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Abstract. This paper describes the structure of groups G
containing proper subgroups with non-modular subgroup lattice

and such that all such subgroups are isomorphic to G.

Introduction

A subgroup of a group G is called modular if it is a modular element
of the lattice L(G) of all subgroups of G. It is clear that every normal
subgroup of a group is modular, but arbitrary modular subgroups need
not be normal. Lattices with modular elements are also called modu-

lar. Abelian groups and the so-called Tarski groups (i.e. infinite simple
groups whose proper non-trivial subgroups have prime order) are obvi-
ous examples of groups with modular subgroup lattice. Recall also that
a subgroup H of a group G is said to be permutable if HK = KH
for every subgroup K of G, and a group is called quasihamiltonian if
all its subgroups are permutable; it is well known that a subgroup of a
group G is permutable if and only if it is modular and ascendant (see
[22], Theorem 6.2.10), so that quasihamiltonian groups coincide with lo-
cally nilpotent groups having modular subgroup lattice. The structure
of groups with modular subgroup lattice and that of quasihamiltonian
groups have been completely described by K. Iwasawa [9],[10] and R.
Schmidt [21]. In particular, it turns out that groups with modular sub-
group lattice are metabelian, provided that they have no Tarski sections,
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and that non-periodic groups with modular subgroup lattice are always
quasihamiltonian.

In recent years various results concerning normal subgroups have been
lattice-theoretically interpretated, using modularity as the lattice ana-
logue of normality. In particular, in [3], [5], [7], [8] it has been shown
that some important theorems of B.H. Neumann on the structure of in-
finite groups in which all subgroups are close to be normal (see [2], [16]),
have a lattice corresponding. Moreover, lattice-theoretic interpretations
of some results of Romalis and Sesekin ([18], [19], [20]) on groups with
abelian non-normal subgroups have recently been obtained in [4].

The aim of this article is to give the lattice traslation of another group
theoretical result. The structure of groups G containing proper non-
abelian subgroups all of which are isomorphic to G has been investigated
by Smith and Wiegold [24], and the corresponding problem for the class
of nilpotent groups has also been considered (see [14], [25], [26]). Here
we will consider the class X of groups G for which there exist proper
subgroups with non-modular subgroup lattice and all such subgroups are
isomorphic to G.

Let M denote the class consisting of all groups G such that the sub-
group lattice of G is not modular, while all proper subgroups of G have
modular subgroup lattice. Finite M-groups have been classified by F.
Napolitani [15]; an example of an infinite M-group is given in [6], where
it is also proved that locally graded M-groups are finite (recall here that
a group is locally graded if every finitely generated non-trivial subgroup
has a proper subgroup of finite index). In this article we shall prove that
every X-group G contains a normal subgroup N with modular subgroup
lattice such that the factor group G/N is either simple or infinite cyclic,
and this should be seen in relation with the fact that a group G containing
proper non-abelian subgroups all of which are isomorphic to G, has an
abelian normal subgroup A such that G/A is simple. Moreover, we will
prove that a group G containing proper non-quasihamiltonian subgroups
all of which are isomorphic to G has a quasihamiltonian normal subgroup
with simple factor group. Finally, an example will be given to show that
X is different from the class studied by Smith and Wiegold.

Most of our notation is standard and can be found in [17]. We will
use the monograph [22] as a general reference for results on subgroup
lattices.
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1. Soluble groups

Of course, every X-group is infinite. Moreover, since modularity is a local
property (see [8], Lemma 5.1), groups in the class X must be finitely gen-
erated.

Lemma 1. Let G be a group and let T be a finite abelian normal subgroup

of G such that the factor group G/T is infinite cyclic. If a is any element

of infinite order of G such that G = 〈a〉T , then |〈a〉 : 〈a〉 ∩ Z(G)| = |G :
Z(G)|/|T : T ∩ Z(G)| .

Proof. Let atx be any element of Z(G) where t is an integer and x ∈ T ;
clearly [at, T ] = {1}, so that at ∈ Z(G), and also x is an element of Z(G).
Therefore

Z(G) = (〈a〉 ∩ Z(G)) × (T ∩ Z(G)).

It follows easily that

|G : Z(G)| = |〈a〉 : 〈a〉 ∩ Z(G)| |T : T ∩ Z(G)|,

and the lemma is proved.

Lemma 2. Let G be a nilpotent X-group. Then G contains a quasihamil-

tonian subgroup of prime index.

Proof. Assume that the statement is false, and let G be a counterexample
for which the order m of the subgroup T consisting of all elements of finite
order of G is minimal. Since every non-quasihamiltonian subgroup of G
is isomorphic to G, it contains m elements of finite order. Thus T is
contained in any non-quasihamiltonian subgroup of G.

If H/T is any non-abelian subgroup of G/T , then H is not quasi-
hamiltonian (see [22], Theorem 2.4.11), so that H ≃ G and H/T ≃ G/T .
It follows that G/T contains an abelian subgroup of prime index (see [24],
Theorem 2 and [1], Corollary 2), and hence it is abelian (see for instance
[12], 2.3.9). Assume that G/T is cyclic, and let a be an element of infinite
order of G such that G = 〈a, T 〉. Consider a positive integer n such that
〈a〉 ∩Z(G) = 〈an〉; if T1 is a subgroup of prime index of T , the subgroup
〈an〉×T1 is quasihamiltonian, since it does not contain T . Then 〈an〉×T
contains a quasihamiltonian subgroup of prime index, so that it is not
isomorphic to G, and hence it is quasihamiltonian. In particular, T is
abelian (see [22], Theorem 2.4.11) and the index n = |G : 〈an〉 × T | is
not a prime number. Let p be a prime divisor of n, and put L = 〈ap, T 〉;
clearly 〈ap〉∩Z(L) = 〈an〉, so that |〈a〉 : 〈a〉∩Z(G)| 6= |〈ap〉 : 〈ap〉∩Z(L)|,
and by Lemma 1 L is not isomorphic to G, which is impossible since L has
prime index in G. This contradiction proves that the finitely generated
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torsion-free abelian group G/T has rank greater than 1, so that if g is any
element of infinite order of G, the subgroup 〈g, T 〉 is quasihamiltonian;
in particular, T is abelian and all subgroups of T are normal in G, since
G is generated by its elements of infinite order.

Put
G/T = 〈a1T 〉 × · · · × 〈arT 〉,

and suppose that A = 〈a1, . . . , ar〉 is abelian, so that there exists a sub-
group L of A such that A = L × (A ∩ T ), and G = L ⊳ T . If T1 is a
subgroup of prime index of T , the quasihamiltonian subgroup LT1 has
prime index in G, and this contradiction shows that there exist i, j ≤ r
such that [ai, aj ] 6= 1. Therefore the subgroup 〈ai, aj〉 is not quasihamil-
tonian, and hence it is isomorphic to G; it follows that G is generated by
elements a and b of infinite order such that G/T = 〈aT 〉×〈bT 〉. Moreover,
〈[a, b]〉 is a subgroup of T and hence it is normal in G, so that G/〈[a, b]〉
is abelian, and G′ = 〈[a, b]〉. Let p be a prime number dividing the order
of G′ and let N be the unique subgroup of index p of G′. If H/N is any
non-quasihamiltonian subgroup of G/N , then H ≃ G, so that H ′ = G′,
and H/N ≃ G/N . This shows that either G/N is an X-group or it is
quasihamiltonian (see [6], Proposition 1). Assume by contradiction that
N 6= {1}. Then by the minimality of the order of T , G/N contains in any
case a quasihamiltonian subgroup A/N of prime index. Clearly, A/N has
torsion-free rank greater than 1, and hence A′ is a subgroup of N , which
is properly contained in G′. Therefore A is quasihamiltonian, a contradic-
tion which shows that G′ has order p, and so it is contained in the centre
of G; in particular, 〈ap, b〉G′ is abelian. Let L be a subgroup of G such
that G/G′ = L/G′ × T/G′. Then T/G′ must be trivial, since otherwise
it would contain a subgroup of prime index, and G = LT would have a
quasihamiltonian subgroup of prime index. Finally, 〈ap, b〉G′ = 〈ap, b〉T
has index p in G, and this last contradiction proves the lemma.

A group G is called a P ∗-group if it is the semidirect product of an
abelian normal subgroup A of prime exponent by a cyclic group 〈x〉 of
prime-power order such that x induces on A a power automorphism of
prime order (recall here that a power automorphism of a group G is an
automorphism mapping every subgroup of G onto itself). It is easy to
see that the subgroup lattice of any P ∗-group is modular, and Iwasawa
([9],[10]) proved that a locally finite group has modular subgroup lattice
if and only if it is a direct product

G = Dr
i∈I

Gi,

where each Gi is either a P ∗-group or a primary locally finite group with
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modular subgroup lattice, and elements of different factors have coprime
orders.

We can now prove the main result for soluble groups in the class X.

Theorem 1. Let G be a soluble X-group. Then G contains a subgroup

of prime index having modular subgroup lattice.

Proof. Assume that the statement is false, and let R be the Hirsch-Plotkin
radical of G. By Lemma 2, G is not locally nilpotent, and so R has mod-
ular subgroup lattice. Moreover, R contains every non-periodic normal
subgroup of G with modular subgroup lattice (see [22], Theorem 2.4.11);
in particular, either G′ is periodic or it is contained in R, and it follows
that in any case the elements of finite order of G/R form a subgroup
X/R. Suppose that G/R is finite. If N is any proper normal subgroup
of G containing R, N is a non-periodic group with modular subgroup
lattice, so that it is contained in R. Thus G/R has prime order, and this
contradiction shows that G/R is infinite. Clearly, X is not isomorphic
to G, so that it has modular subgroup lattice. Since G/X is torsion-
free, the torsion subgroup T of X coincides with the set of all elements
of finite order of G. Write T = Dri∈ITi, where each Ti is either a P ∗-
group or a primary locally finite group with modular subgroup lattice,
and π(Ti) ∩ π(Tj) = ∅ if i 6= j. Assume that for some i ∈ I there exists
a ∈ Ti such that H = 〈a, g〉 is not quasihamiltonian, where g is a suitable
element of infinite order of G. Then G must be a 2-generator group.

Clearly H = 〈g〉〈a〉〈g〉 and H/〈a〉〈g〉 is torsion-free, so that there exists
an element x of infinite order such that G = 〈x〉 ⊳ T and T ≃ 〈a〉〈g〉 has
finite exponent (see [22], Theorem 2.4.13). Since G/R is infinite, also T
is infinite, and so G has infinite Prüfer rank. It follows that there exist
a 2-generator subgroup U of G and a normal subgroup V of U such that
U/V ≃ Cp ≀C∞ (see [11]). Let B/V be the base group of U/V and let u ∈
U such that U = B〈u〉; since U/V is not nilpotent-by-finite, the subgroup
B〈u2〉 is not quasihamiltonian and therefore it is 2-generated. On the
other hand, B〈u2〉/V cannot be 2-generated and this contradiction proves
that 〈a, g〉 is quasihamiltonian for each a ∈ Ti, whenever g is an element
of infinite order of G. Since G is generated by its elements of infinite
order, all subgroups of T are normal in G and all elements of G with
order a prime or 4 are central (see [22], Theorem 2.4.11). Therefore T is
abelian. Clearly, the factor group G/T is isomorphic to all its non-abelian
subgroups, and hence it contains an abelian subgroup B/T of prime index
(see [24], Theorem 2 and [1], Corollary 2); then B is not quasihamiltonian,
and so G/T is abelian. Moreover, G/T has rank greater than 1 (see [22],
Theorem 2.4.11); it follows that for every element of infinite order g of G
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the subgroup 〈g, G′〉 is quasihamiltonian, and hence it is contained in R.
Therefore G = R, and this last contradiction completes the proof of the
theorem.

Corollary 1. Let G be a soluble group containing proper non-quasi-

hamiltonian subgroups, all of which are isomorphic to G. Then G con-

tains a quasihamiltonian subgroup of prime index.

Proof. Obviously, G is a finitely generated infinite group, so that in par-
ticular it is not periodic. It follows from Proposition 1 of [6] that G is an
X-group, so that Theorem 1 yields that G contains a quasihamiltonian
subgroup of prime index.

2. Insoluble groups

We begin this section with a lemma concerning groups in which the join
of normal subgroups with modular subgroup lattice has likewise modular
subgroup lattice.

Lemma 3. Let G be an X-group in which the subgroup M generated

by all normal subgroups with modular subgroup lattice has itself modular

subgroup lattice. Then the factor group G/M is either simple or infinite

cyclic.

Proof. Suppose that G/M is not simple, and assume for a contradiction
that G/M has no finite non-trivial homomorphic image. Let L/M be
a proper non-trivial normal subgroup of G/M and consider an element
g ∈ G \ L. As the lattice L(L) is not modular, L〈g〉 is isomorphic to
G, and hence G has a finite non-trivial homomorphic image G/Y . Then
G = Y M and G/Y has modular subgroup lattice. In particular, G/Y is
soluble, and so G′ < G. As G/G(3)M is a finitely generated soluble group,
we have G = G(3)M , so that G/G(3) is metabelian, and G(2) = G(3). On
the other hand, L(G(3)) is not modular, so that G(3) ≃ G and G(4) < G(3).
This contradiction shows that G/M has a finite non-trivial homomorphic
image. If X/M is any non-trivial normal subgroup of G/M , the lattice
L(X) is not modular, so that X ≃ G and X/M ≃ G/M . Therefore
G/M is isomorphic to all its non-trivial normal subgroups, and hence it
is infinite cyclic (see [13]).

A group G is called an extended Tarski group if it contains a cyclic
non-trivial normal subgroup N with prime-power order such that G/N is
a Tarski group and either H ≤ N or N ≤ H for every subgroup H of G. It
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was proved by R. Schmidt that a periodic group G has modular subgroup
lattice if and only if G = M × T , where π(M)∩ π(T ) = ∅, M is a locally
finite group with modular subgroup lattice and T = Dri Ti is a direct
product of Tarski and extended Tarski groups such that π(Ti)∩π(Tj) = ∅
if i 6= j (see [22], Theorem 2.4.16).

Theorem 2. Let G be an insoluble X-group. Then either G contains

a subgroup M with modular subgroup lattice such that the factor group

G/M is simple or G = 〈g〉 ⊳ T , where g is an element of infinite order,

T is a Tarski or an extended Tarski group and C〈g〉(T ) = {1}.

Proof. Suppose that G is not an extension of a group with modular sub-
group lattice by a simple group. Let T be the set of all subgroups of
G which are Tarski or extended Tarski groups, and let S be the soluble
radical of G. Clearly, S has modular subgroup lattice, so that it is sol-
uble and G/S is not simple. It follows from Lemma 3 that there exists
a normal subgroup of G with modular subgroup lattice containing a G-
invariant subgroup T of G which is either a Tarski or an extended Tarski
group (see [22], Theorems 2.4.11 and 2.4.16). Assume by contradiction
that G is periodic, and let x be any element of G such that L(〈x〉T )
is not modular. Then 〈x〉T ≃ G and so 〈x〉T is not an extension of a
group with modular subgroup lattice by a simple group. Let H/T be a
subgroup of prime index of 〈x〉T/T . Then L(H) is not modular, but H is
not isomorphic to 〈x〉T ≃ G, a contradiction. Therefore 〈x〉T is a group
with modular subgroup lattice for every x ∈ G. It follows from Theorem
2.4.16 of [22] that T is the set of all π-elements of G, with π = π(T ) and
it is centralized by all π′-elements, so that G = TC where C = CG(T ).
Moreover, Z = Z(T ) is the set of all π-elements of C, so that C 6≃ G
and C has modular subgroup lattice; then there exists a π′-subgroup L
of C such that C = Z × L, since Z ≤ Z(C) (see [22], Theorem 2.4.16).
Therefore G = T × L has modular subgroup lattice, and this contradic-
tion proves that G contains an element g of infinite order. Clearly, the
lattice L(〈g〉 ⊳ T ) is not modular, so that G ≃ 〈g〉 ⊳ T . Finally, let gn be
any element of C〈g〉(T ); the direct product 〈gn〉 × T is the extension of
the abelian group 〈gn〉 × Z(T ) by the Tarski group T/Z(T ), and so it is
not isomorphic to G. Thus n = 0, and C〈g〉(T ) = {1}.

Recall that a subgroup H of a group G is almost modular if it is
modular in a subgroup of finite index of G. The structure of groups in
which every subgroup is almost modular has been studied in [8]. Here we
will use a property of groups whose cyclic subgroups are almost modular.
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Lemma 4. Let G be a quasihamiltonian-by-finite group which is iso-

morphic to its non-quasihamiltonian subgroups. Then G is soluble with

derived length at most 3.

Proof. We may obviously suppose that G is not quasihamiltonian, so
that it is finitely generated and contains proper non-quasihamiltonian
subgroups (see [6], Proposition 1); in particular, G is an infinite group
sartisfying the maximal condition on subgroups.

Let N be a quasihamiltonian subgroup of finite index of G. If for some
g ∈ G the subgroup N〈g〉 is not quasihamiltonian, then G ≃ N〈g〉 is
soluble with derived length at most 3. Thus it can be assumed that N〈g〉
is quasihamiltonian for all g ∈ G. It follows that all cyclic subgroups of G
are almost modular, and hence the set T of all elements of finite order of G
is a finite subgroup (see [8], Theorem 3.3). Moreover, NT/T is contained
in the centre of G/T , and hence G/T is finite-by-abelian. Therefore the
derived subgroup G′ of G is finite, so that G′ is quasihamiltonian and G
is soluble with derived length at most 3.

It has been proved in [24] that if G is an insoluble group containing
proper non-abelian subgroups all of which are isomorphic to G, then the
factor group G/Z(G) is simple. In our situation, we obtain a correspond-
ing result, replacing the centre by a suitable relevant subgroup. If G is
a group, we shall denote by Q(G) the set of all elements a of G such
that 〈a, g〉 is quasihamiltonian for each g ∈ G. Clearly, if a ∈ Q(G),
the subgroup 〈a〉 is permutable in G. Therefore Q(G) is a subset of the
Hirsch-Plotkin radical of G.

Theorem 3. Let G be an insoluble group containing proper non-quasi-

hamiltonian subgroups. If G is isomorphic to all its non-quasihamiltonian

subgroups, then Q(G) is a quasihamiltonian subgroup of G and the factor

group G/Q(G) is simple.

Proof. Let R be the Hirsch-Plotkin radical of G. As G is not locally
nilpotent, R is quasihamiltonian; moreover, if g is any element of G, it
follows that R〈g〉 is soluble and so quasihamiltonian. Therefore R is con-
tained in Q(G), and hence Q(G) = R. Assume for a contradiction that
G/Q(G) is not simple, and let N be a normal subgroup of G such that
Q(G) < N < G. If g ∈ G \ N , the subgroup 〈g, N〉 ≃ G and G has
a finite non-trivial homomorphic image. Since every finitely generated
subgroup of G is either nilpotent or isomorphic to G, it follows that G
is locally graded and so G/Q(G) has a finite non-trivial homomorphic
image (see [23], Lemma 1). Moreover, N is isomorphic to G, so that
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N/Q(G) ≃ G/Q(G) and G/Q(G) is isomorphic to all its non-trivial nor-
mal subgroups. Thus G/Q(G) is cyclic (see [13]) and this contradiction
completes the proof of the theorem.

Finally, the following example shows that there exists an X-group G
containing a proper non-abelian subgroup which is not isomorphic to G.
Let G = 〈a, b〉 be the nilpotent group of class 2 generated by two elements
a and b subject to the additional relations

b81 = 1, [a, b]3 = b27.

It follows from Theorem 2.4.11 of [22] that the subgroup lattice of G
is not modular; moreover, G is not an M-group (see [6], Proposition
1). It is easy to show that 〈a3, b, [a, b]〉 is a non-abelian subgroup with
modular subgroup lattice, so that in particular, it is not isomorphic to
G. Moreover, it can be proved that every subgroup of G with non-
modular subgroup lattice has the form H = 〈an, b〉, where the integer n
is not divisible by 3. Then [an, b] has order 9 and either b27 = [an, b]3 or
b27 = [a−n, b]3, so that H is isomorphic to G. Therefore G belongs to the
class X.
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