Isomorphisms of Cayley graphs of surface groups Marek Bożejko*, Ken Dykema ${ }^{\dagger}$, Franz Lehner ${ }^{\ddagger}$

Communicated by R. I. Grigorchuk

Abstract

A combinatorial proof is given for the fact that the Cayley graph of the fundamental group Γ_{g} of the closed, orientable surface of genus $g \geq 2$ with respect to the usual generating set is isomorphic to the Cayley graph of a certain Coxeter group generated by $4 g$ elements.

1. Introduction

The fundamental group of the closed, orientable surface of genus $g \geq 2$ in its usual presentation is

$$
\begin{equation*}
\Gamma_{g}=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1\right\rangle \tag{1}
\end{equation*}
$$

It is an open question, whether the spectral radius of the simple random walk on Γ_{g} with respect to the symmetric generating set

$$
\begin{equation*}
V_{g}=\left\{a_{1}, a_{1}^{-1}, b_{1}, b_{1}^{-1}, \ldots, a_{g}, a_{g}^{-1}, b_{g}, b_{g}^{-1}\right\} \tag{2}
\end{equation*}
$$

is an algebraic number. Bounds on this spectral radius have been obtained by several authors; see [2], [1], [7] and [3].

For a group G with symmetric generating set S, let $\mathcal{G}(G, S)$ denote the resulting Cayley graph. The spectral radius of the random walk mentioned above depends only on the Cayley graph of $\mathcal{G}\left(\Gamma_{g}, V_{g}\right)$. It well known to experts that there is a graph isomorphism from the Cayley

[^0]graph of this surface group onto the Cayley graph $\mathcal{G}\left(G_{4 g}, W_{4 g}\right)$, where $G_{4 g}$ is the Coxeter group
\[

$$
\begin{equation*}
G_{4 g}=\left\langle s_{1}, \ldots, s_{4 g} \mid s_{i}^{2}=1,\left(s_{i} s_{i+1}\right)^{2 g}=1,1 \leq i \leq 4 g\right\rangle \tag{3}
\end{equation*}
$$

\]

with all subscripts of s taken modulo $4 g$, and where

$$
\begin{equation*}
W_{4 g}=\left\{s_{1}, \ldots, s_{4 g}\right\} \tag{4}
\end{equation*}
$$

This result is of interest in part because it opens new avenues for techniques of free probability theory (see [6]) to be applied to the random walks on the surface groups. See the appendix, where a geomtric proof (that was kindly shown to us by J.G. Ratcliffe) is given. In this paper we provide an elementary combinatorial proof of this graph isomorphism. This proof utilizes some techniques involving free monoids that may be of further interest.

We now summarize the contents of this paper. In $\S 2$, we show that certain bijections between free monoids induce isomorphisms of Cayley graphs. In §3, we prove the graph isomorphism

$$
\begin{equation*}
\mathcal{G}\left(\Gamma_{g}, V_{g}\right) \cong \mathcal{G}\left(G_{4 g}, W_{4 g}\right) \tag{5}
\end{equation*}
$$

in the case $g=2$. The proof of this special case is simpler than and motivates our proof of the general case. Parts of the Caylay graphs $\mathcal{G}\left(\Gamma_{2}, V_{2}\right)$ and $\mathcal{G}\left(G_{8}, W_{8}\right)$ are drawn in Figures 1 and 2, and these drawings motivate our construction of an isomorphism. In $\S 4$, we construct an isomorphism (5) for general $g \geq 2$.

2. Certain maps yielding isomorphisms of Cayley graphs

For $i \in\{1,2\}$, let G_{i} be a group with symmetric generating set $S_{i} \subseteq$ G_{i}. Let S_{i}^{*} denote the free monoid on S_{i}. We will let $|w|$ denote the length of a word $w \in S_{i}^{*}$. Take $R_{i} \subseteq S_{i}^{*} \times S_{i}^{*}$ and let $C_{i} \subseteq S_{i}^{*} \times S_{i}^{*}$ denote the congruence generated by R_{i}, namely, the translation-invariant equivalence relation generated by R_{i}; suppose that G_{i} is the quotient of S_{i}^{*} by C_{i}, i.e. that $G_{i}=\operatorname{Mon}\left\langle S_{i} \mid R_{i}\right\rangle$ is a presentation of G_{i} as a monoid. (See, for example, Chapter 1 of [5] for basic facts about monoid presentations.)

The following lemma follows directly from the definition of a congruence.

Lemma 2.1. Let $\psi: S_{1}^{*} \rightarrow S_{2}^{*}$ and suppose that whenever $(u, v) \in R_{1}$ and $w, z \in S_{1}^{*}$, we have $(\psi(w u z), \psi(w v z)) \in C_{2}$. Then $(\psi \times \psi)\left(C_{1}\right) \subseteq C_{2}$.

Proposition 2.2. Suppose $\psi: S_{1}^{*} \rightarrow S_{2}^{*}$ is a bijection such that
(i) if $w \in S_{1}^{*}$ and $x \in S_{1}$, then there is $y \in S_{2}$ such that $\psi(w x)=$ $\psi(w) y$,
(ii) $(\psi \times \psi)\left(C_{1}\right)=C_{2}$.

Then, considering the quotients $G_{i}=S_{i}^{*} / C_{i}, \psi$ descends to a bijection from G_{1} onto G_{2} that implements a graph isomorphism from the Cayley graph $\mathcal{G}\left(G_{1}, S_{1}\right)$ onto the Cayley graph $\mathcal{G}\left(G_{2}, S_{2}\right)$.

Proof. Let $S_{i}^{*}(n)$ denote the set of words belonging to S_{i} having length n. Taking $w=\emptyset$ to be the empty word in S_{1}^{*}, from (i) we get $\psi\left(S_{1}\right) \subseteq$ $S_{2}^{*}(m+1)$, where m is the length of $\psi(\emptyset)$. Moreover, using induction on n, we see $\psi\left(S_{1}^{*}(n)\right) \subseteq S_{2}^{*}(m+n)$ for all $n \in \mathbf{N}$. Using that ψ is a bijection, we conclude that $m=0$ and

$$
\psi\left(S_{1}^{*}(n)\right)=S_{2}^{*}(n)
$$

Let $\tilde{w} \in S_{2}^{*}$ and $y \in S_{2}$. Let $n=|\tilde{w}|$ and let $w=\psi^{-1}(\tilde{w})$. Since $\left|\psi^{-1}(\tilde{w} y)\right|=n+1$, we have $\psi^{-1}(\tilde{w} y)=w^{\prime} x$ for some $w^{\prime} \in S_{1}^{*}(n)$. By (i), $\tilde{w} y=\psi\left(w^{\prime} x\right)=\psi\left(w^{\prime}\right) \tilde{y}$ for some $\tilde{y} \in S_{2}$. But we must have $\tilde{w}=\psi\left(w^{\prime}\right)$ and $\tilde{y}=y$. To summarize, we have shown the analogue of (i) for ψ^{-1}, namely:

$$
\begin{equation*}
\forall \tilde{w} \in S_{2}^{*} \forall y \in S_{2} \exists x \in S_{1} \text { such that } \psi^{-1}(\tilde{w} y)=\psi^{-1}(\tilde{w}) x \tag{6}
\end{equation*}
$$

Let $\bar{\psi}: G_{1} \rightarrow G_{2}$ denote the map of equivalence classes induced by ψ. Clearly, $\bar{\psi}$ is a bijection. Consider any edge of $\mathcal{G}\left(G_{1}, S_{1}\right)$; its endpoints are g and $g x$ for some $g \in G_{1}$ and $x \in S_{1}$. Let $w \in S_{1}^{*}$ be a representative of g. By (i), there is $y \in S_{2}$ such that $\psi(w x)=\psi(w) y$. Therefore, $\bar{\psi}(g x)=\bar{\psi}(g) y$. So $\bar{\psi}(g x)$ and $\bar{\psi}(g)$ are the endpoints of an edge of $\mathcal{G}\left(G_{2}, S_{2}\right)$. Arguing similarly, but using (6) instead of (i), we see that the endpoints of any edge of $\mathcal{G}\left(G_{2}, S_{2}\right)$ get mapped by ψ^{-1} to the endpoints of an edge of $\mathcal{G}\left(G_{1}, S_{1}\right)$. Thus, $\bar{\psi}$ implements an isomorphism of Cayley graphs.

3. The genus 2 case

Consider the fundumental group of the closed orientable surface of genus $g=2$ in its usual presentation:

$$
\Gamma_{2}=\left\langle a, b, c, d \mid a b a^{-1} b^{-1} c d c^{-1} d^{-1}=1\right\rangle
$$

and take the symmetric generating set $V=\left\{a, a^{-1}, b, b^{-1}, c, c^{-1}, d, d^{-1}\right\}$. Part of the Cayley graph $\mathcal{G}\left(\Gamma_{2}, V\right)$ around the identity element is drawn

Figure 1: Part of the Cayley graph $\mathcal{G}\left(\Gamma_{2}, V\right)$

in Figure 1. (We have chosen to draw Cayley graphs with respect to multiplication on the right.) Consider also the Coxeter group

$$
G_{8}=\left\langle s_{1}, \ldots, s_{8} \mid s_{i}^{2}=\left(s_{i} s_{i+1}\right)^{4}=1,(1 \leq i \leq 8)\right\rangle
$$

where the subscript in s_{i+1} is to be taken modulo 8. Take the symmetric generating set $W=\left\{s_{1}, \ldots, s_{8}\right\}$. Part of the Cayley graph $\mathcal{G}\left(G_{8}, W\right)$ around the identity element is drawn in Figure 2.

Theorem 3.1. The Cayley graphs $\mathcal{G}\left(\Gamma_{2}, V\right)$ and $\mathcal{G}\left(G_{8}, W\right)$ are isomorphic.

Proof. Let V^{*} and W^{*} be the free monoids on generating sets V and W, respectively. Note that we continue to use the notation a^{-1}, etc., for elements of V, even though in the monoid V^{*} they are not invertible. Thus, for example, $a b^{-1} b c$ and $a c$ are distinct elements of V^{*}. We will keep this notation because we will use the order-two permutation $x \mapsto$ x^{-1} of V. Monoid presentations of the groups Γ_{2} and G_{8} are

$$
\Gamma_{2}=\operatorname{Mon}\left\langle V \mid R_{\Gamma}\right\rangle, \quad G_{8}=\operatorname{Mon}\left\langle W \mid R_{G}\right\rangle
$$

Figure 2: Part of the Cayley graph $\mathcal{G}\left(G_{8}, W\right)$

where

$$
\begin{aligned}
R_{\Gamma} & =\left\{\left(a b a^{-1} b^{-1}, d c d^{-1} c^{-1}\right)\right\} \cup\left\{\left(x x^{-1}, \emptyset\right) \mid x \in V\right\} \subseteq V^{*} \times V^{*} \\
R_{G} & =\left\{\left(s_{i} s_{i}, \emptyset\right) \mid 1 \leq i \leq 8\right\} \cup\left\{\left(s_{i} s_{i+1} s_{i} s_{i+1}, s_{i+1} s_{i} s_{i+1} s_{i}\right) \mid 1 \leq i \leq 8\right\} \subseteq \\
& \subseteq W^{*} \times W^{*}
\end{aligned}
$$

where \emptyset denotes the empty word, i.e. the identity element of the monoid V^{*} or W^{*} and where the subscript in s_{i+1} should be taken modulo 8 . We will construct a bijection $\psi: W^{*} \rightarrow V^{*}$ and use Proposition 2.2 to show that ψ implements an isomorphism of Cayley graphs. Let $C_{\Gamma} \subseteq V^{*} \times V^{*}$ and $C_{G} \subseteq W^{*} \times W^{*}$ be the congruence relations generated by R_{Γ} and, respectively, R_{G}.

An inspection of the drawings in Figures 1 and 2 suggests an obvious relation (of being "neighbors") on the generating sets V and W, respectively. Namely, two generators are neighbors if there is an octagon in the Cayley graph that contains both of them. These relations of V and, respectively, W are encoded in the octagons of Figures 3 and 4 . As suggested by these figures, let us define the bijection $\eta:\{1, \ldots, 8\} \rightarrow V$

Figure 3: A relation on the generators of Γ_{2}

Figure 4: A relation on the generators of G_{8}

by

$$
\eta=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
a & b^{-1} & a^{-1} & b & c & d^{-1} & c^{-1} & d
\end{array}\right) .
$$

and set $\psi\left(s_{i}\right)=\eta(i)$. Suppose we try to define $\psi\left(s_{1} s_{j}\right)=\psi\left(s_{1}\right) \gamma(j)=$ $a \gamma(j)$ for some bijection $\gamma:\{1, \ldots, 8\} \rightarrow V$. Inspecting Figures 1 and 2, we see that we need

$$
\begin{equation*}
\gamma(1)=a^{-1}, \quad \gamma(2)=b^{-1}, \quad \gamma(8)=b \tag{7}
\end{equation*}
$$

But we also want γ to send neighbors in Figure 4 to neighbors in Figure 3. The values (7) are, therefore, sufficient to determine γ. We have $\gamma=\eta \circ \tau$, where

$$
\tau=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 2 & 1 & 8 & 7 & 6 & 5 & 4
\end{array}\right)
$$

is the permutation arising as the reflection of the octagon in Figure 4 through the axis containing vertices 2 and 6 . Similarly, we are led to
define $\psi\left(s_{2} s_{j}\right)=b^{-1} \eta(\sigma(j))$, where

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 4 & 3 & 2 & 1 & 8 & 7 & 6
\end{array}\right)
$$

is the permutation arising from the reflection of the octagon through the axis containing vertices 3 and 7 . Exploring further, we are led to the recursive definition of ψ described below.

Let $\rho=\tau \sigma$. Then ρ is the rotation of the octagon through angle $\pi / 2$. Let H be the group generated by σ and τ. Then H is the dihedral group of order 8 , and the sets $\{1,3,5,7\}$ and $\{2,4,6,8\}$ are both preserved by all elements of H. Consider the map $W^{*} \rightarrow H$ denoted $w \mapsto h_{w}$ and defined recursively by $h_{\emptyset}=\mathrm{id}$ and

$$
h_{w s_{k}}= \begin{cases}\tau h_{w}, & k \text { odd } \\ \sigma h_{w}, & k \text { even }\end{cases}
$$

for all $w \in W^{*}$. Define $\psi: W^{*} \rightarrow V^{*}$ by $\psi(\emptyset)=\emptyset$ and

$$
\psi\left(w s_{k}\right)=\psi(w) \eta\left(h_{w}(k)\right)
$$

for all $w \in W^{*}$. It is clear that ψ is a bijection from W^{*} onto V^{*} that preserves word length and that condition (i) of Proposition 2.2 is satisfied (with $S_{1}=W$ and $S_{2}=V$). We also observe the following.
Claim 3.2. If $w, w^{\prime} \in W^{*}$ and if $h_{w}=h_{w^{\prime}}$, then for every $z \in W^{*}$ there is $\tilde{z} \in V^{*}$ such that $\psi(w z)=\psi(w) \tilde{z}$ and $\psi\left(w^{\prime} z\right)=\psi\left(w^{\prime}\right) \tilde{z}$. Moreover, this $\operatorname{map} z \mapsto \tilde{z}$ is a bijection from W^{*} onto V^{*} that preserves word length.

Suppose $i \in\{1,3,5,7\}$ and $w \in W^{*}$. Then $h_{w s_{i}}=\tau h_{w}$,

$$
\psi\left(w s_{i} s_{i}\right)=\psi(w) \eta\left(h_{w}(i)\right) \eta\left(\tau h_{w}(i)\right)
$$

and $h_{w s_{i} s_{i}}=\tau \tau h_{w}=h_{w}$. But $h_{w}(i)$ is odd and for all $k \in\{1,3,5,7\}$ we have $\eta(\tau(k))=\eta(k)^{-1}$. Thus, using Claim 3.2, for every $z \in W^{*}$ there is $\tilde{z} \in V^{*}$ such that

$$
\begin{equation*}
\psi(w z)=\psi(w) \tilde{z}, \quad \psi\left(w s_{i} s_{i} z\right)=\psi(w) x x^{-1} \tilde{z} \tag{8}
\end{equation*}
$$

where $x=\eta\left(h_{w}(i)\right) \in V$, and we have $\left(\psi\left(w s_{i} s_{i} z\right), \psi(w z)\right) \in C_{\Gamma}$.
Similarly, if $i \in\{2,4,6,8\}$ and $w \in W^{*}$ then

$$
\psi\left(w s_{i} s_{i}\right)=\psi(w) \eta\left(h_{w}(i)\right) \eta\left(\sigma h_{w}(i)\right)
$$

and $h_{w s_{i} s_{i}}=\sigma \sigma h_{w}=h_{w}$. But $h_{w}(i)$ is even, and for all $k \in\{2,4,6,8\}$ we have $\eta(\sigma(k))=\eta(k)^{-1}$. Thus, using Claim 3.2, for every $z \in W^{*}$ there is $\tilde{z} \in V^{*}$ such that

$$
\begin{equation*}
\psi(w z)=\psi(w) \tilde{z}, \quad \psi\left(w s_{i} s_{i} z\right)=\psi(w) x x^{-1} \tilde{z} \tag{9}
\end{equation*}
$$

where $x=\eta\left(h_{w}(i)\right) \in V$, and again we have $\left(\psi\left(w s_{i} s_{i} z\right), \psi(w z)\right) \in C_{\Gamma}$.
Let $i \in\{1,3,5,7\}$ and $w \in W^{*}$. Then

$$
\psi\left(w s_{i} s_{i \pm 1} s_{i} s_{i \pm 1}\right)=\psi(w) t
$$

where

$$
\begin{equation*}
t=\eta\left(h_{w}(i)\right) \eta\left(\tau h_{w}(i \pm 1)\right) \eta\left(\sigma \tau h_{w}(i)\right) \eta\left(\tau \sigma \tau h_{w}(i \pm 1)\right) \tag{10}
\end{equation*}
$$

and

$$
h_{w s_{i} s_{i \pm 1} s_{i} s_{i \pm 1}}=\sigma \tau \sigma \tau h_{w}=\rho^{2} h_{w}
$$

On the other hand,

$$
\psi\left(w s_{i \pm 1} s_{i} s_{i \pm 1} s_{i}\right)=\psi(w) u
$$

where

$$
\begin{equation*}
u=\eta\left(h_{w}(i \pm 1)\right) \eta\left(\sigma h_{w}(i)\right) \eta\left(\tau \sigma h_{w}(i \pm 1)\right) \eta\left(\sigma \tau \sigma h_{w}(i)\right) \tag{11}
\end{equation*}
$$

and

$$
h_{w s_{i \pm 1} s_{i} s_{i \pm 1} s_{i}}=\tau \sigma \tau h_{w}=\rho^{-2} h_{w}=\rho^{2} h_{w} .
$$

Invoking Claim 3.2, for every $z \in W^{*}$ there is $\tilde{z} \in V^{*}$ such that

$$
\psi\left(w s_{i} s_{i \pm 1} s_{i} s_{i \pm 1} z\right)=\psi(w) t \tilde{z}, \quad \psi\left(w s_{i \pm 1} s_{i} s_{i \pm 1} s_{i} z\right)=\psi(w) u \tilde{z}
$$

where t and u are the words given in (10) and (11) that are determined by the values of $h_{w}(i)$ and $h_{w}(i \pm 1)$. But $h_{w}(i) \in\{1,3,5,7\}$ and $h_{w}(i \pm 1)$ is a neighbor of $h_{w}(i)$ on the octagon in Figure 4. The values of t and u are easily computed in the eight possible cases and these are displayed in Table 1. We always get that (t, u) belongs to C_{Γ}. Therefore, for every $w, z \in W^{*}$,

$$
\begin{equation*}
\left(\psi\left(w s_{i} s_{i \pm 1} s_{i} s_{i \pm 1} z\right), \psi\left(w s_{i \pm 1} s_{i} s_{i \pm 1} s_{i} z\right)\right)=(\psi(w) t \tilde{z}, \psi(w) u \tilde{z}) \in C_{\Gamma} \tag{12}
\end{equation*}
$$

By Lemma 2.1, we conclude

$$
\begin{equation*}
(\psi \times \psi)\left(C_{G}\right) \subseteq C_{\Gamma} \tag{13}
\end{equation*}
$$

In order to show the reverse inclusion in (13), we argue backwards. Let $\tilde{w} \in V^{*}$ and $x \in V$. There is $w \in W^{*}$ such that $\psi(w)=\tilde{w}$. Choose $i \in\{1, \ldots, 8\}$ such that $\eta\left(h_{w}(i)\right)=x$. When we invoked Claim 3.2 to find (8) and (9), we found that for every $z \in W^{*}$ there is $\tilde{z} \in V^{*}$ such that

$$
\psi\left(w s_{i} s_{i} z\right)=\tilde{w} x x^{-1} \tilde{z}, \quad \psi(w z)=\tilde{w} \tilde{z}
$$

and that the map $z \mapsto \tilde{z}$ is a bijection from W^{*} onto V^{*}. Hence, for all $\tilde{w}, \tilde{z} \in V^{*}$ and $x \in V$, there is $z \in W^{*}$ such that

$$
\left(\psi^{-1}\left(\tilde{w} x x^{-1} \tilde{z}\right), \psi^{-1}(\tilde{w} \tilde{z})\right)=\left(w s_{i} s_{i} z, w z\right) \in C_{G}
$$

It remains to consider the relation $\left(a b a^{-1} b^{-1}, d c d^{-1} c^{-1}\right) \in R_{\Gamma}$. Given $\tilde{w} \in V^{*}$, let $w=\psi^{-1}(\tilde{w})$. Since h_{w} is a symmetry of the octagon in Figure 4 that maps odds to odds, we may choose $i \in\{1,3,5,7\}$ and a $\operatorname{sign} \pm$ such that $h_{w}(i)=1$ and $h_{w}(i \pm 1)=8$. When we invoked Claim 3.2 above to conclude (12), for every $\tilde{z} \in V^{*}$ we found $z \in W^{*}$ such that

$$
\begin{aligned}
& \left(\psi^{-1}\left(\tilde{w} a b a^{-1} b^{-1} \tilde{z}\right), \psi^{-1}\left(\tilde{w} d c d^{-1} c^{-1} \tilde{z}\right)\right)= \\
& \quad=\left(w s_{i} s_{i \pm 1} s_{i} s_{i \pm 1} z, w s_{i \pm 1} s_{i} s_{i \pm 1} s_{i} z\right) \in C_{G}
\end{aligned}
$$

Applying Lemma 2.1, we conclude

$$
\left(\psi^{-1} \times \psi^{-1}\right)\left(C_{\Gamma}\right) \subseteq C_{G}
$$

All the conditions needed to apply Proposition 2.2 have been proved and we conclude that ψ induces an isomorphism of the Cayley graphs.

4. The general case of genus $g \geq 2$

Let g be an integer, $g \geq 2$. Consider the fundamental group Γ_{g} of the closed, orientable surface of genus g in its usual presentation (1). Let $V=V_{g}$ be the symmetric generating set (2). Consider the Coxeter group $G=G_{4 g}$ given at (3) and let $W=W_{4 g}$ be as in (4).

Theorem 4.1. The Cayley graphs $\mathcal{G}\left(\Gamma_{g}, V\right)$ and $\mathcal{G}(G, W)$ are isomorphic.

Table 1: Values of t and u in the different cases.

$h_{w}(i)$	$h_{w}(i \pm 1)$	t	u
1	8	$a b a^{-1} b^{-1}$	$d c d^{-1} c^{-1}$
1	2	$a b^{-1} a^{-1} d$	$b^{-1} c d c^{-1}$
3	2	$a^{-1} b^{-1} c d$	$b^{-1} a^{-1} d c$
3	4	$a^{-1} d c d^{-1}$	$b a^{-1} b^{-1} c$
5	4	$c d c^{-1} d^{-1}$	$b a b^{-1} a^{-1}$
5	6	$c d^{-1} c^{-1} b$	$d^{-1} a b a^{-1}$
7	6	$c^{-1} d^{-1} a b$	$d^{-1} c^{-1} b a$
7	8	$c^{-1} b a b^{-1}$	$d c^{-1} d^{-1} a$.

Proof. Let V^{*} and W^{*} denote the free monoids on V and W, respectively. We will construct a bijection $\psi: W^{*} \rightarrow V^{*}$ for which we can invoke Proposition 2.2. This construction is analogous to the one in the proof of the special case, Theorem 3.1, but more complicated.

In V^{*}, a_{j}^{-1} and b_{j}^{-1} should be understood as symbols only and not as multiplicative inverses. Thus, for example, $a_{1} b_{1} b_{1}^{-1} a_{2}$ and $a_{1} a_{2}$ are distinct elements of V^{*}. We chose not to introduce extra symbols to replace a_{j}^{-1} and b_{j}^{-1}, because we will use the notation $x \mapsto x^{-1}$ (here taking inverses in Γ_{g}) for the obvious permutation of V. When $k \in \mathbf{Z}$ we will take a_{k} to mean a_{j} where $j \in\{1, \ldots, g\}$ and $j \equiv k(\bmod g)$ and similarly for a_{j}^{-1}, b_{j} and b_{j}^{-1}. Similarly, for elements s_{j} of W, the subscript j is always taken modulo $4 g$.

For future use, it will be convenient to have names for certain elements of V^{*} that correspond to taking the first half u of a cyclic permutation of the word

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}
$$

and the inverse v of the second half. Let $n \in \mathbf{Z}$. If g is even, then set

$$
\begin{aligned}
& u_{1}(n)=\left(a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}\right)\left(a_{n+1} b_{n+1} a_{n+1}^{-1} b_{n+1}^{-1}\right) \cdots\left(a_{n+\frac{g}{2}-1} b_{n+\frac{g}{2}-1} a_{n+\frac{g}{2}-1}^{-1} b_{n+\frac{g}{2}-1}^{-1}\right) \\
& u_{2}(n)=\left(b_{n} a_{n}^{-1} b_{n}^{-1} a_{n+1}\right)\left(b_{n+1} a_{n+1}^{-1} b_{n+1}^{-1} a_{n+2}\right) \cdots\left(b_{n+\frac{g}{2}-1} a_{n+\frac{g}{2}-1}^{-1} b_{n+\frac{g}{2}-1}^{-1} a_{n+\frac{g}{2}}\right) \\
& u_{3}(n)=\left(a_{n}^{-1} b_{n}^{-1} a_{n+1} b_{n+1}\right)\left(a_{n+1}^{-1} b_{n+1}^{-1} a_{n+2} b_{n+2}\right) \cdots\left(a_{n+\frac{g}{2}-1}^{-1} b_{n+\frac{g}{2}-1}^{-1} a_{n+\frac{g}{2}} b_{n+\frac{g}{2}}\right) \\
& u_{4}(n)=\left(b_{n}^{-1} a_{n+1} b_{n+1} a_{n+1}^{-1}\right)\left(b_{n+1}^{-1} a_{n+2} b_{n+2} a_{n+2}^{-1}\right) \cdots\left(b_{n+\frac{g}{2}-1}^{-1} a_{n+\frac{g}{2}} b_{n+\frac{g}{2}} a_{n+\frac{g}{2}}^{-1}\right) \\
& v_{1}(n)=\left(b_{n-1} a_{n-1} b_{n-1}^{-1} a_{n-1}^{-1}\right)\left(b_{n-2} a_{n-2} b_{n-2}^{-1} a_{n-2}^{-1}\right) \cdots\left(b_{n-\frac{g}{2}} a_{n-\frac{g}{2}} b_{n-\frac{g}{2}}^{-1} a_{n-\frac{g}{2}}^{-1}\right) \\
& v_{2}(n)=\left(a_{n}^{-1} b_{n-1} a_{n-1} b_{n-1}^{-1}\right)\left(a_{n-1}^{-1} b_{n-2} a_{n-2} b_{n-2}^{-1}\right) \cdots\left(a_{n-\frac{g}{2}+1}^{-1} b_{n-\frac{g}{2}} a_{n-\frac{g}{2}} b_{n-\frac{g}{2}}^{-1}\right) \\
& v_{3}(n)=\left(b_{n}^{-1} a_{n}^{-1} b_{n-1} a_{n-1}\right)\left(b_{n-1}^{-1} a_{n-1}^{-1} b_{n-2} a_{n-2}\right) \cdots\left(b_{n-\frac{g}{2}+1}^{-1} a_{n-\frac{g}{2}+1}^{-1} b_{n-\frac{g}{2}} a_{n-\frac{g}{2}}\right) \\
& v_{4}(n)=\left(a_{n} b_{n}^{-1} a_{n}^{-1} b_{n-1}\right)\left(a_{n-1} b_{n-1}^{-1} a_{n-1}^{-1} b_{n-2}\right) \cdots\left(a_{n-\frac{g}{2}+1} b_{n-\frac{g}{2}+1}^{-1} a_{n-\frac{g}{2}+1}^{-1} b_{n-\frac{g}{2}}\right),
\end{aligned}
$$

while if g is odd, then set

$$
\begin{aligned}
& u_{1}(n)=\left(a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}\right)\left(a_{n+1} b_{n+1} a_{n+1}^{-1} b_{n+1}^{-1}\right) \cdots \\
& \cdots\left(a_{n+\frac{g-1}{2}-1} b_{n+\frac{g-1}{2}-1} a_{n+\frac{g-1}{2}-1}^{-1} b_{n+\frac{g-1}{2}-1}^{-1}\right) a_{n+\frac{g-1}{2}} b_{n+\frac{g-1}{2}} \\
& u_{2}(n)=(\left.b_{n} a_{n}^{-1} b_{n}^{-1} a_{n+1}\right)\left(b_{n+1} a_{n+1}^{-1} b_{n+1}^{-1} a_{n+2}\right) \cdots \\
& \cdots\left(b_{n+\frac{g-1}{2}-1} a_{n+\frac{g-1}{2}-1}^{-1} b_{n+\frac{g-1}{2}-1}^{-1} a_{n+\frac{g-1}{2}}\right) b_{n+\frac{g-1}{2}} a_{n+\frac{g-1}{2}}^{-1} \\
& u_{3}(n)=\left(a_{n}^{-1} b_{n}^{-1} a_{n+1} b_{n+1}\right)\left(a_{n+1}^{-1} b_{n+1}^{-1} a_{n+2} b_{n+2}\right) \cdots \\
& \cdots\left(a_{n+\frac{g-1}{2}-1}^{-1} b_{n+\frac{g-1}{2}-1}^{-1} a_{n+\frac{g-1}{2}} b_{n+\frac{g-1}{2}}\right) a_{n+\frac{g-1}{2}}^{-1} b_{n+\frac{g-1}{2}}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& u_{4}(n)=\left(b_{n}^{-1} a_{n+1} b_{n+1} a_{n+1}^{-1}\right)\left(b_{n+1}^{-1} a_{n+2} b_{n+2} a_{n+2}^{-1}\right) \cdots \\
& \cdots\left(b_{n+\frac{g-1}{2}-1} a_{n+\frac{g-1}{2}} b_{n+\frac{g-1}{2}} a_{n+\frac{g-1}{2}}\right) b_{n+\frac{g-1}{2}}^{-1} a_{n+\frac{g-1}{2}+1} \\
& v_{1}(n)=\left(b_{n-1} a_{n-1} b_{n-1}^{-1} a_{n-1}^{-1}\right)\left(b_{n-2} a_{n-2} b_{n-2}^{-1} a_{n-2}^{-1}\right) \cdots \\
& \\
& \cdots\left(b_{n-\frac{g-1}{2}} a_{n-\frac{g-1}{2}} b_{n-\frac{g-1}{2}} a_{n-\frac{g-1}{2}}^{-1}\right) b_{n-\frac{g-1}{2}-1} a_{n-\frac{g-1}{2}-1} \\
& v_{2}(n)=\left(a_{n}^{-1} b_{n-1} a_{n-1} b_{n-1}^{-1}\right)\left(a_{n-1}^{-1} b_{n-2} a_{n-2} b_{n-2}^{-1}\right) \cdots \\
& \\
& \cdots\left(a_{n-\frac{g-1}{2}+1}^{-1} b_{n-\frac{g-1}{2}} a_{n-\frac{g-1}{2}} b_{n-\frac{g-1}{2}}^{-1}\right) a_{n-\frac{g-1}{2}}^{-1} b_{n-\frac{g-1}{2}-1} \\
& v_{3}(n)=\left(b_{n}^{-1} a_{n}^{-1} b_{n-1} a_{n-1}\right)\left(b_{n-1}^{-1} a_{n-1}^{-1} b_{n-2} a_{n-2}\right) \cdots \\
& \quad \cdots\left(b_{n-\frac{g-1}{2}+1}^{-1} a_{n-\frac{g-1}{2}+1}^{-1} b_{n-\frac{g-1}{2}} a_{n-\frac{g-1}{2}}\right) b_{n-\frac{g-1}{2}}^{-1} a_{n-\frac{g-1}{2}}^{-1} \\
& v_{4}(n)=\left(a_{n} b_{n}^{-1} a_{n}^{-1} b_{n-1}\right)\left(a_{n-1} b_{n-1}^{-1} a_{n-1}^{-1} b_{n-2}\right) \cdots \\
& \quad \cdots\left(a_{n-\frac{g-1}{2}+1} b_{n-\frac{g-1}{2}+1}^{-1} a_{n-\frac{g-1}{2}+1}^{-1} b_{n-\frac{g-1}{2}}\right) a_{n-\frac{g-1}{2}} b_{n-\frac{g-1}{2}}^{-1} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& R_{\Gamma}=\left\{\left(u_{1}(1), v_{1}(1)\right)\right\} \cup \bigcup_{i=1}^{g}\left\{\left(a_{i} a_{i}^{-1}, \emptyset\right),\left(a_{i}^{-1} a_{i}, \emptyset\right),\left(b_{i} b_{i}^{-1}, \emptyset\right),\left(b_{i}^{-1} b_{i}, \emptyset\right)\right\} \subseteq \\
& \quad V^{*} \times V^{*} \\
& R_{G}=\left\{\left(s_{i} s_{i}, \emptyset\right) \mid 1 \leq i \leq 4 g\right\} \cup\left\{\left(\left(s_{i} s_{i+1}\right)^{g},\left(s_{i+1} s_{i}\right)^{g}\right) \mid 1 \leq i \leq 4 g\right\} \subseteq \\
& \quad W^{*} \times W^{*}
\end{aligned}
$$

Then

$$
\Gamma_{g}=\operatorname{Mon}\left\langle V \mid R_{\Gamma}\right\rangle, \quad G_{4 g}=\operatorname{Mon}\left\langle W \mid R_{G}\right\rangle
$$

are monoid presentations of the groups. Let $C_{\Gamma} \subseteq V^{*} \times V^{*}$ and $C_{G} \subseteq$ $W^{*} \times W^{*}$ be the congruences generated by R_{Γ} and R_{G}, respectively. We have

$$
\begin{equation*}
\left(u_{j}(n), v_{j}(n)\right) \in C_{\Gamma}, \quad(n \in \mathbf{Z}, 1 \leq j \leq 4) \tag{14}
\end{equation*}
$$

Consider the regular $4 g$-gon P with vertices labeled $1,2, \ldots, 4 g$ going clockwise and for $p \in\{1, \ldots, 4 g\}$ let τ_{p} be the reflection of P through the axis that contains the vertex p. Note that τ_{p} depends only on p modulo $2 g$. Let ρ be the clockwise rotation of P through angle $\frac{2 \pi k}{2 g}$. For $n \in \mathbf{Z}$, we will let τ_{n} denote the reflection τ_{k} where $k \in\{1, \ldots 4 g\}$ and $k \equiv n$ $(\bmod g)$. We have

$$
\tau_{p_{1}} \tau_{p_{2}}=\rho^{p_{2}-p_{1}}, \quad\left(p_{1}, p_{2} \in \mathbf{Z}\right)
$$

Let H denote the group of symmetries of P generated by $\left\{\tau_{p} \mid 1 \leq p \leq\right.$ $4 g\}$. We will identify elements of H with the corresponding permutations of $\{1, \ldots, 4 g\}$ according to how they move the vertices. Note that every
element of H preserves the set $\{1,3, \ldots, 4 g-1\}$ of odd numbers. Also, H is isomorphic to the dihedral group of order $4 g$.

Consider the bijection $\eta:\{1,2, \ldots, 4 g\} \rightarrow V$ given by
$\eta=\left(\begin{array}{ccccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots & 4 g-3 & 4 g-2 & 4 g-1 & 4 g \\ a_{1} & b_{1}^{-1} & a_{1}^{-1} & b_{1} & a_{2} & b_{2}^{-1} & a_{2}^{-1} & b_{2} & \ldots & a_{g} & b_{g}^{-1} & a_{g}^{-1} & b_{g}\end{array}\right)$.
Thus,

$$
\eta(4 k-3)=a_{k}, \quad \eta(4 k-2)=b_{k}^{-1}, \quad \eta(4 k-1)=a_{k}^{-1}, \quad \eta(4 k)=b_{k}
$$

for all $k \in\{1, \ldots, g\}$. Consider the map $\sigma:\{1, \ldots, 4 g\} \rightarrow H$ defined by

$$
\begin{aligned}
\sigma(4 k-3)=\sigma(4 k-1) & =\tau_{4 k-2} \\
\sigma(4 k-2)=\sigma(4 k) & =\tau_{4 k-1}, \quad(1 \leq k \leq g)
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
& \eta(\sigma(i) i)=\eta(i)^{-1} \tag{15}\\
& \sigma(\sigma(i) i)=\sigma(i) \tag{16}
\end{align*}
$$

for all $i \in\{1, \ldots, 4 g\}$. Define recursively a map $W^{*} \rightarrow H$, denoted $w \mapsto h_{w}$, by

$$
\begin{aligned}
h_{\emptyset} & =\mathrm{id} \\
h_{w s_{i}} & =\sigma\left(h_{w}(i)\right) h_{w} \quad\left(w \in W^{*}, s_{i} \in W\right) .
\end{aligned}
$$

Define recursively a map $\psi: W^{*} \rightarrow V^{*}$ by

$$
\begin{aligned}
\psi(\emptyset) & =\emptyset \\
\psi\left(w s_{i}\right) & =\psi(w) \eta\left(h_{w}(i)\right) \quad\left(w \in W^{*}, s_{i} \in W\right)
\end{aligned}
$$

It is clear that ψ is a bijection from W^{*} onto V^{*} that preserves word length and that condition (i) of Proposition 2.2 is satisfied (with $S_{1}=W$ and $\left.S_{2}=V\right)$.
Claim 4.2. Suppose $w, w^{\prime} \in W^{*}$ and suppose $h_{w}=h_{w^{\prime}}$. Then for every $z \in W^{*}$ we have $h_{w z}=h_{w^{\prime} z}$ and there is a unique $\tilde{z} \in V^{*}$ such that

$$
\begin{align*}
\psi(w z) & =\psi(w) \tilde{z} \tag{17}\\
\psi\left(w^{\prime} z\right) & =\psi\left(w^{\prime}\right) \tilde{z} \tag{18}
\end{align*}
$$

Moreover, the map $z \mapsto \tilde{z}$ is a bijection from W^{*} onto V^{*}.

Proof. Uniqueness of \tilde{z} is clear. If $z=\emptyset$ then (17) and (18) hold with $\tilde{z}=\emptyset$. Take $z=s_{i}$. Then $h_{w z}=\sigma\left(h_{w}(i)\right) h_{w}=\sigma\left(h_{w^{\prime}}(i)\right) h_{w^{\prime}}=h_{w^{\prime} z}$. Moreover,

$$
\begin{aligned}
\psi(w z) & =\psi(w) \eta\left(h_{w}(i)\right) \\
\psi\left(w^{\prime} z\right) & =\psi\left(w^{\prime}\right) \eta\left(h_{w^{\prime}}(i)\right)
\end{aligned}
$$

so (17) and (18) hold with $\tilde{z}=\eta\left(h_{w}(i)\right)$, and the map $z \mapsto \tilde{z}$ is a bijection from W onto V. Now one easily shows by induction on n that if $z \in W^{*}$ with $|z|=n$, then \tilde{z} exists such that (17) and (18) hold and the map $z \mapsto \tilde{z}$ is a bijection from the set of words in W^{*} of length n onto the set of words in V^{*} of length n. This will finish the proof of Claim 4.2.

Claim 4.3. Let $w \in W^{*}$ and let $i \in\{1, \ldots, 4 g\}$. Then

$$
h_{w s_{i} s_{i}}=h_{w}
$$

and

$$
\psi\left(w s_{i} s_{i}\right)=\psi(w) x x^{-1}
$$

where $x=\eta\left(h_{w}(i)\right)$.
Proof. We have $\psi\left(w s_{i}\right)=\psi(w) x$ and $h_{w s_{i}}=\sigma\left(h_{w}(i)\right) h_{w}$. Thus,

$$
\psi\left(w s_{i} s_{i}\right)=\psi(w) x \eta\left(h_{w s_{i}}(i)\right)=\psi(w) x \eta\left(\sigma\left(h_{w}(i)\right) h_{w}(i)\right)=\psi(w) x x^{-1}
$$

where we have used (15) to obtain the last equality. Also,

$$
h_{w s_{i} s_{i}}=\sigma\left(h_{w s_{i}}(i)\right) h_{w s_{i}}=\sigma\left(\sigma\left(h_{w}(i)\right) h_{w}(i)\right) \sigma\left(h_{w}(i)\right) h_{w}=h_{w}
$$

where we have used (16) and the fact that the each $\sigma(n)$ is a reflection. This finishes the proof of Claim 4.3

Claim 4.4. Let $w \in W^{*}$, let $i \in\{1,3,5, \ldots, 4 g-1\}$ and choose a sign \pm. Then

$$
\begin{equation*}
h_{w\left(s_{i} s_{i \pm 1}\right)^{g}}=h_{w\left(s_{i \pm 1} s_{i}\right)^{g}} \tag{19}
\end{equation*}
$$

and there is $(\tilde{u}, \tilde{v}) \in C_{\Gamma} \subseteq V^{*} \times V^{*}$ such that

$$
\begin{equation*}
\psi\left(w\left(s_{i} s_{i \pm 1}\right)^{g}\right)=\psi(w) \tilde{u}, \quad \psi\left(w\left(s_{i \pm 1} s_{i}\right)^{g}\right)=\psi(w) \tilde{v} \tag{20}
\end{equation*}
$$

Proof. Let $k=h_{w}(i)$ and $\ell=h_{w}(i \pm 1)$. Then k is odd, ℓ is even, and $|k-\ell|=1$. let $p_{1}=k$ and $p_{2}=\sigma\left(p_{1}\right) \ell$. The possible values of k, ℓ, p_{1} and p_{2} are displayed in Table 2, where n is an integer. We assign to a pair $\left(p, p^{\prime}\right)$ a name as indicated in Table 3 , and we have included in Table 2 the names of the pairs $\left(p_{1}, p_{2}\right)$. We find

$$
\begin{aligned}
\psi\left(w s_{i}\right) & =\psi(w) \eta\left(p_{1}\right) & h_{w s_{i}} & =\sigma\left(p_{1}\right) h_{w} \\
\psi\left(w s_{i} s_{i \pm 1}\right) & =\psi(w) \eta\left(p_{1}\right) \eta\left(p_{2}\right) & h_{w s_{i} s_{i \pm 1}} & =\sigma\left(p_{2}\right) \sigma\left(p_{1}\right) h_{w}
\end{aligned}
$$

Defining recursively

$$
\begin{equation*}
p_{j+2}=\sigma\left(p_{j+1}\right) \sigma\left(p_{j}\right) p_{j}, \quad(j \geq 1) \tag{21}
\end{equation*}
$$

we find

$$
\begin{gather*}
\psi\left(w\left(s_{i} s_{i \pm 1}\right)^{g}\right)=\psi(w) \eta\left(p_{1}\right) \eta\left(p_{2}\right) \cdots \eta\left(p_{2 g-1}\right) \eta\left(p_{2 g}\right) \tag{22}\\
h_{w\left(s_{i} s_{i \pm 1}\right)^{g}}=\sigma\left(p_{2 g}\right) \sigma\left(p_{2 g-1}\right) \cdots \sigma\left(p_{2}\right) \sigma\left(p_{1}\right) h_{w} \tag{23}
\end{gather*}
$$

In the various cases, a step of the recursion $\left(p_{j}, p_{j+1}\right) \mapsto\left(p_{j+2}, p_{j+3}\right)$ determined by (21) for j odd is described in Table 4. There, "(in)" refers to the is the name of the case $\left(p_{j}, p_{j+1}\right)$ and "(out)" refers to the name of the case corresponding to $\left(p_{j+2}, p_{j+3}\right)$.

Similarly, letting $q_{1}=\ell$ and $q_{2}=\sigma\left(q_{1}\right) k$ and making the recursive definition

$$
\begin{equation*}
q_{j+2}=\sigma\left(q_{j+1}\right) \sigma\left(q_{j}\right) q_{j}, \quad(j \geq 1) \tag{24}
\end{equation*}
$$

we find

$$
\begin{gather*}
\psi\left(w\left(s_{i \pm 1} s_{i}\right)^{g}\right)=\psi(w) \eta\left(q_{1}\right) \eta\left(q_{2}\right) \cdots \eta\left(q_{2 g-1}\right) \eta\left(q_{2 g}\right) \tag{25}\\
h_{w\left(s_{i \pm 1} s_{i}\right)^{g}}=\sigma\left(q_{2 g}\right) \sigma\left(q_{2 g-1}\right) \cdots \sigma\left(q_{2}\right) \sigma\left(q_{1}\right) h_{w} \tag{26}
\end{gather*}
$$

The starting cases are given in Table 5, the names of pairs $\left(q, q^{\prime}\right)$ are assigned according to Table 6 and the names of $\left(q_{1}, q_{2}\right)$ are included in Table 5. The recursive step $\left(q_{j}, q_{j+1}\right) \mapsto\left(q_{j+2}, q_{j+3}\right)$ is described in Table 7.

Suppose we start with $k=4 n-3, \ell=4 n-4$. When we recursively calculate $p_{1}, p_{2}, \ldots, p_{2 g-1}, p_{2 g}$, we run through g blocks of two whose names are

$$
\begin{cases}\mathrm{A}_{n}, \mathrm{C}_{n}, \mathrm{~A}_{n+1}, \mathrm{C}_{n+1}, \ldots, \mathrm{~A}_{n+\frac{g}{2}-1}, \mathrm{C}_{n+\frac{g}{2}-1}, & g \text { even } \\ \mathrm{A}_{n}, \mathrm{C}_{n}, \mathrm{~A}_{n+1}, \mathrm{C}_{n+1}, \ldots, \mathrm{~A}_{n+\frac{g-1}{2}-1}, \mathrm{C}_{n+\frac{g-1}{2}-1}, \mathrm{~A}_{n+\frac{g-1}{2}}, & g \text { odd }\end{cases}
$$

Table 2: Possible values of k, ℓ, p_{1} and p_{2}.

k	ℓ	p_{1}	$\sigma\left(p_{1}\right)$	p_{2}	$\sigma\left(p_{2}\right)$	Name
$4 n-3$	$4 n-4$	$4 n-3$	$\tau_{4 n-2}$	$4 n$	$\tau_{4 n-1}$	$\mathrm{~A}_{n}$
$4 n-3$	$4 n-2$	$4 n-3$	$\tau_{4 n-2}$	$4 n-2$	$\tau_{4 n-1}$	$\mathrm{~B}_{n}$
$4 n-1$	$4 n-2$	$4 n-1$	$\tau_{4 n-2}$	$4 n-2$	$\tau_{4 n-1}$	C_{n}
$4 n-1$	$4 n$	$4 n-1$	$\tau_{4 n-2}$	$4 n-4$	$\tau_{4 n-5}$	D_{n}

We find

$$
\begin{aligned}
& \left(p_{1}, p_{2}, \ldots, p_{2 g-1}, p_{2 g}\right)= \\
& =\left\{\begin{array}{rrr}
(4 n-3,4 n, 4 n-1,4 n-2,4 n+1,4 n+4,4 n+3,4 n+2, \ldots \\
\ldots, 4 n+2 g-7,4 n+2 g-4,4 n+2 g-5,2 n+2 g-6), & g \text { even } \\
(4 n-3,4 n, 4 n-1,4 n-2,4 n+1,4 n+4,4 n+3,4 n+2, \ldots & \\
\ldots, 4 n+2 g-9,4 n+2 g-6,4 n+2 g-7,4 n+2 g-8, & \\
4 n+2 g-5,4 n+2 g-2), & g \text { odd }
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{equation*}
\eta\left(p_{1}\right) \eta\left(p_{2}\right) \cdots \eta\left(p_{2 g-1}\right) \eta\left(p_{2 g}\right)=u_{1}(n) \tag{27}
\end{equation*}
$$

Furthermore, using the fourth column in Table 4, we immediately get

$$
\begin{equation*}
\sigma\left(p_{2 g}\right) \sigma\left(p_{2 g-1}\right) \cdots \sigma\left(p_{2}\right) \sigma\left(p_{1}\right)=\rho^{g} \tag{28}
\end{equation*}
$$

On the other hand, recursively calculating $q_{1}, q_{2}, \ldots, q_{2 g-1}, q_{2 g}$, we have g blocks of two whose names are

$$
\begin{cases}\mathrm{E}_{n}, \mathrm{G}_{n-1}, \mathrm{E}_{n-1}, \mathrm{G}_{n-2}, \ldots, \mathrm{E}_{n-\frac{g}{2}+1}, \mathrm{G}_{n-\frac{g}{2}}, & g \text { even } \\ \mathrm{E}_{n}, \mathrm{G}_{n-1}, \mathrm{E}_{n-1}, \mathrm{G}_{n-2}, \ldots, \mathrm{E}_{n-\frac{g-1}{2}+1}, \mathrm{G}_{n-\frac{g-1}{2}}, \mathrm{E}_{n-\frac{g-1}{2}}, & g \text { odd }\end{cases}
$$

This yields

$$
\begin{equation*}
\eta\left(q_{1}\right) \eta\left(q_{2}\right) \cdots \eta\left(q_{2 g-1}\right) \eta\left(q_{2 g}\right)=v_{1}(n) \tag{29}
\end{equation*}
$$

Using the fourth column in Table 7, we get

$$
\begin{equation*}
\sigma\left(q_{2 g}\right) \sigma\left(q_{2 g-1}\right) \cdots \sigma\left(q_{2}\right) \sigma\left(q_{1}\right)=\left(\rho^{-1}\right)^{g}=\rho^{-g} \tag{30}
\end{equation*}
$$

From (22) and (27) we have $\psi\left(w\left(s_{i} s_{i \pm 1}\right)^{g}\right)=\psi(w) u_{1}(n)$. From (25) and (29) we have $\psi\left(w\left(s_{i \pm 1} s_{i}\right)^{g}\right)=\psi(w) v_{1}(n)$. By (23) and (28), $h_{w\left(s_{i} s_{i \pm 1}\right)^{g}}=\rho^{g} h_{w}$. By (26) and (30), $h_{w\left(s_{i \pm 1} s_{i}\right)^{g}}=\rho^{-g} h_{w}=\rho^{g} h_{w}$. By (14), $\left(u_{1}(n), v_{1}(n)\right) \in C_{\Gamma}$. We have proved the claim in the case $k=4 n-3$ and $\ell=4 n-4$.

Table 3: Names of $\left(p, p^{\prime}\right)$.

p	p^{\prime}	Name
$4 n-3$	$4 n$	$\mathrm{~A}_{n}$
$4 n-3$	$4 n-2$	$\mathrm{~B}_{n}$
$4 n-1$	$4 n-2$	C_{n}
$4 n-1$	$4 n-4$	D_{n}

In a similar manner, if $k=4 n-3$ and $\ell=4 n-2$, then we find

$$
\begin{aligned}
\eta\left(p_{1}\right) \eta\left(p_{2}\right) & \cdots \eta\left(p_{2 g-1}\right) \eta\left(p_{2 g}\right)
\end{aligned}=v_{4}(n), ~ 子 \eta\left(q_{2 g-1}\right) \eta\left(q_{2 g}\right)=u_{4}(n)
$$

and

$$
\begin{gathered}
\sigma\left(p_{2 g}\right) \sigma\left(p_{2 g-1}\right) \cdots \sigma\left(p_{2}\right) \sigma\left(p_{1}\right)= \begin{cases}\left(\rho \rho^{-3}\right)^{\frac{g}{2}}=\rho^{-g}, & g \text { even } \\
\left(\rho \rho^{-3}\right)^{\frac{g-1}{2}} \rho=\rho^{-g+2}, & g \text { odd }\end{cases} \\
\sigma\left(q_{2 g}\right) \sigma\left(q_{2 g-1}\right) \cdots \sigma\left(q_{2}\right) \sigma\left(q_{1}\right)= \begin{cases}\left(\rho^{3} \rho^{-1}\right)^{\frac{g}{2}}=\rho^{g}, & g \text { even } \\
\left(\rho^{3} \rho^{-1}\right)^{\frac{g-1}{2}} \rho^{3}=\rho^{g+2}, & g \text { odd. }\end{cases}
\end{gathered}
$$

If $k=4 n-1$ and $\ell=4 n-2$, then we find

$$
\begin{aligned}
\eta\left(p_{1}\right) \eta\left(p_{2}\right) \cdots \eta\left(p_{2 g-1}\right) \eta\left(p_{2 g}\right) & =u_{3}(n) \\
\eta\left(q_{1}\right) \eta\left(q_{2}\right) \cdots \eta\left(q_{2 g-1}\right) \eta\left(q_{2 g}\right) & =v_{3}(n)
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma\left(p_{2 g}\right) \sigma\left(p_{2 g-1}\right) \cdots \sigma\left(p_{2}\right) \sigma\left(p_{1}\right) & =(\rho)^{g}=\rho^{g} \\
\sigma\left(q_{2 g}\right) \sigma\left(q_{2 g-1}\right) \cdots \sigma\left(q_{2}\right) \sigma\left(q_{1}\right) & =\left(\rho^{-1}\right)^{g}=\rho^{-g}
\end{aligned}
$$

Finally, if $k=4 n-1$ and $\ell=4 n$, then we find

$$
\begin{aligned}
\eta\left(p_{1}\right) \eta\left(p_{2}\right) \cdots \eta\left(p_{2 g-1}\right) \eta\left(p_{2 g}\right) & =v_{2}(n) \\
\eta\left(q_{1}\right) \eta\left(q_{2}\right) \cdots \eta\left(q_{2 g-1}\right) \eta\left(q_{2 g}\right) & =u_{2}(n)
\end{aligned}
$$

and

$$
\begin{gathered}
\sigma\left(p_{2 g}\right) \sigma\left(p_{2 g-1}\right) \cdots \sigma\left(p_{2}\right) \sigma\left(p_{1}\right)= \begin{cases}\left(\rho^{-3} \rho\right)^{\frac{g}{2}}=\rho^{-g}, & g \text { even }, \\
\left(\rho^{-3} \rho\right)^{\frac{g-1}{2}} \rho^{-3}=\rho^{-g-2}, & g \text { odd },\end{cases} \\
\sigma\left(q_{2 g}\right) \sigma\left(q_{2 g-1}\right) \cdots \sigma\left(q_{2}\right) \sigma\left(q_{1}\right)= \begin{cases}\left(\rho^{-1} \rho^{3}\right)^{\frac{g}{2}}=\rho^{g}, & g \text { even } \\
\left(\rho^{-1} \rho^{3}\right)^{\frac{g-1}{2}} \rho^{-1}=\rho^{g-2}, & g \text { odd. }\end{cases}
\end{gathered}
$$

Table 4: The recursion $\left(p_{j}, p_{j+1}\right) \mapsto\left(p_{j+2}, p_{j+3}\right)$.

(in)	p_{j}	p_{j+1}	$\sigma\left(p_{j+1}\right) \sigma\left(p_{j}\right)$	p_{j+2}	$\sigma\left(p_{j+2}\right)$	p_{j+3}	(out)
A_{n}	$4 n-3$	$4 n$	ρ	$4 n-1$	$\tau_{4 n-2}$	$4 n-2$	C_{n}
$\mathrm{~B}_{n}$	$4 n-3$	$4 n-2$	ρ	$4 n-1$	$\tau_{4 n-2}$	$4 n-4$	D_{n}
C_{n}	$4 n-1$	$4 n-2$	ρ	$4 n+1$	$\tau_{4 n+2}$	$4 n+4$	$\mathrm{~A}_{n+1}$
D_{n}	$4 n-1$	$4 n-4$	ρ^{-3}	$4 n-7$	$\tau_{4 n-6}$	$4 n-6$	$\mathrm{~B}_{n-1}$

Using (14), (22), (23), (25) and (26) in all these cases, the proof of Claim 4.4 is finished.

Using Claims 4.2, 4.3 and 4.4 and using Lemma 2.1, we have

$$
\begin{equation*}
(\psi \times \psi)\left(C_{G}\right) \subseteq C_{\Gamma} \tag{31}
\end{equation*}
$$

In order to show the reverse inclusion in (31), we make use of some of the calculations done in the proof of Claim 4.4, but reverse the argument. Let $\tilde{w} \in V^{*}$ and $x \in V$. There is $w \in W^{*}$ such that $\psi(w)=\tilde{w}$. Choose $i \in\{1, \ldots, 4 g\}$ such that $\eta\left(h_{w}(i)\right)=x$. When we proved Claim 4.3, we found that for every $z \in W^{*}$ there is $\tilde{z} \in V^{*}$ such that

$$
\psi\left(w s_{i} s_{i} z\right)=\tilde{w} x x^{-1} \tilde{z}, \quad \psi(w z)=\tilde{w} \tilde{z}
$$

and the map $z \mapsto \tilde{z}$ is a bijection from W^{*} onto V^{*}. Hence, for all $\tilde{w}, \tilde{z} \in V^{*}$ and $x \in V$, there is $z \in W^{*}$ such that

$$
\left(\psi^{-1}\left(\tilde{w} x x^{-1} \tilde{z}\right), \psi^{-1}(\tilde{w} \tilde{z})\right)=\left(w s_{i} s_{i} z, w z\right) \in C_{G}
$$

It remains to treat the relation $\left(u_{1}(1), v_{1}(1)\right) \in R_{\Gamma}$. Given $\tilde{w} \in V^{*}$, let $w=\psi^{-1}(\tilde{w})$. We may choose $i \in\{1,3, \ldots, 4 g-1\}$ and a sign \pm such that $h_{w}(i)=1$ and $h_{w}(i \pm 1)=4 g$. In the proof of Claim 4.4 for every $\tilde{z} \in V^{*}$ we found $z \in W^{*}$ such that

$$
\left(\psi^{-1}\left(\tilde{w} u_{1}(1) \tilde{z}\right), \psi^{-1}\left(\tilde{w} v_{1}(1) \tilde{z}\right)\right)=\left(w\left(s_{i} s_{i \pm 1}\right)^{g} z, w\left(s_{i \pm 1} s_{i}\right)^{g} z\right) \in C_{G} .
$$

Applying Lemma 2.1, we conclude

$$
\left(\psi^{-1} \times \psi^{-1}\right)\left(C_{\Gamma}\right) \subseteq C_{G}
$$

We now apply Proposition 2.2 to conclude that ψ induces an isomorphism of the Cayley graphs.

Table 5: Possible values of k, ℓ, q_{1} and q_{2}.

k	ℓ	q_{1}	$\sigma\left(q_{1}\right)$	q_{2}	$\sigma\left(q_{2}\right)$	Name
$4 n-3$	$4 n-4$	$4 n-4$	$\tau_{4 n-5}$	$4 n-7$	$\tau_{4 n-6}$	E_{n}
$4 n-3$	$4 n-2$	$4 n-2$	$\tau_{4 n-1}$	$4 n+1$	$\tau_{4 n+2}$	$\mathrm{~F}_{n}$
$4 n-1$	$4 n-2$	$4 n-2$	$\tau_{4 n-1}$	$4 n-1$	$\tau_{4 n-2}$	G_{n}
$4 n-1$	$4 n$	$4 n$	$\tau_{4 n-1}$	$4 n-1$	$\tau_{4 n-2}$	H_{n}

5. Appendix. A geometric proof

In this section we present a classical, geometric proof of Theorem 4.1, that was shown to us by J.G. Ratcliffe. We take $g=n$ to avoid confusion with the notation for side-pairing maps.

Geometric proof of Theorem 4.1. As in Example 4 on p. 382 of [4], there is a regular hyperbolic $4 n$-gon P with dihedral angle $\pi / 2 n$. We position P in the conformal disk model of the hyperbolic plane as in Figure 9.2.3 in [4] and we label the edges as in this figure (with a slight modification) in positive order

$$
S_{1}, T_{1}^{\prime}, S_{1}^{\prime}, T_{1}, \ldots, S_{n}, T_{n}^{\prime}, S_{n}^{\prime}, T_{n}
$$

Let

$$
\begin{equation*}
g_{S_{i}}, g_{S_{i}^{\prime}}, g_{T_{i}}, g_{T_{i}^{\prime}} \quad(1 \leq i \leq n) \tag{32}
\end{equation*}
$$

be the side-pairing maps. By Poincaré's fundamental polyhedron theorem (Theorem 11.2.2 in [4]; see also Theorem 6.7.7), the side-pairing maps generate a discrete group Γ with fundamental polygon P and and Γ has the presentation with generators (32) and relations

$$
\left(g_{S_{i}} g_{S_{i}^{\prime}}\right)_{1 \leq i \leq n}, \quad\left(g_{T_{i}} g_{T_{i}^{\prime}}\right)_{1 \leq i \leq n}, \quad g_{S_{1}} g_{T_{1}} g_{S_{1}^{\prime}} g_{T_{1}^{\prime}} \cdots g_{S_{n}} g_{T_{n}} g_{S_{n}^{\prime}} g_{T_{n}^{\prime}}
$$

This means that $\{g P \mid g \in \Gamma\}$ is an exact tessellation of the hyperbolic plane. Moreover, if S is a side of P, then $S=P \cap g_{S} P$. Hence, $g S=$ $g P \cap g g_{S} P$. This implies that the dual graph of the tessellation is the undirected Cayley graph of the presentations.

Now P is a Coxeter polygon and so reflecting in the sides of P generates a Coxeter group G with $4 n$ generators. Again, by Poincarés fundamental polyhedron theorem (see Theorems 7.1.3 and 7.1.4 in [4]), G is a discrete group with fundamental polygon P. The tessellation $\{g P \mid g \in G\}$ is the same tessellation as before and the undirected Cayley

Table 6: Names of $\left(q, q^{\prime}\right)$.

q	q^{\prime}	Name
$4 n-4$	$4 n-7$	E_{n}
$4 n-2$	$4 n+1$	$\mathrm{~F}_{n}$
$4 n-2$	$4 n-1$	G_{n}
$4 n$	$4 n-1$	H_{n}

Table 7: The recursion $\left(q_{j}, q_{j+1}\right) \mapsto\left(q_{j+2}, q_{j+3}\right)$.

(in)	q_{j}	q_{j+1}	$\sigma\left(q_{j+1}\right) \sigma\left(q_{j}\right)$	q_{j+2}	$\sigma\left(q_{j+2}\right)$	q_{j+3}	(out)
E_{n}	$4 n-4$	$4 n-7$	ρ^{-1}	$4 n-6$	$\tau_{4 n-5}$	$4 n-5$	G_{n-1}
$\mathrm{~F}_{n}$	$4 n-2$	$4 n+1$	ρ^{3}	$4 n+4$	$\tau_{4 n+3}$	$4 n+3$	H_{n+1}
G_{n}	$4 n-2$	$4 n-1$	ρ^{-1}	$4 n-4$	$\tau_{4 n-5}$	$4 n-7$	E_{n}
H_{n}	$4 n$	$4 n-1$	ρ^{-1}	$4 n-2$	$\tau_{4 n-1}$	$4 n+1$	$\mathrm{~F}_{n}$

graph of the Coxeter presentation of G is the dual graph of the tessellation. Therefore, Γ and G have isomorphic Cayley graphs with respect to the above generators.

References

[1] L. Bartholdi, S. Cantat, T. Ceccherini-Silberstein, P. de la Harpe, 'Estimates for simple random walks on fundamental groups of surfaces,' Colloq. Math. 72 (1997), 173-193.
[2] P.-A. Cherix, A. Valette, 'On spectra of simple random walks on one-relator groups,' with an appendix by P. Jolissaint, Pacific J. Math. 175 (1996), 417-438.
[3] T. Nagnibeda, 'An upper bound for the spectral radius of a random walk on surface groups,' J. Math. Sci. (New York) 96 (1999), 3542-3549.
[4] J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Math., vol. 149, Springer-Verlag, Berling, Heidelberg and New York, 1994.
[5] C.C. Sims, Computation with Finitely Presented Groups, Encyclopedia of Math. Appl., vol. 48, Cambridge University Press, Cambridge 1994.
[6] D.V. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, CRM Monograph Series 1, American Mathematical Society, Providence, Rhode Island, 1992.
[7] A. Żuk, 'A remark on the norm of a random walk on surface groups,' Colloq. Math. 72 (1997), 195-206.

Contact information

M. Bożejko

Instytut Matematyczny, Uniwersytetu Wrocławckiego, pl. Grunwaldzki 2/4, P-50-384 Wroclaw, Poland E-Mail: bozejko@math.uni.wroc.pl

[^1]F. Lehner
Institut für Mathemtik C, Technische Universität Graz, Steyrergasse 30/3, A-8010 Graz, Austria
E-Mail: lehner@finanz.math.tu-graz.ac.at

[^0]: ${ }^{*}$ Research partially supported by KBN grant 2PO3A00723. ${ }^{\dagger}$ Research supported in part by NSF grant DMS-0300336. ${ }^{\ddagger}$ Partially supported by FWF Grant R2-MAT

 2000 Mathematics Subject Classification: 05C25.
 Key words and phrases: Cayley graph, Coxeter group.

[^1]: K. Dykema Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368, USA E-Mail: kdykema@math.tamu.edu

