Algebra and Discrete Mathematics Number 1. **(2007).** pp. 49 – 60 © Journal "Algebra and Discrete Mathematics"

Combinatorics of partial wreath power of finite inverse symmetric semigroup \mathcal{IS}_d

Yevgeniya Kochubinska

Communicated by A. P. Petravchuk

ABSTRACT. We study some combinatorial properties of $\ell_p^k \mathcal{I} \mathcal{S}_d$. In particular, we calculate its order, the number of idempotents and the number of \mathcal{D} -classes. For a given based graph $\Gamma \subset T$ we compute the number of elements in its \mathcal{D} -class D_{Γ} and the number of \mathcal{R} - and \mathcal{L} -classes in D_{Γ} .

Introduction

The wreath product of semigroups has appeared as a generalization to semigroups of the corresponding construction for groups. Firstly transformation wreath product of transformation semigroups has appeared as a natural generalization of the wreath product of permutation groups [1]. Later different modifications have been introduced, for instance, partial wreath product of arbitrary semigroup and semigroup of partial transformation was defined in [2] and construction related to this one, namely inverse wreath product of inverse semigroups, was proposed in [3]. Wreath products provide means to construct a semigroup with certain properties. They also appear in certain natural settings, that allows to lighten the study of known semigroups presenting them if possible as a wreath product of appropriate semigroups

The article discusses the partial wreath product of two finite symmetric semigroup \mathcal{IS}_d and a generalization of this construction to the case of more then two factors. It is proved that the partial wreath k-th power

²⁰⁰⁰ Mathematics Subject Classification: 20M18, 20M20, 05C05.

Key words and phrases: Wreath product, finite inverse symmetric semigroup, rooted tree, partial automorphism.

of the semigroup \mathcal{IS}_d is isomorphic to the appropriate subsemigroup of semigroup of partial automorphisms of the rooted k-level d-regular tree. We study some combinatorial properties of $\ell_p^k \mathcal{IS}_d$, in particular, we calculate its order and the number of idempotents and the number of \mathcal{D} -classes. Also, we describe Green's relations of the partial wreath power of \mathcal{IS}_d and calculate the number of \mathcal{D} -classes, the number of elements in a given \mathcal{D} -class and the number of \mathcal{R} - and \mathcal{L} -classes in this \mathcal{D} -class.

1. The partial wreath power of semigroup \mathcal{IS}_d

Let $\mathcal{N}_d = \{1, \dots, d\}$. Define $S^{P\mathcal{N}_d}$ by

$$S^{P\mathcal{N}_d} = \{ f : \mathcal{N}_d \to \mathcal{IS}_d | \operatorname{dom}(f) \subseteq \mathcal{N}_d \}.$$

as the set of functions from subsets of \mathcal{N}_d to \mathcal{IS}_d . If $f, g \in S^{P\mathcal{N}_d}$, we define the product fg by:

$$dom(fg) = dom(f) \cap dom(g), (fg)(x) = f(x)g(x) \text{ for all } x \in dom(fg).$$

If $a \in \mathcal{IS}_d$, $f \in S^{P\mathcal{N}_d}$, we define f^a by:

$$dom(f^{a}) = \{x \in dom(a); xa \in dom(f)\} = (ran(a) \cap dom(f))a^{-1}$$
$$(f^{a})(x) = f(xa).$$

Definition. The partial wreath square of semigroup \mathcal{IS}_d is defined as the set $\{(f, a) \in S^{P\mathcal{N}_d} \times \mathcal{IS}_d \mid \text{dom}(f) = \text{dom}(a)\}$ with composition defined by

$$(f,a) \cdot (g,b) = (fg^a, ab)$$

Denote it by $\mathcal{IS}_d \wr_p \mathcal{IS}_d$.

The partial wreath square of \mathcal{IS}_d is a semigroup, moreover, it is an inverse semigroup [1, Lemmas 2.22 and 4.6]. We may recursively define any partial wreath power of the finite inverse symmetric semigroup.

Definition. The partial wreath k-th power of semigroup \mathcal{IS}_d is defined as semigroup $\mathcal{I}_p^k \mathcal{IS}_d = (\mathcal{I}_p^{k-1} \mathcal{IS}_d) \mathcal{I}_p \mathcal{IS}_d = \{(f,a) \subset S_{k-1}^{P\mathcal{N}_d} \times \mathcal{IS}_d \mid \text{dom}(f) = dom(a)\}$ with composition defined by

$$(f,a) \cdot (g,b) = (fg^a, ab),$$

where $S_{k-1}^{P\mathcal{N}_d} = \{f : \mathcal{N}_d \to \ell_p^{k-1} \mathcal{I} \mathcal{S}_d, \operatorname{dom}(f) \subseteq \mathcal{N}_d\}, \ell_p^{k-1} \mathcal{I} \mathcal{S}_d \text{ is the partial wreath } (k-1)\text{-th power of semigroup } \mathcal{I} \mathcal{S}_d$

For an arbitrary function F we denote $F^k(x) = \underbrace{F(F \dots (F(x)) \dots)}_{k}$.

Proposition 1. $|l_p^k \mathcal{IS}_d| = S^k(1)$, where $S(x) = \sum_{i=1}^d {d \choose i}^2 i! x^i$

Proof. We provide the proof by induction on k.

Let
$$k = 1$$
, then $|\mathcal{IS}_d| = \sum_{i=1}^d \binom{n}{i}^2 i! = S(1)$ (cf. [4]).

Assume that we know the order of the partial wreath (k-1)-th power of semigroup \mathcal{IS}_d : $|\ell_p^{k-1}\mathcal{IS}_d| = S^{k-1}(1)$. Prove that $|\ell_p^k\mathcal{IS}_d| = S^k(1)$. The elements of semigroup $\ell_p^{k-1}\mathcal{IS}_d$ are pairs $(f,a) \in S_{k-1}^{P\mathcal{N}_d} \times \mathcal{IS}_d$ with dom(f) = dom(a). Let $P_A = \{a \in \mathcal{IS}_d | dom(a) = A\}$. Then the number of all such pairs (f,a) is equal to

$$\sum_{A \subset \mathcal{N}_d} { \begin{vmatrix} k-1 \\ i \\ p \end{vmatrix}} \mathcal{I} \mathcal{S}_d { \begin{vmatrix} k-1 \\ i \end{vmatrix}} \cdot { |P_A|} = \sum_{i=1}^d { \begin{vmatrix} k-1 \\ i \\ p \end{vmatrix}} \mathcal{I} \mathcal{S}_d { \begin{vmatrix} i \\ i \end{vmatrix}}^2 i!$$

$$= S({ \begin{vmatrix} k-1 \\ i \\ p \end{vmatrix}} \mathcal{I} \mathcal{S}_d { \begin{vmatrix} i \\ i \end{vmatrix}}) = S(S^{k-1}(1)) = S^k(1). \quad (1)$$

Let $E(\mathcal{IS}_d)$ be the set of idempotents of semigroup \mathcal{IS}_d .

Proposition 2. An element $(f, a) \in \mathcal{IS}_d \wr_p \mathcal{IS}_d$ is an idempotent if and only if $a \in E(\mathcal{IS}_d)$ and $f(\text{dom}(a)) \subseteq E(\mathcal{IS}_d)$.

Proof. Let (f,a) be idempotent, then $(f,a)(f,a)=(ff^a,a^2)=(f,a)$. Hence, $ff^a=f, a^2=a$, i.e., $a\in\mathcal{IS}_d$ is an idempotent. It follows from the equality $ff^a=f$ that for any $c\in\mathrm{dom}(a)$ $ff^a(ca)=f(ca)f^a(ca)=f(ca)f(ca)$.

Conversely, let $(f, a) \in \ell_p^k \mathcal{IS}_d$ be such an element that $a \in E(\mathcal{IS}_d)$ and $f(\operatorname{dom}(a)) \subseteq E(\mathcal{IS}_d)$. Then for any $c \in \operatorname{dom}(a)$ f(ca) = f(ca)f(ca). So $f(ca) = f(ca)f(ca) = f(ca)f(ca^2) = ff^a(ca)$. Since it holds for all $c \in \operatorname{dom}(a)$, we have (f, a)(f, a) = (f, a).

Let $T_k^{(d)}$ be a rooted k-level d-regular tree. The partial automorphism of the tree $T_k^{(d)}$ is such partial (i.e. not necessarily completely defined) injective map $\varphi:VT_k^{(d)}\to VT_k^{(d)}$ that subgraphs generated by domain of φ and range of φ are isomorphic (i.e. φ maps isomorphically certain subgraph of the tree $T_k^{(d)}$ on another subgraph of the same tree). Partial automorphisms form a semigroup under composition ab(x)=b(a(x)), we will denote it by PAut $T_k^{(d)}$. Evidently, this semigroup is an inverse semigroup. Let ConPAut T be the semigroup of partial automorphisms of the tree T, defined on a connected graph containing root and preserving the level of vertices. Further we will consider only partial automorphisms of this type.

Theorem 1. Let $T_k^{(d)}$ be a rooted k-level d-regular tree. Then

ConPAut
$$T_k^{(d)} \cong \mathop{\wr}\limits_p \mathcal{IS}_d$$
.

Proof. We provide the proof by induction on k.

Let $T_1^{(d)}$ be one-level tree, ConPAut $T_1^{(d)}$ be the semigroup of partial automorphisms of this tree defined as above. By definition, ConPAut $T_1^{(d)}$ contains partial automorphisms defined on a connected subgraph and that fix the root vertex and preserve the level of vertices, then every partial automorphism $\varphi \in \text{ConPAut}\,T_1^{(d)}$ is determined only by the vertices permutation satisfying condition

$$\varphi(i) = \begin{cases} a_i, & \text{if } i \in \text{dom}(\varphi) ;\\ \emptyset, & \text{otherwise.} \end{cases}$$

In other words, φ is the partial permutation from \mathcal{IS}_d . So, every partial automorphism $\varphi \in \text{ConPAut}\,T_1^{(d)}$ is uniquely defined by partial permutation $\sigma \in \mathcal{IS}_d$. Thus, we have one-to-one correspondence between ConPAut $T_1^{(d)}$ and \mathcal{IS}_d . Hence ConPAut $T_1^{(d)} \cong \mathcal{IS}_d$. Assume that $\ell_p^{k-1} \mathcal{IS}_d \cong \operatorname{ConPAut}_{k-1}$.

Prove that $\mathcal{C}_{p}^{k}\mathcal{IS}_{d}\cong \text{ConPAut}_{k}$. Let $\varphi\in \text{ConPAut}_{k}$ and V_{i} be the *i*-th level of the tree $T_k^{(d)}$. Define a map ψ : ConPAut_k $\to \wr_p^k \mathcal{IS}_d$ by: $\varphi \mapsto (\varphi|_{T_{k-1}}, \varphi|_{V_1})$, where $\varphi|_{T_{k-1}}$ is a partial automorphism that acts on the rooted subtrees, which root vertices lie on the first level of the tree $T_k^{(d)}$ and belong to $\operatorname{dom}(\varphi|_{V_1})$. Hence $\varphi|_{V_1} \in \mathcal{IS}_d$ and $\varphi|_{T_{k-1}} : \operatorname{dom}(\varphi|_{V_1}) \to \wr_p^{k-1} \mathcal{IS}_d$. Thus we may establish correspondence between given partial automorphism $\varphi \in \text{ConPAut}_k$ and a unique pair (σ, f) , where $\sigma \in \mathcal{IS}_d$, $f: \mathcal{N}_d \to \mathcal{V}_p^{k-1} \mathcal{IS}_d$, $\operatorname{dom}(f) = \operatorname{dom}(\sigma)$. And we have ConPAut $T_k^{(d)} \cong \mathcal{I}_n^k \mathcal{I} \mathcal{S}_d$.

Proposition 3. Let $E(l_p^k \mathcal{I} \mathcal{S}_d)$ be the set of idempotents of semigroup $l_p^k \mathcal{I} \mathcal{S}_d$. Then $\left| E(l_p^k \mathcal{I} \mathcal{S}_d) \right| = F^k(1) = \underbrace{\left(((1+1)^d+1)^d \dots + 1 \right)^d}_k$, where $F(x) = (x+1)^d.$

Proof. It follows from the Theorem 1 that there exists bijection between set of idempotents of semigroup $\mathcal{L}_p^k \mathcal{IS}_d$ and set of connected subgraphs of the tree $T_k^{(d)}$ with different domains. We calculate number of idempotents as a number of such subgraphs of the tree $T_k^{(d)}$, because idempotents of $ConPAutT_k^{(d)}$ are identity maps: $id_{\Gamma}: \Gamma \to \Gamma$, $\Gamma \subset T_k^{(d)}$.

We compute their number by induction on k. Let k = 1, then $\ell_p^1 \mathcal{IS}_d = \mathcal{IS}_d$, consequently $|E(\ell_p^1 \mathcal{IS}_d)| = |E(\mathcal{IS}_d)| = 2^d = F(1)$.

Assume that
$$|E(l_p^{k-1} \mathcal{I} \mathcal{S}_d)| = F^{k-1}(1) = |E(ConPAutT_k^{(d)})|$$
.

Find now the number of idempotents of semigroup $ConPAutT_k^{(d)}$. For all $i=1,\ldots,d$ we can choose i-element subset among the first level vertices in $\binom{d}{i}$ ways. Denote these subsets A_i^j , $i=1,\ldots,d$, $j=1,\ldots,\binom{d}{i}$ Each vertex from A_i^j is the root vertex of (k-1)-level tree. We know the number of idempotents of the semigroup $ConPAutT_k^{(d)}$, then

$$|E(\underset{p}{\stackrel{k}{\wr}} \mathcal{IS}_d)| = |E(ConPAutT_k^{(d)})| = \sum_{i=1}^d \binom{d}{i} (F^{k-1}(1))^i$$
$$= (F^{k-1}(1) + 1)^d = F(F^{k-1}) = F^k(1).$$

2. Combinatorics of Green's relations

Theorem 2. Let $(f, a), (g, b) \in \mathcal{C}_p^k \mathcal{IS}_d$. Then

- 1. $(f, a) \mathcal{L}(g, b)$ if and only if $\operatorname{ran}(a) = \operatorname{ran}(b)$ and $g^{b^{-1}}(z) \mathcal{L} f^{a^{-1}}(z)$ for all $z \in \operatorname{ran}(a)$, where a^{-1} is the inverse element for a;
- 2. $(f, a) \mathcal{R}(g, b)$ if and only if dom(a) = dom(b) and $f(z) \mathcal{R}(g(z))$ for all $z \in dom(a)$;
- 3. $(f, a) \mathcal{H}(g, b)$ if and only if $\operatorname{ran}(a) = \operatorname{ran}(b)$ and $\operatorname{dom}(a) = \operatorname{dom}(b)$, $g^{b^{-1}}(z) \mathcal{L} f^{a^{-1}}(z)$ and $f(z) \mathcal{R} g(z)$ for $z \in \operatorname{dom}(a) \cap \operatorname{ran}(a)$;
- 4. $(f, a)\mathcal{D}(g, b)$ if and only if there exists a bijection map $x : \text{dom}(b) \to \text{dom}(a)$ such that $f(zx) \mathcal{D}(g(z))$.
- 5. $\mathcal{D}=\mathcal{J}$.

Proof. Green's relations on semigroup \mathcal{IS}_d are described in [4].

1. Let $(f, a) \mathcal{L}(g, b)$, then there exist $(u, x), (v, y) \in \mathcal{I}_p^k \mathcal{IS}_d$ such that (u, x)(f, a) = (g, b) and (v, y)(g, b) = (f, a), i.e.

$$(u,x)(f,a) = (uf^x, xa) = (g,b),$$

 $(v,y)(g,b) = (vg^y, yb) = (f,a).$

We get from these equalities that xa = b, yb = a, and therefore $a \mathcal{L} b$ and then ran(a) = ran(b), and also we get $uf^x = g, vg^y = f$.

Multiplying the both sides of the equality xa=b by a^{-1} from the left and by b^{-1} from the right we obtain $b^{-1}x=a^{-1}$. Analogously we obtain $a^{-1}y=b$. Put $t=zb^{-1}$ for any $z\in \mathrm{dom}(b^{-1})=\mathrm{ran}(b)$, then

$$\begin{split} uf^x(t) &= g(t),\\ u(t)f(tx) &= g(t),\\ u(zb^{-1})f(zb^{-1}x) &= u(zb^{-1})f(za^{-1}) = g(zb^{-1}),\\ u(zb^{-1})f^{a^{-1}}(z) &= q^{b^{-1}}(z). \end{split}$$

Putting $t = za^{-1}$ for any $z \in \text{ran}(a) = \text{ran}(b)$, we analogously get $v(za^{-1})g^{b^{-1}}(z) = f^{a^{-1}}(z)$. We have $u(zb^{-1})f^{a^{-1}}(z) = g^{b^{-1}}(z)$ and $v(za^{-1})g^{b^{-1}}(z) = f^{a^{-1}}(z)$. This implies $f^{a^{-1}}(z) \, \mathcal{L} \, g^{b^{-1}}(z)$, $z \in \text{ran}(a) = \text{ran}(b)$.

Conversely, let $\operatorname{ran}(a) = \operatorname{ran}(b)$ and $f^{a^{-1}}(z)\mathcal{L}g^{b^{-1}}(z) \ \forall z \in \operatorname{ran}(a) = \operatorname{ran}(b)$. From the first condition we get $a\mathcal{L}b$, and hence there exist $x,y \in \mathcal{IS}_d$ such that xa = b, yb = a. From the second condition it follows that there exist functions $u,v \in S_k^{P\mathcal{N}_d}$ such that $u(z)f^{a^{-1}}(z) = g^{b^{-1}}(z)$ and $v(z)g^{b^{-1}}(z) = f^{a^{-1}}(z)$, $z \in \operatorname{ran}(a) = \operatorname{ran}(b)$. Consider $(u,x),(v,y) \in \mathcal{V}_p^k \mathcal{IS}_d$, where x,y,u,v are defined as above. Then

$$(u,x)(f,a) = (uf^x,xa) = (uf^{ba^{-1}},b) = (g^{bb^{-1}},b) = (g,b)$$

and in the same way we get (v, y)(g, b) = (f, a). Therefore $(f, a) \mathcal{L}(g, b)$.

2. Let $(f,a) \mathcal{R}(g,b)$, then there exist $(u,x), (v,y) \in \mathcal{V}_p^k \mathcal{IS}_d$ such that (f,a)(u,x) = (g,b), (g,b)(v,y) = (f,a). This is equivalent to $ax = b, by = a, fu^a = g, gv^b = f$. This gives us the conditions $a \mathcal{R} b$, and hence dom(a) = dom(b), and $fu^a = g, gv^b = f$. Consequently, $f(z) \mathcal{R} g(z) \forall z \in dom(a)$.

Conversely, let $(f,a), (g,b) \in l_p^k \mathcal{IS}_d$ and $\operatorname{dom}(a) = \operatorname{dom}(b), f(z) \mathcal{R}$ $g(z) \ \forall \ z \in \operatorname{dom}(a)$. From $\operatorname{dom}(a) = \operatorname{dom}(b)$ it follows $a \ \mathcal{R} b$, then there exists $x,y \in \mathcal{IS}_d$ such that ax = b, by = a, and from $f(z) \ \mathcal{R} g(z) \ \forall \ z \in \operatorname{dom}(a)$ it follows that there exist $u',v' \in S_{k-1}^{P\mathcal{N}_d}$ such that for any $z \in \operatorname{dom}(a)$ fu'(z) = g(z), gv'(z) = f(z). Define $u,v \in S_{k-1}^{P\mathcal{N}_d}$ by u(za) = u'(z), v(zb) = v'(z). Then for $t \in \operatorname{dom}(a)$ it holds $fu^a(t) = f(t)u(ta) = f(t)u'(t) = g(t)$ and $gv^b(t) = f(t)$, then

$$(f,a)(u,x) = (fu^a, ax) = (g,b),$$

 $(g,b)(v,y) = (f,a).$

Therefore, $(f, a) \mathcal{R}(g, b)$.

- 3. As $\mathcal{H} = \mathcal{L} \wedge \mathcal{R}$, this statement follows from the first and second ones.
- 4. Let $(f, a) \mathcal{D}(g, b)$. Then there exist $(h, c) \in \mathcal{V}_p^k \mathcal{IS}_d$ such that $(f, a) \mathcal{L}(h, c)$ and $(h, c) \mathcal{R}(g, b)$. From $(f, a) \mathcal{L}(h, c)$ we get that $\operatorname{ran}(a) = \operatorname{ran}(c)$ and for $z \in \operatorname{ran}(a) f^{a^{-1}}(z) \mathcal{L} h^{c^{-1}}(z)$. Then there exist functions u and v such that $u(z)f^{a^{-1}}(z) = h^{c^{-1}}(z)$ and $v(z)h^{c^{-1}}(z) = f^{a^{-1}}(z)$. Put $x = a^{-1}c$. By definition of \mathcal{IS}_d x is a partial bijection map. We now obtain $f(zx) \mathcal{L} h(z)$, and $x : \operatorname{dom}(c) \to \operatorname{dom}(a)$. From $(h, c) \mathcal{R}(g, b)$ we have that for $z \in \operatorname{dom}(b)$: $h(z) \mathcal{R}(z) = \operatorname{dom}(c)$ and $\operatorname{dom}(b) = \operatorname{dom}(c)$ we get $|\operatorname{dom}(a)| = |\operatorname{dom}(b)|$. Thus there a exists bijection $x : \operatorname{dom}(b) \to \operatorname{dom}(a)$ such that $f(zx) \mathcal{D}(z) = \operatorname{dom}(a)$.

Conversely, assume that there exists a bijection map $x : \text{dom}(b) \to \text{dom}(a)$ such that $f(zx)\mathcal{D}g(z)$, i.e. there exists a function h(z) such that $f(zx)\mathcal{L}h(z)$ and $h(z)\mathcal{R}g(z)$. Let $u'(z), v'(z) \in S^{P\mathcal{N}_d}$ satisfy conditions $u'(z)f(zx) = u'f^x(z) = h(z)$ and v'(z)h(z) = f(zx). Put c = xa, then c is partial bijection $c : \text{dom}(b) \to \text{ran}(a)$ exists. Define u(z) by u(z) = u'(z) and v(z) by $v(z) = v'(zx^{-1})$. Then

$$(u,x)(f,a) = (uf^x, xa) = (h,c),$$

 $(v,x^{-1})(h,c) = (f,a).$

Hence $(f, a) \mathcal{L}(h, c)$. As $h(z) \mathcal{R} g(z)$ and dom(c) = dom(b), then $(h, c) \mathcal{R}(g, b)$. It implies $(f, a) \mathcal{D}(g, b)$.

5. As $\mathcal{V}_p^k \mathcal{IS}_d$ is finite then $\mathcal{D} = \mathcal{J}$.

Corollary. If $(f, a), (g, b) \in \mathcal{IS}_d \wr_p \mathcal{IS}_d$, then

- 1. (f,a) $\mathcal{L}(g,b)$ if and only if $\operatorname{ran}(a) = \operatorname{ran}(b)$ and $\operatorname{ran}(g^{a^{-1}}(z)) = \operatorname{ran}(f^{b^{-1}}(z))$ for all $z \in \operatorname{ran}(a)$;
- 2. $(f, a) \mathcal{R}(g, b)$ if and only if dom(a) = dom(b) and dom(f(z)) = dom(g(z)) for all $z \in dom(a)$;
- 3. $(f,a) \mathcal{H}(g,b)$ if and only if $\operatorname{ran}(a) = \operatorname{ran}(b)$, $\operatorname{dom}(a) = \operatorname{dom}(b)$, $\operatorname{ran}(g^{a^{-1}}(z)) = \operatorname{ran}(f^{b^{-1}}(z))$ for $z \in \operatorname{ran}(a)$, and $\operatorname{dom}(f(z)) = \operatorname{dom}(g(z))$ for $z \in \operatorname{dom}(a)$.

Lemma 1. Let $\sigma, \tau \in \text{PAut } T_k^{(d)}$. Then $\sigma \mathcal{D} \tau$ if and only if $\text{dom}(\sigma) \cong \text{dom}(\tau)$.

Proof. Let $\sigma \mathcal{D}\tau$, then there exists $\gamma \in \operatorname{PAut} T_k^{(d)}$ such that $\sigma \mathcal{L}\gamma$ and $\gamma \mathcal{R}\tau$. Thus, $\operatorname{ran}(\sigma) = \operatorname{ran}(\gamma)$, $\operatorname{dom}(\gamma) = \operatorname{dom}(\tau)$. By definition of semigroup $\operatorname{PAut} T_k^{(d)}$ all these maps are isomorphisms between their domains and ranges. It immediately follows that map $\varphi = \gamma \sigma^{-1} : \operatorname{dom}(\tau) \to \operatorname{dom}(\sigma)$ is isomorphism from $\operatorname{dom}(\tau)$ to $\operatorname{dom}(\sigma)$, so $\operatorname{dom}(\sigma) \cong \operatorname{dom}(\tau)$.

Let now $\operatorname{dom}(\sigma) \cong \operatorname{dom}(\tau)$. As before by definition of semigroup $\operatorname{PAut} T_k^{(d)}$ it follows $\operatorname{dom}(\sigma) \cong \operatorname{ran}(\sigma)$, hence isomorphism $\gamma : \operatorname{ran}(\sigma) \to \operatorname{dom}(\tau)$ exists. Therefore, $\sigma \mathcal{L} \gamma$ and $\gamma \mathcal{R} \tau$. It implies $\sigma \mathcal{D} \tau$.

Proposition 4. The number of \mathcal{D} -classes of semigroup $\binom{k}{p} \mathcal{IS}_d$ equals $P^k(1)$, where $P(x) = \binom{x+d}{d}$.

Proof. By Theorem 1 and Lemma 1 the calculation of the number of \mathcal{D} -classes of semigroup $\ell_p^k \mathcal{IS}_d$ is equivalent to that of the number of non-isomorphic connected subgraphs of the tree $T_k^{(d)}$ containing root vertex. Later on all subgraphs are supposed to be connected and to contain root vertex.

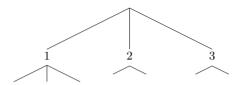
Partition the set of all connected subgraphs of the tree $T_k^{(d)}$ into the classes of isomorphic subgraphs. Define the set of graphs-representatives denoted by $GRep_k$ in the following way.

Consider firstly one-level d-regular tree. It is clear that the set of all connected subgraphs is divided into d+1 class. We choose a representative from each class and number them with integers from 0 to d in decreasing order of root vertices degree. For example, if d=3 we have:

Define the following order relation on the set of graphs-representatives $GRep_1$. Let i_1, i_2 be the numbers of graphs Γ_1 and Γ_2 respectively. Then $\Gamma_1 > \Gamma_2 \Leftrightarrow i_1 < i_2$.

Consider now 2-level tree $T_2^{(d)}$. Partition again the set of connected subgraphs into classes of isomorphic subgraphs. Notice that each vertex of the first level of $T_2^{(d)}$ is a root vertex of a one-level subgraph, which is isomorphic to a ceratin subgraph from the set $GRep_1$. Attach a number sequence (i_1, i_2, \ldots, i_l) to each subgraph by, where l is a degree of the root vertex and i_i is the number of subgraph from $GRep_1$ subgraph of

 $T_2^{(d)}$ with root vertex labelled by j is isomorphic to. For example, the corresponding sequence for subgraph



is (0,1,1). It is evident that connected subgraphs of $T_2^{(d)}$ are isomorphic if and only if corresponding sequences are equal up to the permutation of sequences members. Choose a subgraph described by non-decreasing corresponding sequence from each class of isomorphic subgraphs. We call these subgraphs graphs-representatives and define a linear order relation on the set of graphs-representatives $GRep_2$ in the following way: let $\Gamma_1, \Gamma_1 \in GRep_2$ and $a_1 = (i_1, i_2, \ldots, i_m), a_2 = (j_1, j_2, \ldots, j_n)$ be corresponding sequences. Then $\Gamma_1 > \Gamma_2$ if and only if $a_1 < a_2$, set of sequences is lexicographically ordered. For instance, if the number sequence related to subgraph Γ_1 is (0,0,0) and the number sequence related to subgraph Γ_2 is (0,0,1), then $\Gamma_1 > \Gamma_2$. We have linearly ordered set and we may arrange graphs-representatives in decreasing order and number them in such a way that 0 corresponds to the "biggest" graph.

Let now $\Gamma_0 > \Gamma_1 > \ldots > \Gamma_N$ be ordered set $GRep_{k-1}$ of graphsrepresentatives of (k-1)-level tree $T_{k-1}^{(d)}$. Partition again the set of all connected subgraph of the tree $T_k^{(d)}$ into classes of isomorphic subgraphs. Attach again a number sequence (i_1, i_2, \ldots, i_l) to each subgraph, where i_j is the number of corresponding graph from $GRep_{k-1}$, $i_j \in \{0, 1, \ldots, N\}, j = \overline{1, l}, \ l \leq d$, and construct the set of graphsrepresentatives $GRep_k$ of the k-level tree $T_k^{(d)}$ as above. It is easy to check that set $GRep_k$ has following properties:

- 1. For all subgraph $\Gamma \subset T_k^{(d)}$ there exists subgraph $\tilde{\Gamma}$ from the set $GRep_k$ such that $\Gamma \cong \tilde{\Gamma}$;
- 2. If $\Gamma_1 \cong \Gamma_2$, where $\Gamma_1, \Gamma_2 \subset GRep$, then $\Gamma_1 = \Gamma_2$.

Therefore, we have to compute the cardinality of the set of graphs-representatives $GRep_k$ to find the number of connected non-isomorphic subgraphs of the tree $T_k^{(d)}$ that gives us the number of \mathcal{D} -classes of semi-group $\ell_p^k \mathcal{IS}_d$.

We use induction on k to calculate the cardinality of the set of graphs-representatives.

If k=1, then $\left|GRep_1\right|=d+1=\binom{d+1}{d}=P(1)$. Assume that $N=P^{k-1}(1)$ is the cardinality of the set of graphsrepresentatives $GRep_{k-1}$ of (k-1)-level tree.

Each vertex of the first level of the tree $T_k^{(d)}$ is the root vertex of (k-1)-level tree that is isomorphic to a certain graph from $GRep_{k-1}$. Assume that all vertices of the first level are labelled with integers from 1 to $l, l \leq d$. As set $GRep_k$ contains no equal graphs, then corresponding sequences are all different. Hence, there exists one-to-one correspondence between set $\{1, 2, \dots, l\}$ and set $\{0, 1, \dots, N-1\}$. Consider all nondecreasing functions $f:\{1,2,\ldots,l\}\to\{0,1,\ldots,N-1\}$. The number of all such functions is equal to the cardinality of the set $GRep_k$. Define $x_0 = f(1), x_1 = f(2) - f(1), \dots, x_{l-1} = f(l) - f(l-1), x_l = N - 1 - f(l).$ Then $f(k) = x_0 + x_1 + x_2 + \ldots + x_k$. Since f is non-decreasing, then for all $i=1,\ldots,l$ $x_i\geq 0$. So the number of non-decreasing functions is equal to the number of integer solutions of the equation $N-1=x_0+x_1+\ldots+x_l$ for l = 1, ..., d. Thus, we get the number of \mathcal{D} -classes of semigroup $\binom{k}{n} \mathcal{I} \mathcal{S}_d$:

$$\sum_{l=0}^{d} \binom{N+l-1}{l} = \binom{N+d}{d} = P(N) = P(P^{k-1}(1)) = P^{k}(1)$$

Let Γ be a subtree of the tree $T_k^{(d)},\, St_{T_k^{(d)}}(\Gamma)$ be the stabilizer of the subtree Γ , $Fix_{T_k^{(d)}}(\Gamma)$ be the fixator of the subtree Γ and let D_{Γ} be \mathcal{D} class such that for any $\sigma \in D_{\Gamma} \operatorname{dom}(\sigma) \cong \Gamma$. Let $\{\Gamma_1, \ldots, \Gamma_i\}$ be the set of all pairwise non-isomorphic subtrees of Γ with root vertices in the first level of Γ . Let α_i be the number of isomorphic to Γ_i subtrees of Γ with root vertices in the first level of Γ , j = 1, ..., i. The type of Γ is a set $\{(\Gamma_1,\alpha_1),(\Gamma_2,\alpha_2),\ldots,(\Gamma_i,\alpha_i)\}$ such that disjoint union of vertices sets of all subtrees and root vertex gives vertices of Γ . Notice that $\sum_{i=1}^{i} \alpha_i = l$, where l is the degree of root vertex of Γ .

Proposition 5. Let Γ be a subtree of the tree $T_k^{(d)}$ and its type be $\{(\Gamma_1, \alpha_1), (\Gamma_2, \alpha_2), \dots, (\Gamma_i, \alpha_i)\}$, and degree of the root vertex of Γ be l, $l \leq d$. Then

1.
$$|\operatorname{Aut} \Gamma| = \prod_{j=1}^{i} (\alpha_j)! |\operatorname{Aut}(\Gamma_j)|^{\alpha_j}, \ l \leq d,$$

2.
$$|St_{T_k^{(d)}}(\Gamma)| = (d-l)! |\operatorname{Aut} T_{k-1}^{(d)}|^{d-l} \prod_{j=1}^i (\alpha_j)! |St_{T_{k-1}^{(d)}}(\Gamma_j)|^{\alpha_j},$$

3.
$$|Fix_{T_k^{(d)}}(\Gamma) = (d-l)!|\operatorname{Aut} T_{k-1}^{(d)}|^{d-l}\prod_{j=1}^i |Fix_{T_{k-1}^{(d)}}(\Gamma_j)|^{\alpha_j}$$
.

Proof.

1. Prove the proposition by induction on k. Let Γ be one-level tree and root vertex degree be $l \leq d$, then $|\operatorname{Aut} \Gamma| = l!$.

Assume we know the orders of groups $\operatorname{Aut} \Gamma_j$ for all $j=1,\ldots,i$. Find the order of $\operatorname{Aut} \Gamma$. Degrees of root vertices of isomorphic trees are equal. Let them be l. It is clear that types of all trees isomorphic to Γ are equal up to the permutation of items. Thus only permutation of the first level vertices, and consequently permutation of subtrees of Γ , distinguishes graph Γ from isomorphic one. All the vertices of the first level may permute, but with several restrictions, namely, roots of non-isomorphic subtrees stay roots of non-isomorphic subtrees. Since the orders of $\operatorname{Aut} \Gamma_j$ for all $j=1,\ldots,i$ are known, we can derive the order of $\operatorname{Aut} \Gamma$:

$$|\operatorname{Aut}\Gamma| = \prod_{j=1}^{i} (\alpha_j)! |Aut\Gamma_j|^{\alpha_j}.$$

2. The proof is analogous to the proof of the previous statement.

Consider the stabilizer of subtree Γ in the automorphisms group of the rooted tree $T_1^{(d)}$. Let the degree of the root of Γ be l. Then it is obvious that $|St_{T_1^{(d)}}(\Gamma)| = l!(d-l)!$.

Assume now that we know the order of $St_{T_{k-1}^{(d)}}(\Gamma)$. Let the degree of the root of Γ be l. Then (d-l) vertices of the first level of Γ may permute and each of them is the root of (k-1)-level tree $T_{k-1}^{(d)}$. Among l vertices, as in proof of the previous statement, distinguish only vertices that are roots of isomorphic subtrees. Then

$$|St_{T_k^{(d)}}(\Gamma)| = (d-l)! |\operatorname{Aut} T_{k-1}^{(d)}|^{d-i} \prod_{j=1}^i (\alpha_j)! |St_{T_{k-1}^{(d)}}|^{\alpha_j} (\Gamma_j).$$

3. Taking into account that fixator of the subtree does not allow vertices permutation of this subtree, the proof is analogous to the proof of point 2.

Proposition 6. The cardinality of the set of idempotents $E(D_{\Gamma})$ of class D_{Γ} equals

$$|E(D_{\Gamma})| = \frac{(d!)^{\frac{1-d^k}{1-d}}}{|St_{T_k^{(d)}}(\Gamma)|}.$$

Proof follows from one-to-one correspondence between the set of ranges of idempotents of D_{Γ} and the set $\operatorname{Aut} T_k^{(d)}/St(\Gamma)$, and $|\operatorname{Aut} T_k^{(d)}| = (d!)^{\frac{1-d^k}{1-d}}$.

Corollary 1. The number of \mathcal{R} -classes and the number of \mathcal{L} -classes containing in \mathcal{D} -class D_{Γ} is equal to

$$\frac{(d!)^{\frac{1-d^k}{1-d}}}{|St_{T_h^{(d)}}(\Gamma)|}.$$

Proof follows from the fact that in inverse semigroup every \mathcal{L} -class and every \mathcal{R} -class contains exactly one idempotent.

Corollary 2. The cardinality of \mathcal{H} -class containing in \mathcal{D} -class D_{Γ} is equal to $|\operatorname{Aut} \Gamma|$.

Proof. Let $\sigma, \tau \in \text{PAut } T_k^{(d)}$. Then $\sigma \mathcal{H} \tau$ if and only if $\text{dom}(\sigma) = \text{dom}(\tau)$ and $\text{ran}(\sigma) = \text{ran}(\tau)$. The statement is now obvious.

Corollary 3. $|D_{\Gamma}| = |E(D_{\Gamma})|^2 |Aut\Gamma|$.

Proof follows from corollaries 1 and 2.

References

- [1] Meldrum, J.D.P., Wreath products of groups and semigroups, Longman, 1995.
- [2] Petrich, M. Dense extensions of completely 0-simple semigroups, I.J.Reine Angew.Math., 1973, **258**, pp.103-125.
- [3] Houghton, C.H. Embedding inverse semigroups in wreath products. Glasgow Math.J., 1976, 17, pp.77-82.
- [4] Ganyushkin, O. and Mazorchuk, V. The full finite inerse symmetric semigroup \mathcal{IS}_n , Preprint 2001:37, Chalmers University of Technology and Göteborg University, Göteborg, 2001.

CONTACT INFORMATION

Ye. Kochubinska

Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska st., 01033, Kyiv, Ukraine *E-Mail:* eugenia@univ.kiev.ua

Received by the editors: 14.06.2005 and in final form 30.05.2007.