A of Q_{1} there is a right ideal $s \mathcal{T}$, satisfying $|s \mathcal{T}|=\operatorname{less}\left(b_{1}, Q_{3}\right)+1$:

$$
s \mathcal{T}=\left\{\varphi \in \mathcal{T},|\operatorname{ran} \varphi|=1, \operatorname{dom} \varphi=A, \operatorname{ran} \varphi \in \operatorname{Less}\left(b_{1}, Q_{3}\right)\right\}
$$

and there is no other ideal $s \mathcal{T}$ of cardinality $\operatorname{less}\left(b_{1}, Q_{3}\right)+1$. We denote the set of such ideals by Θ_{1}. By B_{1} we stand for the set of all numbers b of Q_{2}, for which less $\left(b, Q_{3}\right)=\operatorname{less}\left(b_{1}, Q_{3}\right)$. Next, let $W=\left\{s \in \mathcal{T} \mid\right.$ if for some $t_{1} \in \mathcal{T} s t_{2} \neq 0$ and $t_{1} t_{2} \neq 0$ then for all $t_{3} \in$ $\left.\mathcal{T}, s t_{3} \neq 0 \Rightarrow t_{1} t_{3} \neq 0\right\}$.
It is easy to verify that for all s from $W \mid$ rans $\cap Q_{2} \mid=1$.
For any set X from Θ_{1} we consider the number of equivalence classes of \sim^{L} on the set of elements s from W such that $s \mathcal{T}=X$. If $s \mathcal{T} \in \Theta_{1}$ for some s of W, then there exists only one b of Q_{2}, which belongs to rans, and $b \in B_{1} \cap \operatorname{Less}\left(\min _{a \in s^{-1}(b)} a, Q_{2}\right)$, as $B_{1} \cap\left(\bigcap_{a \in s^{-1}(b)} \operatorname{Less}\left(a, Q_{2}\right)\right)=B_{1} \cap$ $\operatorname{Less}\left(\min _{a \in s^{-1}(b)} a, Q_{2}\right)$ holds. Using proposition 1 we can conclude that among the numbers $|\{s \in W, s T=X\} / \sim L|$ of equivalency classes for the relation \sim^{L} on the set $\{s \in W \mid s \mathcal{T}=X\}$ where $X \in \Theta_{1}$ one can find only the numbers $\left|B_{1}\right|$ and $\left|\operatorname{less}\left(a, Q_{2}\right)\right|$, where $\left|\operatorname{less}\left(a, Q_{2}\right)\right|<\left|B_{1}\right|, a \in Q_{1}$. Hence we can say whether the set B_{1} is finite or not. Next, from the abstract properties of \mathcal{T} we can get numbers
$\operatorname{less}\left(b_{1}, Q_{3}\right)=\cdots=\operatorname{less}\left(b_{\left|B_{1}\right|}, Q_{3}\right),\left|B_{1}\right|$ and the set of numbers
$\Omega_{1}=\left\{\alpha_{1}, \ldots, \alpha_{i_{1}}\right\}=\left\{\operatorname{less}\left(a, Q_{2}\right) \mid a \in \operatorname{Less}\left(b_{\left|B_{1}\right|}, Q_{1}\right)\right\}$.
Now we consider

$$
\Theta_{2}=\left\{s \mathcal{T}: \exists X \in \Theta_{1}, s \mathcal{T}=\bigcap_{\tau \in \mathcal{T}, \tau \mathcal{T} \cap \Theta_{1}=X, X \neq \tau \mathcal{T}} \tau \mathcal{T}\right\}
$$

If Θ_{2} is an empty set, then $B_{1}=Q_{2}$. If $\Theta_{2} \neq \varnothing$, then $Q_{2} \backslash B_{1} \neq \varnothing$ and for every X from Θ_{2} equality $|X|=\operatorname{less}\left(b_{\left|B_{1}\right|+1}, Q_{3}\right)$ holds. Indeed, if $X=s \mathcal{T}$ belongs to Θ_{2}, then there exists only one element b from the second block of the partition λ, which belongs to rans, because otherwise X would have two different ideals from Θ_{1}. It is easy to see that $b \in$ $Q_{2} \backslash B_{1}$. In such a case $|X|=\operatorname{less}\left(b, Q_{3}\right) \geqslant \operatorname{less}\left(b_{\left|B_{1}\right|+1}, Q_{3}\right)$. Let s_{0} be
an element of rank 1 and $\operatorname{rans}_{0}=b_{\left|B_{1}\right|+1}$. Then $\left|s_{0} \mathcal{T}\right|=\operatorname{less}\left(b_{\left|B_{1}\right|+1}, Q_{3}\right)$ and so $|X|=\operatorname{less}\left(b_{\left|B_{1}\right|+1}, Q_{3}\right)$.

We define set B_{2} as following:

$$
B_{2}=\left\{b \in Q_{2}, \operatorname{less}\left(b, Q_{3}\right)=\operatorname{less}\left(b_{\left|B_{1}\right|+1}, Q_{3}\right)\right\}
$$

For any set X of Θ_{2} we consider the number of equivalency classes for the relation \sim^{L} on the set of elements s from \mathcal{T} such that $s \mathcal{T}=X$. If $s \mathcal{T} \in \Theta_{2}$ for s of \mathcal{T}, then there exists only one b of Q_{2}, which belongs to rans, and as $B_{2} \cap\left(\bigcap_{a \in s^{-1}(b)} \operatorname{Less}\left(a, Q_{2}\right)\right)=B_{2} \cap \operatorname{Less}\left(\min _{a \in s^{-1}(b)} a, Q_{2}\right)$, then $b \in B_{2} \cap\left(\bigcap_{a \in s^{-1}(b)} \operatorname{Less}\left(a, Q_{2}\right)\right)$. Hence we conclude that among the numbers $|\{s \in \mathcal{T} \mid s T=X\} / \sim L|$ of equivalence classes for the relation \sim^{L} on the set $\{s \in \mathcal{T} \mid s \mathcal{T}=X\}$ for all $X \in \Theta_{2}$ there are numbers $\left|B_{2}\right|$ and $\left|\operatorname{less}\left(a, Q_{2}\right)\right|-\left|B_{1}\right|\left(\right.$ where $\left.a \in\left(\operatorname{Less}\left(b_{\left|B_{2}\right|+\left|B_{1}\right|}, Q_{1}\right) \backslash \operatorname{Less}\left(b_{\left|B_{1}\right|}, Q_{1}\right)\right)\right)$ only. Hence for the general properties of semigroup \mathcal{T} we can say whether the set B_{2} is finite or not. Next, we get numbers less $\left(b_{\left|B_{1}\right|+1}, Q_{3}\right)=\ldots$. $=l e s s\left(b_{\left|B_{1}\right|+\left|B_{2}\right|}, Q_{3}\right),\left|B_{2}\right|$ and the set of numbers $\Omega_{2}=\left\{\alpha_{1}^{2}, \ldots, \alpha_{i_{2}}^{2}\right\}=$

$$
\begin{gathered}
=\left\{\operatorname{less}\left(a, Q_{2}\right) \mid a \in\left(\operatorname{Less}\left(b_{\left|B_{2}\right|+B_{1} \mid}, Q_{1}\right) \backslash \operatorname{Less}\left(b_{\left|B_{1}\right|+1}, Q_{1}\right)\right)\right\} \\
\left(\alpha_{1}^{2}<\alpha_{2}^{2}<\ldots<\alpha_{i}^{2}<\alpha_{i+1}^{2}<\ldots\right)
\end{gathered}
$$

Then we define sets

$$
\left.\Theta_{j}=\left\{s \mathcal{T} \mid \exists X \in \Theta_{j-1}, s \mathcal{T}=\bigcap_{\tau \in \mathcal{T}, \tau \mathcal{T} \cap\left(\bigcup_{m=1}^{j-1} \Theta_{m}\right)=X, \tau \mathcal{T} \neq X} \tau \mathcal{T}\right)\right\}
$$

$B_{j}=\left\{b \in Q_{2}, \operatorname{less}\left(b, Q_{3}\right)=\operatorname{less}\left(b_{\left|B_{1}\right|+\ldots+\left|B_{j-1}\right|+1}, Q_{3}\right)\right\}$.
If Θ_{j} is an empty set, then $\bigcup_{i=1}^{j-1} B_{i}=Q_{2}$ and the process of considering Θ_{j} is finished. If not, then $Q_{2} \backslash \bigcup_{i=1}^{j-1} B_{i} \neq \varnothing$ and it is easy to prove by induction that for each set X of $\Theta_{j}|X|=l e s s\left(b_{\left|B_{1}\right|+\left|B_{2}\right|+\ldots+\left|B_{j-1}\right|+1}, Q_{3}\right)$. Indeed, if $X=s \mathcal{T}$ belongs to Θ_{j}, then there exists only one element b from the second block of the partition λ, which belongs to rans, because otherwise X has two different ideals from Θ_{1} for some $i<j$. It is clear that $b \in Q_{2} \backslash \bigcup_{i=1}^{j-1} B_{i}$. In such a case $|X|=\operatorname{less}\left(b, Q_{3}\right) \geqslant$ $\operatorname{less}\left(b_{\left|B_{1}\right|+\left|B_{2}\right|+\ldots+\left|B_{j-1}\right|+1}, Q_{3}\right)$. Let s_{0} be an element of rank 1 and $r a n s_{0}=$
$b_{\left|B_{1}\right|+\left|B_{2}\right|+\ldots+\left|B_{j-1}\right|+1}$. Then

$$
\left|s_{0} \mathcal{T}\right|=\operatorname{less}\left(b_{\left|B_{1}\right|+\left|B_{2}\right|+\ldots+\left|B_{j-1}\right|+1}, Q_{3}\right)
$$

and so $|X|=\operatorname{less}\left(b_{\left|B_{1}\right|+\left|B_{2}\right|+\ldots+\left|B_{j-1}\right|+1}, Q_{3}\right)$.
For each set X of Θ_{j} we consider number of equivalency classes for the relation \sim^{L} on the set $\{s \in \mathcal{T} \mid s \mathcal{T}=X\}$. If $s \mathcal{T} \in \Theta_{j}$ for some s from \mathcal{T}, then there exists only one b of Q_{2} which belongs to doms, and at that $b \in B_{j} \cap\left(\bigcap_{a \in s^{-1}(b)} \operatorname{Less}\left(a, Q_{2}\right)\right)=B_{j} \cap \operatorname{Less}\left(\min _{a \in s^{-1}(b)} a, Q_{2}\right)$. Hence we have that among the numbers of equivalency classes for the relation \sim^{L} on the set $\left\{s \in A n n_{L} \mathcal{T} \mid s \mathcal{T}=X\right\}$, where X is an element of Θ_{j}, there are numbers $\left|B_{j}\right|$ and $\left|\operatorname{less}\left(a, Q_{2}\right)\right|-\sum_{i=1}^{j-1}\left|B_{i}\right|$ (where $\left.a \in\left(\operatorname{Less}\left(b_{\left|B_{1}\right|+\cdots+\left|B_{j}\right|}, Q_{1}\right) \backslash \operatorname{Less}\left(b_{\left|B_{1}\right|+\cdots+\left|B_{j-1}\right|}, Q_{1}\right)\right)\right)$ only. Hence we can say whether the set B_{j} is finite or not. So, for the general properties of \mathcal{T} we can obtain numbers less $\left(b_{\left|B_{1}\right|+\cdots+\left|B_{j-1}\right|+1}, Q_{3}\right)=\cdots=$ $\operatorname{less}\left(b_{\left|B_{1}\right|+\cdots+\left|B_{j}\right|}, Q_{3}\right),\left|B_{j}\right|$ and the set of numbers $\Omega_{j}=\left\{\alpha_{1}^{j}, \ldots, \alpha_{i_{j}}^{j}\right\}=$ $=\left\{\operatorname{less}\left(a, Q_{2}\right)-\sum_{i=1}^{j-1}\left|B_{i}\right|: a \in \operatorname{Less}\left(b_{\left|B_{1}\right|+\cdots+\left|B_{j}\right|}, Q_{1}\right) \backslash \operatorname{Less}\left(b_{\left|B_{1}\right|+\cdots+\left|B_{j-1}\right|}, Q_{1}\right)\right\}$

At last we have next sets of numbers:

1. $\left\{l e s s\left(b, Q_{3}\right), b \in Q_{2}\right\}$
2. $\left\{\left|B_{1}\right|, \ldots,\left|B_{i}\right|, \ldots\right\}$
3. $\Omega_{j}=$

$$
\left\{l e s s\left(a, Q_{2}\right)-\sum_{i=1}^{j-1} B_{i} \mid: a \in \operatorname{Less}\left(b_{\left(\sum_{i=1}^{j}\left|B_{i}\right|\right)}, Q_{1}\right) \backslash \operatorname{Less}\left(b_{\left(\sum_{i=1}^{j-1}\left|B_{i}\right|\right)}, Q_{1}\right)\right\} .
$$

It is clear that $\forall a \in Q_{1}$ either there exists α_{m}^{l} from some Ω_{m} such that less $\left(a, Q_{2}\right)=\alpha_{m}^{l}+\left|B_{1}\right|+\cdots+\left|B_{m-1}\right|$ or there exists such j that $\operatorname{less}\left(a, Q_{2}\right)=\left|B_{j}\right|$.

Let's now consider such ideals X from Θ_{1}, for which

1. number of equivalence classes for the relation \sim^{L} on the set $\{s \in$ $\mathcal{T}, s \mathcal{T}=X\}$ equals $\alpha_{2}^{1}-$ the next to the least number of Ω_{1};
2. the set $\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}$ is finite.

To each such ideal we conform a number $\left|\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}\right|$. Considering all sets X satisfying 1-2, we get some set of numbers $\mid\{s \in$ $\left.A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\} \mid$ with repetition, which we denote by $\Psi_{\alpha_{1}^{1}}$ (under a set with a repetition we mean a set where each number has it's repetition factor). If number of equivalence classes for the relation \sim^{L} on the set $\{s \in \mathcal{T}, s \mathcal{T}=X\}$ is equal to α_{2}^{1}, then for $A_{\alpha_{1}}^{1}=\left\{a \in Q_{1}: \operatorname{less}\left(a, Q_{2}\right)=\right.$ $\left.\alpha_{1}^{1}\right\},\left(\left(s \in A n n_{L} \mathcal{T}\right) \wedge(s \mathcal{T}=X)\right)$ implies $s\left(A_{\alpha_{1}}^{1}\right) \subset Q_{3}$. Also for some a from $Q_{1} \operatorname{less}\left(a, Q_{2}\right)<\left|B_{1}\right|$ implies $\operatorname{Less}\left(a, Q_{3}\right)=\operatorname{Less}\left(b_{k_{2}}, Q_{3}\right)$ and therefore less $\left(a, Q_{3}\right)=\operatorname{less}\left(b_{k_{2}}, Q_{3}\right)$. Thus the least element of $\Psi_{\alpha_{1}^{1}}$ is the number $\alpha_{2}^{1}\left(\operatorname{less}\left(b_{k_{2}}, Q_{3}\right)+1\right)^{\left|A_{\alpha_{1}^{1}}^{1}\right|}$. Hence we can get $\left|A_{\alpha_{1}^{1}}^{1}\right|$ from the general properties of semigroup \mathcal{T}. Now let's consider ideals X from Θ_{1} such that the number of equivalence classes for the relation \sim^{L} on the set $\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}$ equals α_{3}^{1} - the number from Ω_{1}, next to α_{2}^{1}, and the set $\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}$ is finite. To each such ideal we conform the number $\left|\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}\right|$, considering all such X, we get some set of natural numbers $\left|\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}\right|$ with repetition, which we denote by $\Psi_{\alpha_{2}^{1}}$. Let $A_{\alpha_{2}^{1}}^{1}=\left\{a \in Q_{1}: \operatorname{less}\left(a, Q_{2}\right)=\alpha_{2}^{1}\right\}$. The least element of $\Psi_{\alpha_{2}^{1}}$ is the number $\alpha_{3}\left(\operatorname{less}\left(b_{k_{2}}, Q_{3}\right)+1\right)^{\left|A_{\alpha_{1}}^{1}\right|+\left|A_{\alpha_{2}}^{1}\right| \text {. Hence }}$ we get the number $\left|A_{\alpha_{2}}^{1}\right|$ from the abstract properties of \mathcal{T}. Now let $A_{\alpha_{i}}^{1}=$ $\left\{a \in Q_{1}: \operatorname{less}\left(a, Q_{2}\right)=\alpha_{i}^{1}\right\}$ for every α_{i}^{1} of Ω_{1}. Next we consider ideals X from Θ_{1} such that the number of equivalence classes for the relation \sim^{L} on the set $\{s \in \mathcal{T}, s \mathcal{T}=X\}$ is equal to an element α_{i}^{1} from Ω_{1}, and the set $\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}$ is finite. To each such ideal we conform a number $\left|\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}\right|$; taking all such X, we get some set of natural numbers $\left|\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}\right|$ with repetition, which we denote by $\Psi_{\alpha_{i}^{1}}$. The least element of $\Psi_{\alpha_{i}^{1}}$ is $\alpha_{3}\left(\operatorname{less}\left(b_{k_{2}}, Q_{3}\right)+1\right) \sum_{l=1}^{i-1}\left|A_{\alpha_{l}}^{1}\right|$. Therefore we can get $\left|A_{\alpha_{i-1}}^{1}\right|$ from the general properties of our semigroup. Let $A_{\left|B_{1}\right|}$ denote the set of all a from Q_{1} such that less $\left(a, Q_{2}\right)=\left|B_{1}\right|$. Now let's assume that the set B_{1} is finite. We investigate ideals X of Θ_{1} for which equivalence classes for the relation \sim^{L} on the set $\{s \in$ $\left.A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}$ equals $\left|B_{1}\right|$, and the set $\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}$ is finite. To each such ideal we conform the number $\mid\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=\right.$ $X\} \mid$. We get the set of numbers $\left|\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}\right|$ with repetition, let's denote it by Γ. Clearly, each mapping s from the left annulator \mathcal{T}, for which $s \mathcal{T}=X$, maps some nonempty subset from $Q_{1} \backslash \bigcup_{\alpha_{i}^{1} \in \Omega_{1}} A_{\alpha_{i}^{1}}$ into an element from B_{1}, and all the other elements from Q_{1} - into elements
from $Q_{3} \cup\{1\}$. At that s maps elements $a \in \bigcup_{\alpha \in \Omega_{1}} A_{\alpha}$ into $Q_{3} \cup\{1\}$, and at least one element of $A_{\left|B_{1}\right|}$ must be mapped into Q_{2}. Therefore Γ contains numbers of type $\left|B_{1}\right|\left(\prod_{a \in A}\left(\operatorname{less}\left(a, Q_{3}\right)+1\right)\right)$, where $A \subset Q_{1}, A \cap A_{\left|B_{1}\right|} \neq$ $A_{\left|B_{1}\right|}$, and $\bigcup_{\alpha_{i}^{1} \in \Omega_{1}} A_{\alpha_{i}^{1}} \subset A$. The least element among all elements of Γ is $\left|B_{1}\right|\left(\operatorname{less}\left(b_{k_{2}}, Q_{3}\right)+1\right)^{\sum_{i}^{1} \in \Omega_{1}}{ }\left|A_{\alpha_{i}^{1}}\right|$. Hence we get $\left|A_{\alpha_{i_{1}}}\right|\left(\alpha_{i_{1}}\right.$ is the greatest number of Ω_{1}). Let's denote the least element of Γ by ξ, and $\bigcup_{\alpha_{i}^{1} \in \Omega_{1}} A_{\alpha_{i}^{1}}$ by $A_{\Omega_{1}}$. Now we consider ideals X from Θ_{2} such that number of equivalence classes for the relation \sim^{L} on the set $\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=\right.$ $X\}$ is equal to the least element α_{1}^{2} of Ω_{2}; and the set $\left\{s \in A n n_{L} \mathcal{T}\right.$: $s \mathcal{T}=X\}$ is finite. To each such ideal we conform the number $\mid\{s \in$ $\left.A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\} \mid$. We get some set of numbers with repetition, which we denote by $\Psi_{\alpha_{1}^{2}}$. If Θ_{2} is empty, then $\Psi_{\alpha_{1}^{2}}$ is also empty and thus Q_{2} is finite and for all $a \in Q_{1} \operatorname{less}\left(a, Q_{3}\right)=\operatorname{less}\left(b_{1}, Q_{3}\right)$. If Θ_{2} is not empty, then $\Psi_{\alpha_{1}^{2}}$ is not empty too, and the least element of $\Psi_{\alpha_{1}^{2}}$ is the number $\left.\alpha_{1}^{2}\left(\operatorname{less}\left(b_{1}, Q_{3}\right)+1\right)\right)^{\sum_{\alpha \in \Omega_{1}}\left|A_{\alpha}^{1}\right|}\left(\prod_{a \in Q_{1}, \operatorname{less}\left(s, Q_{2}\right)=\left|B_{1}\right|}\left(\operatorname{less}\left(a, Q_{3}\right)+1\right)\right)$, in case of the set $A_{\left|B_{1}\right|}=\left\{a \in Q_{1}: \operatorname{less}\left(a, Q_{2}\right)=\left|B_{1}\right|\right\}$ is nonempty, and $\alpha_{1}^{2}\left(\text { less }\left(b_{1}, Q_{3}\right)+1\right)^{\sum_{\alpha \in \Omega_{1}}\left|A_{\alpha}^{1}\right|}$ otherwise. Hence w
$A_{\left|B_{1}\right|}$ is empty, and if not we have the number

$$
\prod_{a \in A_{\left|B_{1}\right|}}\left(\operatorname{less}\left(a, Q_{3}\right)+1\right)
$$

Let
$\eta= \begin{cases}\prod_{a \in A_{\left|B_{1}\right|}}\left(\operatorname{less}\left(a, Q_{3}\right)+1\right), & A_{\left|B_{1}\right|}=\varnothing ; \\ 1, & A_{\left|B_{1}\right|}<>\varnothing .\end{cases}$
Let's remove one number ξ from Γ. Now the least element of Γ and the one next to it are $\xi \cdot\left(\operatorname{less}\left(a_{\mid A_{\Omega_{1} \mid+1}}, Q_{3}\right)+1\right)$ and $\xi \cdot\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+2}, Q_{3}\right)+1\right)$.
So, we get numbers less $\left(a_{\left|A_{\Omega_{1}}\right|+1}, Q_{3}\right)$ and $\operatorname{less}\left(a_{\mid A_{\Omega_{1} \mid+2}}, Q_{3}\right)$.
We remove the number $\xi \cdot\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+2}, Q_{3}\right)+1\right)$ from Γ;
if $\eta \neq\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+1}, Q_{3}\right)+2\right)$ then we take away a number
$\xi \cdot \operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+1}, Q_{3}\right)$ from Γ.
Next, if $\eta \neq\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+2}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}+1}\right|}, Q_{3}\right)+1\right)$ and $\eta \neq\left(\right.$ less $\left.\left(a_{\left|A_{\Omega_{1}}\right|}, Q_{3}\right)+1\right)$, then we take away the number
$\xi \cdot\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+1}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+2}, Q_{3}\right)+1\right)$ from Γ.
Now the least element of Γ is $\xi\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+3}, Q_{3}\right)+1\right)$. So we get less $\left(a_{\left|A_{\Omega_{1}}\right|+3}, Q_{3}\right)$. We remove next numbers from Γ

- $\xi\left(\operatorname{less}\left(a_{\mid A_{\Omega_{1} \mid+3}}, Q_{3}\right)+1\right)$;
- $\xi\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+3}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+1}, Q_{3}\right)+1\right)$;
- $\xi\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+3}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+1}, Q_{3}\right)+1\right)$, if $\left.\left(\operatorname{less}\left(a_{\mid A_{\Omega_{1} \mid+1}}, Q_{3}\right)+1\right) \neq \eta\right)$;
$\bullet\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+3}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\mid A_{\Omega_{1} \mid+1}}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+2}, Q_{3}\right)+1\right)$, if $\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+1}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+2}, Q_{3}\right)+1\right) \neq \eta$ and $\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+3}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\mid A_{\Omega_{1}}+1}, Q_{3}\right)+1\right)\left(\operatorname{less}\left(a_{\left|A_{\Omega_{1}}\right|+2}, Q_{3}\right)+1\right) \neq \eta$.

Now the least element of Γ is $\left|B_{1}\right|\left(\operatorname{less}\left(a_{\mid A_{\Omega_{1} \mid+4}}, Q_{3}\right)+1\right)$. We remove each time the least element and it's products with already removed numbers from Γ. Gradually we obtain numbers $\operatorname{less}\left(a, Q_{3}\right)$ for all numbers a of the first block of the partition.
Now let B_{1} be an infinite set. Obviously, in such a case Q_{3} must be finite and thus for every element a from Q_{1} an equality $\operatorname{less}\left(a, Q_{3}\right)=$ $\operatorname{less}\left(b_{1}, Q_{3}\right)+1$ holds. Next, Ω_{1} also is an infinite set and $Q_{1}=\bigcup_{\alpha \in \Omega_{1}} A_{\alpha}$ (implies from the definition of the set $\Lambda(\mathbb{N}, k)$); considering minimal elements of described above sets $\Psi_{\alpha_{i}^{1}}\left(\alpha_{i}^{1} \in \Omega_{1}\right)$ we can get cardinalities of sets $\left|A_{\alpha_{i}^{1}}\right|$.

For any natural n we denote by A_{n} the set

$$
\left\{a \in A: \operatorname{less}\left(a, Q_{2}\right)=n\right\}
$$

To each of sets Ω_{j} we add the number $\alpha_{m}^{j}=\left|B_{j}\right|, m=\max _{\alpha_{i}^{j} \in \Omega_{j}} i+1$. Now we have some set Ω_{j}^{\prime}. We consider ideals X of Θ_{j} such that the number of equivalence classes for the relation \sim^{L} on the set $\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}$ equals some $\alpha_{l}^{j} \in \Omega_{j}^{\prime}$, and the set $\left\{s \in A n n_{L} \mathcal{T}: s \mathcal{T}=X\right\}$ is finite. To every such ideal we conform the number $\left|\left\{s \in A n n_{L} \mathcal{T}, s \mathcal{T}=X\right\}\right|$. Hence we get some set of numbers with repetition $\Phi_{\alpha_{l}^{j}}$ with the least element
$\alpha_{l}^{j}\left(\prod_{a \in Q_{1}: \operatorname{less}\left(a, Q_{2}\right) \leqslant\left|B_{j-1}\right|}\left(\operatorname{less}\left(a, Q_{3}\right)+1\right)\right)\left(\operatorname{less}\left(b_{\left|B_{1}\right|+\cdots+\left|B_{j-1}\right|+1}, Q_{3}\right)+1\right)^{\sum_{q=1}^{l-1}\left|A_{\alpha_{q}}^{j}\right|}$,
if α_{l}^{j} is not the least element of Ω_{j}^{\prime}; and

$$
\alpha_{l}^{j} \cdot\left(\prod_{a \in Q_{1}: \operatorname{less}\left(a, Q_{2}\right) \leqslant\left|B_{j-1}\right|}\left(\operatorname{less}\left(a, Q_{3}\right)+1\right)\right)
$$

if α_{l}^{j} is the least element of Ω_{j}^{\prime}. Hence we gradually get numbers $\left|A_{\alpha_{l}^{j}}\right|$ for all α_{i}^{j} from Ω_{j}. Now we divide the least element of the set $\Phi_{\alpha_{m}^{j-1}}$ by the least element of the set $\Phi_{\alpha_{1}^{j}}\left(\alpha_{m}^{j-1}=\max _{\alpha \in \Omega_{j-1}^{\prime}} \alpha\right)$. If the obtained number equals 1 , then the set $A_{\left|B_{j}\right|}$ is empty; otherwise we get the number $\prod_{a \in A_{\left|B_{j}\right|}}\left(\operatorname{less}\left(a, Q_{3}\right)+1\right)$. As we already know numbers $A_{|\alpha|}$ where $\alpha \in$ $\Omega_{1}^{\prime} \cup \Omega_{2}$ and less $\left(a, Q_{3}\right)$ for each $a \in Q_{1}$, then we can find i such that the obtained number $\prod_{a \in A_{\left|B_{j}\right|}}\left(\operatorname{less}\left(a, Q_{3}\right)+1\right)$ is equal to the number

$$
\prod_{\sum_{\alpha \in \Omega_{1}^{\prime} \cup \Omega_{2}}\left|A_{\alpha}\right|+1 \leqslant l \leqslant \sum_{\alpha \in \Omega_{1}^{\prime} \cup \Omega_{2}}\left|A_{\alpha}\right|+1+i} \operatorname{less}\left(a_{l}, Q_{3}\right)
$$

So, we get $\left|A_{\left|B_{j}\right|}\right|=i$. Analogously we get numbers $\left|A_{\left|B_{j}\right|}\right|, j>2$.
It is necessary to note that if at some step B_{j} is an infinite set, then it means that the block Q_{3} is finite and $Q_{1}=\bigcup_{\alpha \in \bigcup_{1 \leqslant i \leqslant j} \Omega_{i}} A_{\alpha}$. As for any a from Q_{1} less $\left(a, Q_{3}\right)$ belongs to $\bigcup_{i=1}^{\infty} \Omega_{i}^{\prime}$, then for any a from Q_{1} we have the number less $\left(a, Q_{2}\right)$. So, we get such numbers:

- less $\left(a, Q_{2}\right) \forall a \in Q_{1}$;
- $\operatorname{less}\left(a, Q_{3}\right) \forall a \in Q_{1}$;
- less $\left(b, Q_{3}\right) \forall b \in Q_{2}$.

Now we show that one can obtain the elements of the blocks Q_{1}, Q_{2}, Q_{3} from these numbers. Really, we can get all the numbers of the first block. Indeed, for some $a_{j} \in Q_{1}$ we have:

$$
a_{j}=\operatorname{less}\left(a_{j}, Q_{3}\right)+\operatorname{less}\left(a_{j}, Q_{2}\right)+1+j .
$$

Next, for $b_{j} \in Q_{2}$ we have that less $\left(b_{j}, Q_{3}\right)=\left|\left\{a \in Q_{1}: \operatorname{less}\left(a, Q_{2}\right)<j\right\}\right| ;$ and for $c_{j} \in Q_{3}$ it is true that $\operatorname{less}\left(c_{j}, Q_{2}\right)=\left|\left\{b \in Q_{2}: \operatorname{less}\left(b, Q_{3}\right)<j\right\}\right|$ and $\operatorname{less}\left(c_{j}, Q_{1}\right)=\left|\left\{b \in Q_{1}: \operatorname{less}\left(b, Q_{3}\right)<j\right\}\right|$.

Hence we get elements of blocks Q_{2} and Q_{3} :

$$
\begin{aligned}
& b_{j}=\operatorname{less}\left(b_{j}, Q_{3}\right)+\operatorname{less}\left(b_{j}, Q_{1}\right)+j+1 \\
& c_{j}=\operatorname{less}\left(c_{j}, Q_{1}\right)+\operatorname{less}\left(c_{j}, Q_{2}\right)+j+1
\end{aligned}
$$

So, for abstract properties of semigroup \mathcal{T} it is possible to restore the corresponding partition from $\Lambda(\mathbb{N}, 3)$; then it means that non-isomorphic semigroups correspond to different partitions, so the theorem is proved for $k=3$.

Now suppose the statement of the theorem holds for all $k \leqslant k_{0}$. Let \mathcal{T} be a semigroup from $\operatorname{Nil}\left(\mathbb{N}, k_{0}+1\right)$, and partition λ is the respective partition from $\Lambda\left(\mathbb{N}, k_{0}+1\right)$ with blocks $Q_{1}, Q_{2}, \ldots, Q_{k_{0}}, Q_{k_{0}+1}$. Now let's consider the set

$$
S_{1}=\left\{s \in \mathcal{T}: \forall a_{1}, \ldots, a_{k_{0}-1} \in \mathcal{T} \quad s \cdot a_{1} \cdot \ldots \cdot a_{k_{0}-1}=0\right\}
$$

It is easy to see that a transformation of \mathcal{T} belongs to S_{1} if and only if its range has empty intersection with the second block of the partition λ. It is also obvious that S is a subsemigroup of \mathcal{T}. More, S_{1} belongs to $\operatorname{Nil}\left(\mathcal{T}, k_{0}\right)$. Really, there is a correspondent partition from $\Lambda\left(\mathcal{T}, k_{0}\right)$ with blocks $Q_{1} \cup Q_{2}, \ldots, Q_{k_{0}+1}$. Then for the induction assumption one can obtain the numbers of blocks $Q_{1} \cup Q_{2}, Q_{3}, \ldots, Q_{k_{0}+1}$. Next, let's consider the set

$$
S_{2}=\left\{s \in \mathcal{T}: \forall a_{1}, \ldots, a_{k_{0}-1} \in \mathcal{T} \quad a_{1} \cdot \ldots \cdot a_{k_{0}-1} \cdot s=0\right\} .
$$

Analogously, a transformation of \mathcal{T} belongs to S_{2} if and only if its domain has empty intersection with the next to the last block of the partition λ; and S_{2} is a maximal nilpotent subsemigroup of nilpotency class k_{0} with a corresponding partition having blocks $Q_{1}, Q_{2}, \ldots, Q_{k_{0}} \cup Q_{k_{0}+1}$. For the induction assumption one can obtain the numbers of the first block Q_{1}. So, we have the numbers of all the blocks of the partition λ. So, for the properties \mathcal{T} as abstract semigroup we get elements of the blocks of the correspondent partition, so the theorem is proved.

Corollary 2. Let $\operatorname{Nil}(n, k)$ denote the set of all maximal nilpotent subsemigroups of the semigroup of oreder-decreasing transformations of the set $\{1, \ldots, n\}$. Then all the semigroups from $\bigcup_{n \geqslant 4} N i l(n, k)$ are pairewise non-isomorphic.

References

[1] O.G. Ganyushkin, V.S. Mazorchuk. On the structure of $I O_{n}$. Semigroup Forum, Vol.66, 455-483(2003).
[2] O.G. Ganyushkin, T.V. Kormysheva. Isolated and nilpotent subsemigroups of a finite inverse symmetric semigroup(Ukrainian), Dopov. Akad. Nauk Ukrainy 9(1993), 5-9.
[3] J. M. Howie. Combinatorial and probabilistic results in transformation semigroups. (English) Ito, Masami (ed.) et al., Words, languages and combinatorics II. Proceedings of the 2nd international conference, Kyoto, Japan, August 2528, 1992. Singapore: World Scientific. 200-206 (1994).
[4] J.E. Pin. Varieties of formal languages(Paris: Masson,1984); English translation, translated by A.Howie(Oxford: North Oxford Academic Publishers Ltd., 1986).
[5] A. Umar. On the ranks of certain finite semigroups of order-decreasing transformations. Portugalie Mathematica, Vol. 53, Fasc.1, 23-34(1996).
[6] A. Umar. On the semigroups of order-decreasing finite full transformations. Proceeding of the Royal Society of Edinburgh, 120A, 129-142(1992).
[7] A. Vernitskii. Semigroups of order-decreasing graph endomorphism. Semigroup Forum Vol. 58, 222-240(1999).
[8] A.Stronska. Nilpotent subsemigroups of the semigroup of order-decreasing transformations. Matematychni Studii, Vol. 22, No. 2 (2004).

Contact information

A. Stronska
Kyiv National Taras Shevchenko University, department of algebra and mathematical logics, Glushkova st., 6, Kyiv. E-Mail: astra@univ.kiev.ua

Received by the editors: 12.12.2004 and in final form 29.03.2007.

