Uncountably many non-isomorphic nilpotent real n-Lie algebras

Ernest Stitzinger and Michael P. Williams

Communicated by V. M. Futorny

Abstract

There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7 . We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10 , to find corresponding results for n-Lie algebras. In particular, for $n \geq 6$, there are an uncountable number of non-isomorphic nilpotent real n-Lie algebras of dimension $n+4$.

Classifying nilpotent real Lie algebras has been an often studied subject since Engel. In 1962, Chao [1] proved that there are uncountably many such Lie algebras of dimension 10 and greater that are nonisomorphic. We shall prove an n-Lie algebra analogue of this theorem.

Before we proceed we recall the identities of n-Lie algebras as introduced by Fillipov [2]. An n-Lie algebra, is an algebra equiped with an n-linear, skew-symmetric bracket with the identity

$$
\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right] y_{2} \ldots, y_{n}\right]=\sum_{i=1}^{n}\left[x_{1}, \ldots, x_{i-1},\left[x_{i}, y_{2}, \ldots, y_{n}\right], x_{i+1}, \ldots, x_{n}\right]
$$

which we call the n-Jacobi identity. For further resuts, see [2], [3] and [4].
Theorem 1. There are uncountably many non-isomorphic n-Lie algebras of dimensions d and nilpotent of length 2 when

1) $n=2$ and $d=10$.
2) $n=3$ and $d=10$.

2000 Mathematics Subject Classification: 17442.
Key words and phrases: n-Lie algebras, nilpotent, algebraically independent, transcendence degree.
3) $n=4$ and $d=9$.
4) $n=5$ and $d=10$.
5) $n \geq 6$ and $d=n+4$.

Definition 2. Let \mathbb{F} be a subfield of \mathbb{R}. An n-Lie algebra A over R is said to be an \mathbb{F}-algebra if its structure constants with respect to some basis of A lie in \mathbb{F}.

Let \mathbb{F} be a subfield of \mathbb{R} and $C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}$ be real numbers in \mathbb{F} such that $\sigma\left(C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right)=C_{i_{\sigma(1)}, i_{\sigma(2)}, \ldots, i_{\sigma(n)}}^{k}=\operatorname{sgn} \sigma\left(C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right)$ for all $\sigma \in S_{n}$, the symmetric group. Let A be an n-Lie algebra over \mathbb{F} with a basis $\left(x_{1}, x_{2}, \ldots, x_{\ell}, y_{1}, y_{2}, \ldots, y_{m}\right)$ where $\ell \geq n$ and multiplication given by $\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right]=\sum_{k=1}^{n} C_{i_{1}, i_{2}, \ldots, i_{n}}^{k} y_{k}$ and all other products 0 . Note that this fits the anti-symmetric condition as,

$$
\begin{aligned}
\sigma\left(\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right]\right) & =\left[x_{i_{\sigma(1)}}, x_{i_{\sigma(2)}}, \ldots, x_{i_{\sigma(n)}}\right] \\
& =\sigma\left(\sum_{k=1}^{n} C_{i_{1}, i_{2}, \ldots, i_{n}}^{k} y_{k}\right) \\
& =\sum_{k=1}^{n} \sigma\left(C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right) y_{k} \\
& =\sum_{k=1}^{n} \operatorname{sgn} \sigma\left(C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right) y_{k} \\
& =\operatorname{sgn\sigma }\left(\sum_{k=1}^{n} C_{i_{1}, i_{2}, \ldots, i_{n}}^{k} y_{k}\right) \\
& =\operatorname{sgn} \sigma\left(\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right]\right)
\end{aligned}
$$

Lemma 3. If the numbers $C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}$, for $1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq \ell$, and $1 \leq k \leq m$ are algebraically independent over \mathbb{F} and if $\binom{\ell}{n} m>m^{2}+\ell^{2}$, then A is not an \mathbb{F}-algebra.

Proof of Lemma 3

We want to show that $A^{2}=<y_{1}, \ldots, y_{m}>=Z(A)$. First we show that $A^{2}=<y_{1}, \ldots, y_{m}>$. Since $\binom{\ell}{n}>m$ we can pick m distinct sets of n integers between 1 and ℓ. Each such set determines a set of vectors from x_{1}, \ldots, x_{ℓ} and we label these sets $S_{j}, j=1, \ldots, m$. Let z_{j} be the product of the elements in S_{j} where the indices are arranged in increasing order in the product. As a result $z_{j}=\sum_{k=1}^{m} C_{j}^{k} y_{k}$ for $j=1, \ldots, m$ where $C_{j}^{k}=$ $C_{j_{1}, j_{2}, \ldots, j_{n}}^{k}$ if $x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{n}} \in S_{j}$. The polynomial $\operatorname{det}\left(x_{i j}\right)$ for $i, j=$ $1, \ldots, m$ has integer coefficients and thus lies in $\mathbb{F}\left[x_{11}, \ldots, x_{k j}, \ldots, x_{m m}\right]$. If $\operatorname{det}\left(C_{j}^{k}\right)=0$, then the C_{j}^{k} 's are not algebraically independent, which is
a contradiction. Therefore $\left(C_{j}^{k}\right)$ is a non-singular matrix which generates $<y_{1}, \ldots, y_{m}>$ and hence $A^{2}=<y_{1}, \ldots, y_{m}>$.

Now we show that $Z(A)=<y_{1}, \ldots, y_{m}>$. Since the only non-zero products in A are products of the x_{i} 's it is clear that $<y_{1}, \ldots, y_{m}>\subset$ $Z(A)$.

Let $z=\sum_{j=1}^{\ell} a_{j} x_{j}+\sum_{j=1}^{m} b_{k} y_{k} \in Z(A)$ and let $R_{\pi}=$ $\left[_, x_{i_{2}}, x_{i_{3}}, \ldots, x_{i_{n}}\right]$ then,

$$
\begin{aligned}
0 & =z R_{\pi} \\
& =\left(\sum_{j=1}^{\ell} a_{j} x_{j}\right) R_{\pi}+\left(\sum_{k=1}^{m} b_{k} y_{k}\right) R_{\pi} \\
& =\sum_{j=1}^{\ell} a_{j}\left(x_{j} R_{\pi}\right)+0 \\
& =\sum_{j=1}^{\ell} \sum_{k=1}^{m} a_{j} C_{j \pi}^{k} y_{k}
\end{aligned}
$$

where $C_{j \pi}^{k}=C_{j i_{2} i_{3} \ldots i_{n}}^{k}$.
By virtue of the linear independence of the y_{k} 's we obtain $\sum_{j=1}^{\ell} a_{i} C_{j \pi}^{k}=0$. For each $1 \leq t \leq \ell$ choose $\pi_{t}=t_{2}, \ldots, t_{n}$ such that $t_{r} \neq t_{s}$ for $r \neq s$ and $t \neq t_{2}, \ldots, t_{n}$. Then $\sum_{j=1}^{\ell} a_{i} C_{j \pi_{t}}^{k}=0$. We observe that $C_{t \pi_{t}}^{k} \neq 0$ and $C_{t \pi_{t}}^{k}$ is in the algebraically independent set. Repeating this process for each $t, 1 \leq t \leq \ell$ gives us a system of ℓ equations and ℓ unknowns. The coefficient matrix C has non-zero elements on the diagonal and hence are algebraically independent. Considering $\operatorname{det}\left(x_{i j}\right)$ as in the last paragraph, gives us a polynomial in ℓ^{2} variables with coefficients ± 1. If C is singular then the elements of C satisfy $\operatorname{det}\left(x_{i j}\right)$. The non-zero elements of C satisfy a polynomial obtained from $\operatorname{det}\left(x_{i j}\right)$ by deleting terms if necessary, from any elements of C that are 0 . The resulting polynomial is non-zero because of the non-zero diagonal of C. This non-zero polynomial is satisfied by a set of algebraically independent elements. This is a contradiction and hence C is non-singular. As a result $a_{1}=a_{2}=\ldots=a_{\ell}=0$ and $z=\sum_{j=1}^{\ell} a_{j} x_{j}+\sum_{j=1}^{m} b_{k} y_{k}=\sum_{j=1}^{m} b_{k} y_{k} \in<y_{1}, \ldots, y_{m}>$. Thus $Z(A)=<y_{1}, \ldots, y_{m}>=A^{2}$.

Now we prove lemma 3. Suppose, to the contrary, that A satisfies the conditions of the lemma. Namely, A is an \mathbb{F}-algebra with basis $\left(z_{1}, \ldots, z_{\ell}, z_{\ell+1}, \ldots, z_{\ell+m}\right)$ and structure constants $D_{i_{1}, i_{2}, \ldots, i_{n}}^{k}$'s for $1 \leq$ $i_{1}, i_{2}, \ldots, i_{n} \leq \ell$ and $1 \leq k \leq \ell+m$. We can assume without loss of generality that $\left(z_{1}, \ldots, z_{\ell}\right)$ form a basis for C a compliment of A^{2}. We
can write $z_{\ell+i}=v_{i}+t_{i}$ for all i where $v_{i} \in C$ and $t_{i} \in A^{2}$ for $i=1, \ldots, m$.
We observe

$$
\begin{aligned}
& {\left[z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{n}}\right]=} \\
& \quad=\sum_{r=1}^{\ell} D_{i_{1}, i_{2}, \ldots, i_{n}}^{r} z_{r}+\sum_{s=\ell+1}^{\ell+m} D_{i_{1}, i_{2}, \ldots, i_{n}}^{s} v_{s-\ell}+\sum_{s=\ell+1}^{\ell+m} D_{i_{1}, i_{2}, \ldots, i_{n}}^{s} t_{s-\ell}
\end{aligned}
$$

Since $\left[z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{n}}\right] \in A^{2}$ we see the first two summands must be 0 and we obtain

$$
\begin{aligned}
{\left[z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{n}}\right] } & =\sum_{s=\ell+1}^{\ell+m} D_{i_{1}, i_{2}, \ldots, i_{n}}^{s} t_{s-\ell} \\
& =\sum_{u=1}^{m} D_{i_{1}, i_{2}, \ldots, i_{n}}^{u+\ell} t_{u}
\end{aligned}
$$

As a result $\left(z_{1}, \ldots, z_{\ell}, t_{\ell+1}, \ldots, t_{\ell+m}\right)$ is a new basis for A whose structure coefficients are a subset of the structure coefficients for the old basis. We observe that $\left(x_{1}, \ldots, x_{\ell}\right)$ is a basis for C^{\prime} a compliment of A^{2}. Now let s_{i} be such that $s_{i}-z_{i} \in A^{2}$ and $s_{i} \in C^{\prime}$ for $1 \leq i \leq \ell$. We obtain yet another basis $\left(s_{1}, \ldots, s_{\ell}, t_{1}, \ldots, t_{m}\right)$ which has the same structure coefficients as $\left(z_{1}, \ldots, z_{\ell}, t_{\ell+1}, \ldots, t_{\ell+m}\right)$.

Indeed,

$$
\begin{aligned}
{\left[s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{n}}\right] } & =\left[z_{i_{1}}+A^{2}, z_{i_{2}}+A^{2}, \ldots, s_{i_{n}}+A^{2}\right] \\
& =\left[z_{i_{1}}+Z(A), z_{i_{2}}+Z(A), \ldots, z_{i_{n}}+Z(A)\right] \\
& =\left[z_{i_{1}}, z_{i_{2}}, \ldots, z_{i_{n}}\right]
\end{aligned}
$$

Since $\left(s_{1}, \ldots, s_{\ell}\right)$ and $\left(x_{1}, \ldots, x_{\ell}\right)$ both form a basis for C^{\prime} there exists a non-singular matrix, $B=\left(b_{i p}\right)$ such that $s_{i}=\sum_{p=1}^{\ell} b_{i p} x_{p}$ for all $1 \leq$ $i \leq \ell$. Likewise there exists a non-singular $G=\left(g_{u r}\right)$ such that $t_{u}=$ $\sum_{r=1}^{m} g_{u r} y_{r}$ for all $1 \leq u \leq m$. Substituting into

$$
\left[z_{i_{1}}, \ldots, z_{i_{n}}\right]=\left[s_{i_{1}}, \ldots, s_{i_{n}}\right]=\sum_{u=1}^{m} D_{i_{1}, \ldots, i_{n}}^{\ell+u} t_{u}
$$

we observe for all $1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq \ell$

$$
\begin{aligned}
{\left[s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{n}}\right] } & =\left[\sum_{p_{1}=1}^{\ell} b_{i_{1} p_{1}} x_{p_{1}}, \sum_{p_{2}=1}^{\ell} b_{i_{2} p_{2}} x_{p_{2}}, \ldots, \sum_{p_{n}=1}^{\ell} b_{i_{n} p_{n}} x_{p_{n}}\right] \\
& =\sum_{p_{1}=1}^{\ell} \sum_{p_{2}=1}^{\ell}, \ldots, \sum_{p_{n}=1}^{\ell}\left(b_{i_{1} p_{1}} b_{i_{2} p_{2}}, \ldots, b_{i_{n} p_{n}}\left[x_{p_{1}}, x_{p_{2}}, \ldots, x_{p_{n}}\right]\right) \\
& =\sum_{p_{1}=1}^{\ell} \sum_{p_{2}=1}^{\ell}, \ldots, \sum_{p_{n}=1}^{\ell}\left(b_{i_{1} p_{1}} b_{i_{2} p_{2}}, \ldots, b_{i_{n} p_{n}} \sum_{r=1}^{m} C_{p_{1}, p_{2}, \ldots, p_{n}}^{r} y_{r}\right) \\
& =\sum_{u=1}^{m} D_{i_{1}, i_{2}, \ldots, i_{n}}^{\ell+u} t_{u} \\
& =\sum_{u=1}^{m} \sum_{r=1}^{m} D_{i_{1}, i_{2}, \ldots, i_{n}}^{\ell+u} g_{u r} y_{r} .
\end{aligned}
$$

This implies that for fixed $i_{1}, i_{2}, \ldots, i_{n}$ and r we obtain

$$
\sum_{p_{1}=1}^{\ell} \sum_{p_{2}=1}^{\ell} \ldots, \sum_{p_{n}=1}^{\ell} b_{i_{1} p_{1}} b_{i_{2} p_{2}}, \ldots, b_{i_{n} p_{n}} C_{p_{1}, p_{2}, \ldots, p_{n}}^{r}=\sum_{u=1}^{m} D_{i_{1}, i_{2}, \ldots, i_{n}}^{\ell+u} g_{u r}
$$

We claim that this in turn implies that,

$$
C_{p_{1}, p_{2}, \ldots, p_{n}}^{r}=\sum_{p_{1}=1}^{\ell} \sum_{p_{2}=1}^{\ell} \ldots, \sum_{p_{n}=1}^{\ell} \sum_{u=1}^{m} D_{i_{1}, i_{2}, \ldots, i_{n}}^{\ell+u} g_{u r} \bar{b}_{p_{1} i_{1}} \bar{b}_{p_{2} i_{2}}, \ldots, \bar{b}_{p_{n} i_{n}}
$$

where $B^{-1}=\left[\bar{b}_{i p}\right]$.
We show the $t^{t h}$ step. Suppose for
$1 \leq p_{1}, p_{2} \ldots p_{t-1} \leq \ell$ and $1 \leq i_{t}, i_{t+1} \ldots i_{n} \leq \ell$ and r fixed that

$$
\begin{aligned}
& \sum_{p_{t}=1}^{\ell} \sum_{p_{t+1}=1}^{\ell}, \ldots, \sum_{p_{n}=1}^{\ell} b_{i_{t} p_{t}} b_{i_{t+1} p_{t+1}}, \ldots, b_{i_{n} p_{n}} C_{p_{1}, p_{2}, \ldots, p_{n}}^{r} \\
= & \sum_{i_{1}=1}^{\ell} \sum_{i_{2}=1}^{\ell} \ldots, \sum_{i_{t-1}=1}^{\ell} \bar{b}_{p_{1} i_{1}} \bar{b}_{p_{2} i_{2}} \ldots \bar{b}_{p_{t-1} i_{t-1}} \sum_{u=1}^{m} D_{i_{1} i_{2} \ldots i_{n}}^{r} g_{u r} .
\end{aligned}
$$

Let

$$
A_{p_{t}}=\sum_{p_{t+1}=1}^{\ell} \sum_{p_{t+2}=1}^{\ell} \ldots, \sum_{p_{n}=1}^{\ell} b_{i_{t+1} p_{t+1}} b_{i_{t+2} p_{t+2}}, \ldots, b_{i_{n} p_{n}} C_{p_{1}, p_{2}, \ldots, p_{n}}^{r}
$$

for $p_{t}=1, \ldots, \ell$ and

$$
E_{i_{t}}=\sum_{i_{1}=1}^{\ell} \sum_{i_{2}=1}^{\ell} \ldots, \sum_{i_{t-1}=1}^{\ell} \bar{b}_{p_{1} i_{1}} \bar{b}_{p_{2} i_{2}} \ldots \bar{b}_{p_{t-1} i_{t-1}} D_{i_{1} i_{2} \ldots i_{n}}^{r} g_{u r}
$$

for $i_{t}=1,2, \ldots, \ell$.
This implies that

$$
b_{i_{t} 1} A_{1}+b_{i_{t} 2} A_{2}+\ldots+b_{i_{t} \ell} A_{\ell}=E_{i_{t}}
$$

or

$$
\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 \ell} \\
b_{21} & b_{22} & \ldots & b_{2 \ell} \\
\vdots & \vdots & \ddots & \vdots \\
b_{\ell 1} & b_{\ell 2} & \ldots & b_{\ell \ell}
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{\ell}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{\ell}
\end{array}\right]
$$

So

$$
A_{p_{t}}=\bar{b}_{p_{t} 1} E_{1}+\bar{b}_{p_{t} 2} E_{2}+\ldots+\bar{b}_{p_{t} n} E_{n}
$$

and

$$
A_{p_{t}}=\sum_{i_{1}=1}^{\ell} \sum_{i_{2}=1}^{\ell} \ldots, \sum_{i_{t}=1}^{\ell} \bar{b}_{p_{1} i_{1}} \bar{b}_{p_{2} i_{2}} \ldots \bar{b}_{p_{t} i_{t}} D_{i_{1} i_{2} \ldots i_{n}}^{r}
$$

Finally,

$$
\begin{array}{r}
\sum_{p_{t+1}=1}^{\ell} \sum_{p_{t+2}=1}^{\ell} \ldots, \sum_{p_{n}=1}^{\ell} b_{i_{t+1} p_{t+1}} b_{i_{t+2} p_{t+2}}, \ldots, b_{i_{n} p_{n}} C_{p_{1}, p_{2}, \ldots, p_{n}}^{r} \\
=\sum_{i_{1}=1}^{\ell} \sum_{i_{2}=1}^{\ell} \ldots, \sum_{i_{t}=1}^{\ell} \bar{b}_{p_{1} i_{1}} \bar{b}_{p_{2} i_{2}} \ldots \bar{b}_{p_{t} i_{t}} D_{i_{1} i_{2} \ldots i_{n}}^{r}
\end{array}
$$

This proves the claim.
The claim implies that $C_{p_{1}, p_{2}, \ldots, p_{n}}^{r} \in \mathbb{E}=\mathbb{F}\left(b_{i p}, g_{\text {ur }}\right)$. But the degree of transcendence of \mathbb{E} over \mathbb{F} is at most $\ell^{2}+m^{2}$ which is less than, $\binom{\ell}{n} m$, the number of $C_{p_{1}, p_{2}, \ldots, p_{n}}^{r}$'s. This a contradiction and hence A is not an \mathbb{F}-algebra, proving the lemma.

Proof of Theorem 1

It is known that there exists a set S of uncountably many real numbers
that are algebraically independent over \mathbb{Q}. We can divide S into uncountably many disjoint subsets $\left\{C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right\}_{\alpha}$ of size $\binom{\ell}{n} m$ where α distinguishes subsets. Define the n-Lie algebra A_{α} with basis $\left(x_{1}, x_{2}, \ldots, x_{\ell}\right.$, $\left.y_{1}, y_{2}, \ldots, y_{m}\right)$ and multiplication given by

$$
\left[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right]=\sum_{k=1}^{n} C_{i_{1}, i_{2}, \ldots, i_{n}}^{k} y_{k}
$$

and all other products 0 where $C_{i_{1}, i_{2}, \ldots, i_{n}}^{k} \in\left\{C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right\}_{\alpha}$ for all $1 \leq$ $i_{1}, i_{2}, \ldots, i_{n} \leq \ell$ and $1 \leq k \leq m$. For $\alpha \neq \beta$ we claim that A_{α} and A_{β} are non-isomorphic. Indeed, since the $\left.\left(C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right)\right)_{\alpha}$'s are algebraically independent over $\mathbb{Q}\left[\left\{C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right\}_{\beta}\right]$, if we apply lemma 3 to A_{α}, we see that it is not a $\mathbb{Q}\left[\left(C_{i_{1}, i_{2}, \ldots, i_{n}}^{k}\right)_{\beta}\right]$-algebra. Hence A_{α} and A_{β} are non-isomorphic as claimed.

To prove the theorem it remains to find for each given n and d in 1-4, an m and k where $d=n+m+k$ such that $f(k, m, n)=\binom{n+k}{n} m-(n+$ $k)^{2}-m^{2}>0$. We do this case by case.

1) When $k=m=4$, we obtain $f(4,4, n)=1 / 6 n^{4}+5 / 3 n^{3}+29 / 6 n^{2}+$ $1 / 3 n-28$. The only positive root is approximately $n=1.807126451$. Hence $f(4,4, n)>0$ if $n \geq 2$. Setting $n=2$ gives $d=n+m+k=10$. This coincides with Chao's result.
2) When $k+m=3+4=7$, we obtain $f(3,4, n)=2 / 3 n^{3}+3 n^{2}+4 / 3 n-$ 21. The only positive root is approximately $n=2.046172397$. Hence $f(3,4, n)>0$ if $n \geq 3$. Hence $f(3,4, n)>0$ if $n \geq 3$. Setting $n=3$ gives $d=n+m+k=10$.
3) When $k=3, m=2$, we obtain $f(3,2, n)=1 / 3 n^{3}+n^{2}-7 / 3 n-11$. The only positive root is $n=3$. Hence $f(3,2, n)>0$ if $n \geq 4$. Setting $n=4$ gives $d=9$ and setting $n=5$ gives $d=10$.
4) When $k=3, m=1$, we obtain $f(3,1, n)=1 / 6 n^{3}-25 / 6 n-9$. The only positive root is approximately $n=5.850622760$. Hence $f(3,1, n)>0$ if $n \geq 6$. Thus $d=n+m+k=n+4$.

Note that if $n \geq 6$, then $d-n$ cannot be less than 4 . That is to say, we have found the minimal $k+m$ such that $f(k, m, n)>0$. If we set $k+m<4$, we get no solutions. Indeed, if $k=0$ or $m=0$, we obtain $f(k, m, n)=m-m^{2}-(n)^{2} \leq 0$ and $f(k, m, n)=-(n+k)^{2} \leq 0$. For $m+k=1+1=2$ we obtain $f(k, m, n)=-n-n^{2}-1$ which has no real roots. For $m+k=2+1=3$ and $m+k=1+2=3$ we obtain $f(k, m, n)=-1 / 2 n^{2}-5 / 2 n-4$ and $f(k, m, n)=-3-n^{2}$ neither of which have real roots and are always negative.

References

[1] Chao, Chong-Yun. Uncountably many nonisomorphic nilpotent Lie algebras. Proc. Amer. Math. Soc. 131962 903-906.
[2] Filippov, V. T. n-Lie algebras. Sibirsk. Mat. Zh. 26 (1985), no. 6, 126-140, 191. (in Russian)
[3] Kasymov, Sh. M. On a theory of n-Lie algebras. Algebra i Logika 26 (1987), no. 3, 277-297, 398. (in Russian)
[4] Kasymov, Sh. M. Nil-elements and nil-subsets in n-Lie algebras. Sibirsk. Mat. Zh. 32 (1991), no. 6, 77-80, 204 (in Russian); translation in Siberian Math. J. 32 (1991), no. 6, 962-964 (1992)
[5] Williams, Michael P. Nilpotent n-Lie algebras, in preparation.

Contact information

E. Stitzinger, North Carolina State University, Box 8205, M. P. Williams Raleigh, NC 27695
E-Mail: stitz@math.ncsu.edu, skew1823@yahoo.com

