Presentations and word problem for strong semilattices of semigroups

Gonca Ayık, Hayrullah Ayık and Yusuf Ünlü

Communicated by V. I. Sushchansky

Abstract

Let I be a semilattice, and $S_{i}(i \in I)$ be a family of disjoint semigroups. Then we prove that the strong semilattice $S=\mathcal{S}\left[I, S_{i}, \phi_{j, i}\right]$ of semigroups S_{i} with homomorphisms $\phi_{j, i}: S_{j} \rightarrow$ $S_{i}(j \geq i)$ is finitely presented if and only if I is finite and each $S_{i}(i \in I)$ is finitely presented. Moreover, for a finite semilattice I, S has a soluble word problem if and only if each $S_{i}(i \in I)$ has a soluble word problem. Finally, we give an example of nonautomatic semigroup which has a soluble word problem.

Introduction

Finite presentability of semigroup constructions has been widely studied in recent years (see, for example, $[1,2,8,9,10]$). One of semigroup structures is a strong semilattice of semigroups which is an important structure for completely regular semigroups (see [7]).

Let I be a semilattice, and let $S_{i}(i \in I)$ be a family of disjoint semigroups. Suppose that, for any two elements $i, j \in I$, with $i \leq j$ ($i \leq j$ if and only if $i j=i$), there is a homomorphism $\phi_{j, i}: S_{j} \longrightarrow S_{i}$, and that these homomorphisms satisfy the following conditions:

1. for each $i \in I, \phi_{i, i}$ is the identity map $1_{S_{i}}$;
2. for all $i, j, k \in I$, such that $i \leq j \leq k, \phi_{k, j} \phi_{j, i}=\phi_{k, i}$.

2000 Mathematics Subject Classification: 20M05.

Key words and phrases: Semigroup presentations, strong semilattices of semigroups, word problems..

Define a multiplication on $S=\cup_{i \in I} S_{i}$ in terms of the multiplications in the components S_{i} and the homomorphisms $\phi_{j, i}$, by the rule that, for each $x \in S_{i}$ and $y \in S_{j}$,

$$
x y=\left(x \phi_{i, i j}\right)\left(y \phi_{j, i j}\right)
$$

Respect to this multiplication, S is a semigroup, called a strong semilattice of semigroups, and denoted by $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$. Finite presentability of strong semilattice of semigroups was investigated in [1]. The authors of [1] first proved that a band of semigroups $S_{i}(i \in I)$ is finitely presented if I is finite and each S_{i} is finitely presented (see [1, Corollary 4.5]). Moreover, they proved that a band of monoids $S_{i}(i \in I)$ is finitely presented if and only if I is finite and each S_{i} is finitely presented (see [1, Corollary 5.6]). Then, from Theorem 1.3 in [11] they concluded that a strong semilattice of semigroups $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ is finitely presented if each $S_{i}(i \in I)$ is finitely presented and if I is finite. In this paper we construct more specific presentations for strong semilattice of semigroups from given presentations for $S_{i}(i \in I)$ and a presentation for each S_{i} from a given presentation for $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$. Moreover, if $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ is finitely generated then we prove that $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ has a soluble word problem if and only if each S_{i} has a soluble word problem.

1. The presentations

For a given alphabet A, let A^{+}be the free semigroup on A (i.e. the set of all non-empty words over A) and let A^{*} be the free monoid on A (i.e. A^{+}together with the empty word, denoted by ε). A semigroup presentation is a pair $\langle A \mid / R\rangle$, with $R \subseteq A^{+} \times A^{+}$. A semigroup S is defined by the presentation $\langle A \mid R\rangle$ if S is isomorphic to the semigroup A^{+} / ρ, where ρ is the congruence on A^{+}generated by R. For any two words $w_{1}, w_{2} \in A^{+}$we write $w_{1} \equiv w_{2}$ if they are identical words and write $w_{1}=w_{2}$ if $w_{1} \rho=w_{2} \rho$ (i.e. if they represent the same element in S). It is well known that $w_{1}=w_{2}$ if and only if this relation is a consequence of R, that is there is a finite sequence $w_{1} \equiv \eta_{1}, \eta_{2}, \ldots, \eta_{k} \equiv w_{2}$ of words from A^{+}, in which every term $\eta_{i}(1<i \leq k)$ is obtained from the previous one by applying one relation from R. Let $\mathcal{P}=\langle A \mid R\rangle$ be a presentation for S and let $W \subseteq A^{+}$. If W contains exactly one element representing each element of S then W is called a canonical form for S respect to \mathcal{P}. The semigroup S is finitely presented if S has a presentation $\langle A \mid R\rangle$ such that both A and R are finite. A (finite) monoid presentation is defined similarly with respect to the free monoid A^{*}. Notice that a monoid M is finitely presented as a monoid if and only if it is finitely presented as
a semigroup. Furthermore, if $\langle A \mid R\rangle$ is a semigroup presentation for a monoid M then $\langle A \mid R, w=1\rangle$ is a monoid presentation for M, where $w \in A^{+}$is a word representing the identity of M.

Now we construct a presentation for $S=\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ from given presentations $\left\langle A_{i} \mid R_{i}\right\rangle$ for $S_{i}(i \in I)$. Since S is a disjoint union of semigroups $S_{i}(i \in I)$, it is clear that $A=\cup_{i \in I} A_{i}$ generates S. For simplicity of notation we assume that $A_{i} \subseteq S_{i}$.

Consider the following presentation

$$
\mathcal{P}=\left\langle A \mid R, a_{i} a_{j}=\left(a_{i} \phi_{i, i j}\right)\left(a_{j} \phi_{j, i j}\right)\left(a_{i} \in A_{i}, a_{j} \in A_{j}\right)\right\rangle
$$

where $A=\cup_{i \in I} A_{i}$ and $R=\cup_{i \in I} R_{i}$.
Proposition 1. With above notation if $a \in A_{i}$ and $u \in A_{j}^{+}$with $i \neq j$, then there exists $v \in A_{i j}^{+}$such that the relation $u a=v$ is a consequence of the relations $a_{j} a=\left(a_{j} \phi_{j, i j}\right)\left(a \phi_{i, i j}\right)\left(a \in A_{i}, a_{j} \in A_{j}\right)$.
Proof. We use induction on the length of u. If $|u|=1$ then take $v \equiv$ $\left(u \phi_{j, i j}\right)\left(a \phi_{i, i j}\right)$. Next we suppose that $u \equiv a_{1} \cdots a_{n}\left(a_{1}, \ldots, a_{n} \in A_{j}\right)$ with $n \geq 2$ and that the result is true for any word of length $n-1$. By the inductive hypothesis, there exists $b v_{1}$ with $b \in A_{i j}$ and $v_{1} \in A_{i j}^{*}$ such that the relation $\left(a_{2} \cdots a_{n}\right) a=b v_{1}$ is a consequences of the relations $a_{j} a=\left(a_{j} \phi_{j, i j}\right)\left(a \phi_{i, i j}\right)\left(a \in A_{i}, a_{j} \in A_{j}\right)$. Since $j i j=i j$ in I and $\phi_{i j, i j}$ is the identity map on $S_{i j}$, it follows that

$$
u a \equiv a_{1}\left(\left(a_{2} \cdots a_{n}\right) a\right)=\left(a_{1} b\right) v_{1}=\left(\left(a_{1} \phi_{j, j i j}\right)\left(b \phi_{i j, j i j}\right) v_{1} \equiv\left(\left(a_{1} \phi_{j, i j}\right) b\right) v_{1}\right.
$$

Since $\left(a_{1} \phi_{j, i j}\right) \in A_{i j}^{+}$, taking $v \equiv\left(a_{1} \phi_{j, i j}\right) b v_{1}$ completes the proof.
Proposition 2. If $u \equiv a_{i_{1}} \cdots a_{i_{m}}\left(a_{i_{1}}, \ldots, a_{i_{m}} \in A\right)$ and $k=i_{1} \cdots i_{m}$, then there exists $\bar{u} \in A_{k}^{+}$such that the relation $u=\bar{u}$ is a consequence of the relations $a_{i} a_{j}=\left(a_{i} \phi_{i, i j}\right)\left(a_{j} \phi_{j, i j}\right)\left(a_{i} \in A_{i}, a_{j} \in A_{j}\right)$.
Proof. We use induction on m. If $m=1$ then we take $u \equiv \bar{u} \equiv a_{i_{1}}$. Now we suppose that $m \geq 2$ and that the result is true for $m-1$. Let $k_{1}=i_{1} \cdots i_{m-1}$. By inductive hypothesis there exists $\overline{u_{1}} \in A_{k_{1}}^{+}$such that the relation $u_{1} \equiv a_{i_{1}} \cdots a_{i_{m-1}}=\overline{u_{1}}$ is a consequence of the relations $a_{i} a_{j}=\left(a_{i} \phi_{i, i j}\right)\left(a_{j} \phi_{j, i j}\right)\left(a_{i} \in A_{i}, a_{j} \in A_{j}\right)$. By the previous proposition there exists $\bar{u} \in A_{k_{1} i_{m}}^{+}$such that $\overline{u_{1}} a_{i_{m}}=\bar{u}$. Since $k_{1} i_{m}=k$, for $\bar{u} \in A_{k}^{+}$ we have $u \equiv\left(a_{i_{1}} \cdots a_{i_{m-1}}\right) a_{i_{m}}=\overline{u_{1}} a_{i_{m}}=\bar{u}$, as required.

Theorem 1. Let $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ be a strong semilattice of semigroups and let $\mathcal{P}_{i}=\left\langle A_{i} \mid R_{i}\right\rangle$, with $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$, be a semigroup presentation for $S_{i}(i \in I)$. If we take $A=\cup_{i \in I} A_{i}$ and $R=\cup_{i \in I} R_{i}$ then

$$
\left.\mathcal{P}=\langle A| R, a_{i} a_{j}=\left(a_{i} \phi_{i, i j}\right)\left(a_{j} \phi_{j, i j}\right)\left(a_{i} \in A_{i}, a_{j} \in A_{j} \text { with } i \neq j\right)\right\rangle
$$

is a presentation for $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$.

Proof. It is clear that A generates $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ and that all the relations in \mathcal{P} hold in $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$. Notice that since $\phi_{i, i}$ is the identity map on S_{i} and $i^{2}=i(i \in I)$, we can consider \mathcal{P} as $\langle A| R, a_{i} a_{j}=\left(a_{i} \phi_{i, i j}\right)\left(a_{j} \phi_{j, i j}\right)$ $\left.\left(a_{i} \in A_{i}, a_{j} \in A_{j}\right)\right\rangle$ (i.e. without conditions $i \neq j$).

Let u and v be any two words in A^{+}such that $u=v$ holds in $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$, that is they represent the same element of $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$. By Proposition 2, there exist $k, l \in I, \bar{u} \in A_{k}^{+}$and $\bar{v} \in A_{l}^{+}$such that $u=\bar{u}$ and $v=\bar{v}$ are consequences of the relations $\left(a_{i} \phi_{i, i j}\right)\left(a_{j} \phi_{j, i j}\right)\left(a_{i} \in A_{i}\right.$, $a_{j} \in A_{j}$). Since the relation $\bar{u}=\bar{v}$ holds in both S_{k} and S_{l}, we have $k=l$ and $\bar{u}=\bar{v}$ as a consequence of R_{k}. Therefore $u=v$ is a consequence of relations in \mathcal{P}, as required.

Notice that if $W_{i} \subseteq A_{i}^{+}(i \in I)$ is a set of canonical forms for S_{i} ($i \in I$) with respect to $\left\langle A_{i} \mid R_{i}\right\rangle$, then $W=\cup_{i \in I} W_{i}$ is a set of canonical forms for $S=\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ with respect to \mathcal{P}.

Now we find a presentation for each $S_{i}(i \in I)$ from a presentation for $S=\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$.

Proposition 3. Let A be a generating set for $S=\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ and $B_{j}=$ $\left\{a \in A \mid a \in S_{j}\right\}(j \in I)$. Then, for each $i \in I$,

$$
A_{i}=\bigcup_{j \geq i}\left\{a_{j, i} \in S_{i} \mid a_{j} \in B_{j} \text { and } a_{j} \phi_{j, i}=a_{j, i}\right\}
$$

generates S_{i}.
Proof. Since $A_{i} \subset S_{i}$, it is enough to show that $S_{i} \subseteq\left\langle A_{i}\right\rangle$.
For $s \in S_{i}$, there exist $a_{i(1)}, \ldots, a_{i(m)} \in A$ such that $s=a_{i(1)} \cdots a_{i(m)}$. By the multiplication defined on S, we must have $i(1), \ldots, i(m) \geq i$ and there exists at least one $k \in\{1, \ldots, m\}$ such that $i(k)=i$, and so $s=$ $a_{i(1)} \cdots a_{i(m)}=\left(a_{i(1)} \phi_{i(1), i}\right) \cdots\left(a_{i(m)} \phi_{i(m), i}\right) \equiv a_{i(1), i} \cdots a_{i(m), i} \in\left\langle A_{i}\right\rangle$, as required.

Notice that $a_{i} \phi_{i, i}=a_{i, i} \equiv a_{i}$. Moreover, for $a_{j}, a_{j}^{\prime} \in B_{j}, a_{j} \neq a_{j}^{\prime}$ it is possible to obtain $a_{j} \phi_{j, i}=a_{j}^{\prime} \phi_{j, i}$. For every $a_{j, i} \in A_{i}$, we fix $a_{j} \in B_{j}$ such that $a_{j} \phi_{j, i}=a_{j, i}$ and denote this fixed a_{j} by $\overline{a_{j, i}}$.

Let $\langle A \mid R\rangle$ be a finite presentation for $S=\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$. Next we construct a presentation for $S_{i}(i \in I)$ in terms of A_{i}. Let Φ_{i} be the unique homomorphism from $\left(\bigcup_{j \geq i} B_{j}\right)^{+}$to A_{i}^{+}such that, for each $a \in B_{j}, j \geq i$, $a \Phi_{i}=a \phi_{j, i}$, and let $W_{i}=\left(\bigcup_{j \geq i} B_{j}\right)^{*} B_{i}\left(\bigcup_{j \geq i} B_{j}\right)^{*}$. Notice that, for $w \in A^{+}, w$ represent an element of S_{i} if and only if $w \in W_{i}$.

Theorem 2. Let $\mathcal{Q}=\langle A \mid R\rangle$ be a presentation for $S=\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$. With above notation,

$$
\mathcal{Q}_{i}=\left\langle A_{i} \mid\left\{\left(r \Phi_{i}, s \Phi_{i}\right) \mid(r, s) \in R \cap\left(\left(\bigcup_{j \geq i} B_{j}\right)^{*} \times\left(\bigcup_{j \geq i} B_{j}\right)^{*}\right)\right\}\right\rangle
$$

is a presentation for $S_{i}(i \in I)$.
Proof. By Proposition 3, A_{i} is a generating set for S_{i}. Let

$$
R_{i}=\left\{\left(r \Phi_{i}, s \Phi_{i}\right) \mid(r, s) \in R \cap\left(\left(\bigcup_{j \geq i} B_{j}\right)^{*} \times\left(\bigcup_{j \geq i} B_{j}\right)^{*}\right)\right\}
$$

It is clear that all the relation in R_{i} hold in S_{i}. For

$$
u \equiv a_{j(1), i} \cdots a_{j(m), i} \quad \text { and } \quad v \equiv a_{\lambda(1), i} \cdots a_{\lambda(n), i}
$$

where $a_{j(1), i}, \ldots, a_{j(m), i}, a_{\lambda(1), i}, \ldots, a_{\lambda(n), i} \in A_{i}$, let the relation $u=v$ holds in S_{i}. To complete the proof we have to show that $u=v$ is a consequence of R_{i}.

Let $\bar{u}, \bar{v} \in A^{+}$denote the words A^{+}obtained from u and v by replacing $a_{j, i}$ by $\overline{a_{j, i}}$, respectively. It is clear that the relation $\bar{u}=\bar{v}$ holds in S, and so there is a finite sequence $\bar{u} \equiv \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \equiv \bar{v}$ of words from A^{+}, in which every term $\alpha_{k+1}(1 \leq k<m)$ is obtained from α_{k} by applying one relation from R. If $\alpha_{k} \equiv \beta_{k} r_{k} \gamma_{k}$ and $\alpha_{k+1} \equiv \beta_{k} s_{k} \gamma_{k}$ where $\beta_{k}, \gamma_{k} \in A^{*}$ and $\left(r_{k}, s_{k}\right) \in R$ (or equivalently $\left(s_{k}, r_{k}\right) \in R$) then $\beta_{k}, \gamma_{k}, r_{k}$ and s_{k} must be in $\left(\bigcup_{j \geq i} B_{j}\right)^{*}$. Thus $\alpha_{k} \Phi_{i} \equiv\left(\beta_{k} \Phi_{i}\right)\left(r_{k} \Phi_{i}\right)\left(\gamma_{k} \Phi_{i}\right)$ and $\alpha_{k+1} \Phi_{i} \equiv\left(\beta_{k} \Phi_{i}\right)\left(s_{k} \Phi_{i}\right)\left(\gamma_{k} \Phi_{i}\right)$ where $\beta_{k} \Phi_{i}, \gamma_{k} \Phi_{i} \in A_{i}^{*}$ and $\left(r_{k} \Phi_{i}, s_{k} \Phi_{i}\right) \in$ R_{i} (or equivalently $\left(s_{k} \Phi_{i}, r_{k} \Phi_{i}\right) \in R_{i}$), and so we have a finite sequence $u \equiv \alpha_{1} \Phi_{i}, \alpha_{2} \Phi_{i}, \ldots, \alpha_{m} \Phi_{i} \equiv v$ of words from A_{i}^{+}. Hence $u=v$ is a consequence of R_{i}, as required.

With above notation notice that if $W_{i}=\left(\bigcup_{j \geq i} B_{j}\right)^{*} B_{i}\left(\bigcup_{j \geq i} B_{j}\right)^{*}$ then, for $w \in A^{+}, w$ represent an element of S_{i} if and only if $w \in W_{i}$. Since there exist finitely many B_{i}, there exist finitely many W_{i} so that I is finite and every $\mathcal{Q}_{i}(i \in I)$ in Theorem 2 is a finite presentation whenever \mathcal{Q} is a finite presentation. Moreover, the presentation \mathcal{P} in Theorem 1 is finite if I is finite and every \mathcal{P}_{i} is finite. Therefore, we have the following corollary.

Corollary 1. The strong semilattice $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ of disjoint semigroups $S_{i}(i \in I)$ is finitely presented if and only if I is finite and every S_{i} is finitely presented.

2. Word Problem

A finitely generated semigroup S is said to have a soluble word problem with respect to a finite generating set A if there exists an algorithm which, for any two words $u, v \in A^{+}$, decides whether or not the relation $u=v$ holds in S (in finite steps). It is easy to see that the solubility of the word problem does not depend on the choice of the finite generating set for a finitely generated semigroup ([11]).

Theorem 3. Let I be a finite semilattice, and let $S_{i}(i \in I)$ be a family of disjoint finitely generated semigroups. The strong semilattice $S=$ $\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ has a soluble word problem if and only if, for each $i \in I, S_{i}$ has a soluble word problem.

Proof. (\Rightarrow) Suppose that $S=\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ has a soluble word problem. Let A_{i} be a finite generating set for S_{i}. We know that $A=\bigcup_{i \in I} A_{i}$ is a finite generating set for S. Then S has a soluble word problem with respect to generating set A. Since, for each $i \in I$, if $u, v \in A_{i}^{+}$, then $u, v \in A^{+}$and there exists an algorithm which decides whether or not $u=v$ holds in S and so in S_{i}. Thus S_{i} has a soluble word problem.
(\Leftarrow) Suppose that, for each $i \in I, S_{i}$ has a soluble word problem and B_{i} is a finite generating set for S_{i}. Let $A_{i}=\bigcup_{j \geq i} B_{j} \phi_{j, i}$ for each $i \in I$. It is clear that, for each $i \in I, A_{i}$ is a finite generating set for S_{i}, and moreover, S_{i} has a soluble word problem with respect to the generating set A_{i}.

Then we show that $S=\mathcal{S}\left[I ; S_{i}, \phi_{j, i}\right]$ has a soluble word problem with respect to the generating set $A=\bigcup_{i \in I} A_{i}$. Let $u, v \in A^{+}$be any two words. Then we have $u \equiv a_{i(1)} \cdots a_{i(m)}$ and $v \equiv a_{j(1)} \cdots a_{j(n)}$ where $a_{i(k)} \in A_{i(k)}$ and $a_{j(l)} \in A_{j(l)}(1 \leq k \leq m, 1 \leq l \leq n)$. Take $i=i(1) \cdots i(n)$ and $j=j(1) \cdots j(n)$. Since u represents an element of S_{i} and v represents an element of S_{j}, if $i \neq j$, then by the multiplication defined on $S, u=v$ does not hold in S. Now suppose that $i=j$ and take $\bar{u} \equiv\left(a_{i(1)} \phi_{i(1), i}\right) \cdots\left(a_{i(m)} \phi_{i(m), i}\right) \in A_{i}^{+}$and $\bar{v} \equiv$ $\left(a_{j(1)} \phi_{j(1), j}\right) \cdots\left(a_{j(m)} \phi_{j(m), j}\right) \in A_{i}^{+}$. Since $u=\bar{u}$ and $v=\bar{v}$ holds in S, $u=v$ holds in S if and only if $\bar{u}=\bar{v}$ holds in S_{i}. Since, for each $i \in I, S_{i}$ has a soluble word problem with respect to A_{i}, there exists an algorithm which decides whether $\bar{u}=\bar{v}$ holds in S_{i} in finite steps. Therefore S has a soluble word problem.

Automatic semigroups were first introduced in [5] and they have been widely studied for semigroup structures, such as direct product of semigroups, Rees matrix semigroups, etc. (see [4, 6]). It is shown that if a semigroup S is automatic then S has a soluble word problem (see [5,

Corollary 3.7]). In general the converse of Corollary 3.7 in [5] is not true. For this, consider the free group $G_{1}=\langle a, b \mid\rangle$ of rank two and the free product $G_{2}=\left\langle c, d \mid c^{2}=1 d^{2}=1\right\rangle$ of two cyclic groups of order two. It is a well-known fact that free groups of finite rank, and finite groups has soluble word problem. In addition, the free product of two groups which have soluble word problems has also soluble word problem. Therefore, G_{1} and G_{2} have soluble word problems. Moreover the groups G_{1} and G_{2} are automatic (see [3]).

Let $\phi_{1,2}: G_{1} \rightarrow G_{2}$ be the homomorphism defined by $a \phi_{1,2}=c$ and $b \phi_{1,2}=d, \phi_{1,1}$ be the identity map of $G_{1}, \phi_{2,2}$ be the identity map of G_{2}. Then consider the strong semilattice $G=\mathcal{S}\left[I ; G_{i}, \phi_{j, i}\right]$ of the groups G_{1} and G_{2} where $I=\{1,2\}$ is the semilattice with the multiplication $i \cdot j=\max \{i, j\}$. It follows from Theorem 3 that the strong semilattice G of the groups G_{1} and G_{2} has a soluble word problem however it is shown that G is not automatic (see [6]).

References

[1] I.M. Araujo, M.J.J. Branco, V.H. Fernandes, G.M.S. Gomes, N. Ruskuc, On Generators and Relations of Unions of Semigroups, Semigroup Forum, 63, 2001, pp. 49-62.
[2] H. Ayık, N. Ruskuc, Generators and Relations of Rees Matrix Semigroups, Proc. Edinburgh Math. Soc., 42, 1999, pp. 482-495.
[3] G. Baumslag, S.M. Gersten, M. Shapiro, H. Short, Automatic Groups and Amalgams, J. Pure Appl. Algebra 76, 1991, pp. 229-316.
[4] C.M. Campbell, E.F. Robertson, N. Ruskuc, R.M. Thomas, Direct Products of Automatic Semigroups, J. Austral. Math. Soc., 69, 2000, pp. 19-24.
[5] C.M. Campbell, E.F. Robertson, N. Ruskuc, R.M. Thomas, Automatic Semigroups, Theoret. Comput. Sci., 250, 2001, pp. 365-391.
[6] C.M. Campbell, E.F. Robertson, N. Ruskuc, R.M. Thomas, Automatic Completely Simple Semigroups, Acta Math. Hungar., 95, 2002, pp. 201-215.
[7] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, 1995.
[8] J.M. Howie, N. Ruskuc, Constructions and Presentations for Monoids, Comm. Algebra, 22, 1994, pp. 6209-6224.
[9] T.G. Lavers, Presentations of General Products of Monoids, J. Algebra, 204, 1998, pp. 733-741.
[10] E.F. Robertson, N. Ruskuc, J. Wiegold, Generators and Relations of Direct Product of Semigroups, Trans. Amer. Math. Soc., 350, 1998, pp. 2665-2685.
[11] N. Ruskuc, On Large Subsemigroups and Finiteness Conditions of Semigroups, Proc. London Math. Soc., 76, 1998, pp. 383-405.

Contact information

G. Ayık
H. Ayık
Çukurova University, Department of Mathematics, 01330-Adana, Turkey
E-Mail: agonca@cu.edu.tr
Çukurova University, Department of Mathematics, 01330-Adana, Turkey
E-Mail: hayik@cu.edu.tr
Y. Ünlü
Çukurova University, Department of Mathematics, 01330-Adana, Turkey
E-Mail: yusuf@cu.edu.tr

Received by the editors: 12.09.2005 and final form in 15.12.2005.

