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Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin- 1
2

anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are fer-

romagnetic (FM) and antiferromagnetic (AFM) in two separate cases. The resulting models separately represent

nearest neighbour (NN) AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been esti-

mated analytically by using both bond operator and Jordan-Wigner representations and numerically by using

exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer

order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the

non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero

for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane

phase is found to exist in most of the anisotropic region similar to the isotropic point.
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1. Introduction

The spin- 1
2

Heisenberg chains with an energy gap (spin gap) just above the ground state attract

immense interest since they give rise to many exotic properties in the ground state. The isotropic AFM

and FM spin- 1
2

Heisenberg chains are exactly solvable by using the Bethe-Ansatz technique both in the

presence and in the absence of uniform magnetic field in which energy spectrum is gapless below a critical

field [1]. On the other hand, according to Haldane’s conjecture [2], AFM Heisenberg chain with integer

spin values has a finite spin gap between non-magnetic ground state and the lowest excited state which

is known as the Haldane gap. The Haldane phase can be characterized by the finite value of string order

parameter [3, 4]. The existence of this spin gap can be explained from the incongruousness of this system

with the Lieb-Schultz-Mattis (LSM) theorem [5]. According to the modified version of LSM theorem

extended by Affleck and Lieb [6], the SU(2) invariant AFM chains with half-integer spins per unit cell

either have gapless excitations or degenerate ground states in the thermodynamic limit, N →∞. Finally,

it has been extended to more than one dimension and shown to be valid for short range interactions with

global U(1) symmetry and half-integer spin per unit cell [7].

A spin gap in AFM bond alternating spin- 1
2

Heisenberg chain was first predicted theoretically in

1962 by Bulaevskii [8]. The nature of triplet excitations at finite temperatures [9] and multimagnon

excitations [10] in bond alternating chain has been studied. Hidden Z2 × Z2 symmetry breaking along

with the Haldane phase is found by Kohmoto [11]. Magnetization process in anisotropic bond alternating

chain has been investigated by Totsuka [12]. In the bond alternating spin- 1
2

Heisenberg chains, the full

translational symmetry of the lattice is lost since a unit cell contains two lattice sites. These two spin- 1
2

degrees of freedom combine to form either total spin 0 or 1. This situation does not comply with the
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LSM theorem though the system has global U(1) symmetry. From this point of view, a gap in the

spin excitation may appear in the bond alternating chain. The existence of Haldane gap is found in an

exactly solvable AFM one-dimensional bilinear-biquadratic spin-1 model where the ground state has a

valence bond solid structure in which each integer spin value is described as a symmetric combination

of two half-integer spins forming a singlet state within each pair of adjacent sites [13, 14]. In 1992,

Hida pointed out that isotropic S = 1
2

Heisenberg chain with alternating AFM and FM couplings can

be mapped onto the isotropic S = 1 AFM Heisenberg chain when the FM couplings tend to infinity

[15]. Therefore, the existence of Haldane phase can be justified in the S = 1
2

Heisenberg chains with

bond alternation. A transition from Haldane phase to gapless phase has been predicted in the presence

of magnetic field [16]. A number of compounds are discovered whose properties can be explained by

invoking either AFM-AFM or AFM-FM types of bond alternating chains. For examples, the compounds

like CuGeO3 [17], tetrathiafulvalene (TTF) with bisdithiolene metal complexes [18], TTFCuBDT [19],

MEM-(TCNQ)3 [20] and many others which show spin-Peierls transitions belong to AFM-AFM bond

alternating class. On the other hand, zinc-verdazyl complex [21], α-CuNb2O6 [22, 23], Na3Cu2SbO6

[24], (CH3)2CHNH3CuCl3 [25], and DMACuCl3 [26] belongs to the S = 1
2

AFM-FM bond alternating

class.

In this work, anisotropic bond alternating S = 1
2

Heisenberg chains with alternating AFM-AFM and

AFM-FM couplings have been studied separately where the ground state energy, dispersion relations,

ground state orders and the magnitude of spin gap have been obtained for the entire range of anisotropic

parameters. Two different theoretical approaches, say, bond operator and Jordan-Wigner representations

are employed in which the spin model is expressed in terms of bosonic and fermionic operators, respec-

tively. Mean-field analysis on these two approaches gives rise to accurate results of this model in two

different regimes. Ground state energy, dispersion relations, dimer order and spin gap are obtained by

using the bond operator formalism. All those properties in addition to string orders have been separately

estimated by using exact diagonalization method. Coexistence of dimer and string order parameters has

been found. The existence of the spin gap along with the string orders found in most of the anisotropic

region attributes to the Haldane phase. We should like to report that this observation is similar to that

found at the isotropic point of these models as predicted before [15].

The bond alternating spin model is defined by the Hamiltonian

H =
N/2∑
i=1

[
J1

(
Sx

2i−1Sx
2i + Sy

2i−1
Sy

2i
+ ∆Sz

2i−1
Sz

2i

)
+ J2

(
Sx

2iS
x
2i+1 + Sy

2i
Sy

2i+1
+ ∆Sz

2i
Sz

2i+1

)]
. (1.1)

N is the total number of spins which is even. The model has the global U(1) symmetry since the z-

component of the total spin, Sz
T
, is a good quantum number. The J1 bond is always AFM but the J2 bond

is considered both AFM and FM, such that −1.0 <
J2

J1
< 1.0. ∆ is the anisotropic parameter. For J1 = J2,

the system remains gapless throughout the anisotropic regime 0 6 ∆ 6 1, while the spin gap opens up

when J1 , J2.

Section 2 contains the results obtained for a four-spin bond alternating plaquette. In sections 3 and 4,

investigations based on bond operator and Jordan-Wigner representations are described, respectively. The

spin model is studied numerically by using Lanczos exact diagonalization technique where ground state

energy and spin gap are obtained and reported in section 5. Values of several ground state orders have

been estimated and described in section 6. Section 7 contains a discussion of the results obtained.

2. Four-site bond alternating anisotropic Heisenberg plaquette

Before the beginning of an extensive many-particle formalism, let us explain the results of a four-spin

(N = 4) bond alternating S = 1
2

anisotropic Heisenberg plaquette. Here, the stronger AFM bonds (J1)

are assumed between the site-pairs (1, 2) and (3, 4), while the FM or weaker AFM bonds (J2) are acting

between the site-pairs (2, 3) and (4, 1). The Hamiltonian has been diagonalised in different Sz
T

sectors

for obtaining analytic expressions of eigenvalues and eigenfunctions. Eigenvalues (ei) are displayed

in table 1. Ground state lies in Sz
T
= 0 sector having energy e0. The ground state wave function is

given by Ψ0 =
1√

1+X2
+Y2

(ψ1 + Xψ2 + Yψ3), where ψ1 =
1√
2
(↑↑↓↓ + ↓↓↑↑), ψ2 =

1√
2
(↑↓↑↓ + ↓↑↓↑),
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Table 1. Eigenvalues in all Sz
T

subspaces, where a = 2
3
[(∆2

+ 3)(J2
1
+ J2

2
) − J1J2∆

2]1/2, b = − J1+J2

6
∆

and φ = arccos[3q/(ap)], q = e4(e3e4 + J2
1
− J2

2
) − e3

27
[2e2

3
+ 9(e2

4
+ J2

1
+ J2

2
)] and p = − 1

3
[(∆2
+ 3)(J2

1
+

J2
2
) − J1J2∆

2].

Sz
T

Eigenvalues Sz
T

Eigenvalues

e5 = − J1−J2

2
∆ e9 =

J1+J2

2

e4 =
J1−J2

2
∆ 1,−1 e8 =

−J1+J2

2

0 e3 = − J1+J2

2
∆ e7 =

J1−J2

2

e2 = a cos
φ

3
+ b e6 = − J1+J2

2

e1 = a cos
φ+4π

3
+ b 2,−2 e10 =

J1+J2

2
∆

e0 = a cos
φ+2π

3
+ b

ψ3 =
1√
2
(↑↓↓↑ + ↓↑↑↓), X = e0−e4

J2
and Y = X J1

e0+e4
. Dimer order parameter is defined by the ground state

expectation value [27],

OD = 〈Ψ0 | ®Si · ®Si+1 − ®Si+1 · ®Si+2 |Ψ0〉 =
1 − 2X −Y 2

+ 2XY

2(1 + X2
+ Y 2) .

When J1 = J2, the ground state energy, e0 = − J1

2
(∆ +

√
8 + ∆2), and OD = 0 since Y = 1. On the FM

region, when J2 = −J1, e0 = −J1

√
2 + ∆2, OD = (1−2x− x2/2)/[2(1+ x2/2)], where x = (∆+

√
2 + ∆2).

When ∆ = 1, ground state energy, e0 = − 1
2
[J1 + J2 +

√
(J1 + J2)2 + 3(J1 − J2)2] and ground state wave

function, Ψ0 =
2√

1+c2
+d2

(c[14][32] + d[12][34]), where, c = J2

e0−e7
, d = J1

e0+e7
and the singlet, [i j] is

defined as

[i j] = 1√
2

(↑ ↓ − ↓ ↑).
i j i j

However, when ∆ = 0, ground state energy, e0 = −
√

J2
1
+ J2

2
, and this is the same for both AFM and

FM J2 and ground state, Ψ0 =
2e0

0√
e0 2

0
+J2

1
+J2

2

( J2

e0
0

[14][32] + J1

e0
0

[12][34] − e0
0
+J1+J2√

2e0
0

ψ2). Variations of OD are

shown in figure 1 in the green dotted lines and triangles. OD vanishes exactly over the line J2/J1 = 1.0

and otherwise non-zero. It is observed that OD calculated in this four-spin bond alternating plaquette,

captures the true many-particle results closely.

3. Bond operator representation

In the bond operator formalism [28], two spin- 1
2

operators, say, ®Sl and ®Sr around every AFM bond

having exchange strength J1 are expressed in terms of a singlet state |s〉 and three triplet states |tx〉, |ty〉,
and |tz〉 around the same bond. The singlet (s†) and triplet (t†α, α = x, y, z) operators which create these

states out of the vacuum state |0〉, are

|s〉 = s† |0〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) ,

|tx〉 = t†x |0〉 = − 1√
2
(| ↑↑〉 − | ↓↓〉) ,
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Figure 1. (Color online) Plots of dimer order as a function of J2/J1 for ∆ = 0.0, 0.3, 0.7, 1.0. Blue

(solid line, circle), red (dashed line, square) and green (dotted line, triangle) correspond to the exact

diagonalization, bond operator and N = 4 plaquette results, respectively. Bond operator lines terminate

at those points where the convergence of self-consistent equations is not attained.

|ty〉 = t†y |0〉 =
i√
2
(| ↑↑〉 + | ↓↓〉) ,

|tz〉 = t†z |0〉 =
1√
2
(| ↑↓〉 + | ↓↑〉) .

Only the singlet state changes sign upon interchanging the two spins in each bond. The components of

spin operators, ®Sl and ®Sr can be expressed in terms of these singlet and triplet operators as

Sα
l =

1

2

(
s† tα + t†α s − i ǫαβγ t†

β
tγ
)
,

Sα
r =

1

2

(
−s† tα − t†α s − i ǫαβγ t†

β
tγ
)
, (3.1)

where α, β and γ represent the x, y and z components and the Levi-Civitá symbol, ǫαβγ represents the

totally anti-symmetric tensor. Summation over the repeated α, β and γ indices is henceforth assumed

except stated otherwise. By considering the bosonic commutation relations, like

[s, s†] = 1, [tα, t†
β
] = δαβ , [s, t†α] = 0,

on a particular bond, one can reproduce the S = 1
2
, SU(2) commutation relations on a specific site,

[Sα, Sβ] = i ǫαβγ Sγ. Similarly, by imposing the constraint, or the completeness relation,

s† s + t†α tα = 1, (3.2)
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on each bond, the value of spin in each site, say, S2
l
= S2

r =
3
4

is retained. Likewise, the anisotropic AFM

bond can be expressed as

Sx
2i−1Sx

2i + Sy

2i−1
Sy

2i
+ ∆Sz

2i−1
Sz

2i
= Es s†

j
sj + E z

t t†
j z

t j z + Eα
t t†

j α
t j α ,

where j represents the bond between the adjacent sites 2i − 1 and 2i, α = x, y, Es = −(∆
4
+

1
2
) is the

singlet while E z
t = (−∆

4
+

1
2
) along with the doubly degenerate Eα

t =
∆

4
are the triplet eigenvalues of the

anisotropic bond. Substituting the operator representation of spins defined in equation (3.1) into the bond

alternating Hamiltonian of equation (1.1) we have the form:

H = H0 + H1 + H2 ,

H0 =

∑
j

[
J1

(
Es s†

j
sj + E z

t t†
j z

t j z + Eα
t t†

j α
t j α

)
− µ

(
s†
j

sj + t†
j z

t j z + t†
j α

t j α − 1
)]
,

H1 = − J2

4

∑
j

(
s†
j
sj+1t j αt†

j+1α
+ sj sj+1t†

j α
t†
j+1α
+ t†

j z
t†
j+1 z

t j αt j+1α − t†
j z

t j+1 z t j αt†
j+1α
+ h.c.

)
,

H2 = − J2∆

4

∑
j

(
s†
j
sj+1t j z t†

j+1 z
+ sj sj+1t†

j z
t†
j+1 z
+ t†

j x
t†
j+1 x

t j y t j+1 y − t†
j x

t j+1 x t j y t†
j+1 y
+ h.c.

)
, (3.3)

where the summation j runs over N/2 number of bonds. The portion of the Hamiltonian containing

triple-t operators vanishes due to reflection symmetry [28]. Exploiting the translational invariance of the

model, a site-independent parameter µ is introduced to take the constraint, equation (3.2) into care. Here,

condensation of singlet boson is imposed, which means 〈sj〉 = s̄. Parts of the Hamiltonian, H1 and H2,

those containing quartic t operators are treated by using mean-field decoupling scheme. Four mean-field

parameters (real) are

Pz = 〈t†
j z

t j+1 z〉, Pα = 〈t†
j α

t j+1α〉, Qz = 〈t j z t j+1 z〉 and Qα = 〈t j αt j+1α〉. (3.4)

Summation convention over α while defining Pα and Qα is not applied. By performing Fourier transform

of the operators t j =
√

2
N

∑
k tk eik ja, where a is the lattice constant, the approximated Hamiltonian can

be written as

HM = E0 +

∑
k

[
Λk z t†

k z
tk z + Λk αt†

k α
tk α + ∆k z (tk z t−k z + h.c.) + ∆k α (tk αt−k α + h.c.)

]
, (3.5)

where

E0 =
N
2

{
µ −

[
J1

(
∆

4
+

1

2

)
+ µ

]
s̄2
+ J2

[
QαQz − PαPz +

∆

2

(
Q2

α − P2
α

)]}
,

Λk z = J1

(
−∆

4
+

1

2

)
− µ − J2

2

(
∆ s̄2 − 2Pα

)
cos(ka),

Λk α = J1

∆

4
− µ − J2

2

(
s̄2 − Pz − ∆ Pα

)
cos(ka),

∆k z = − J2

4

(
∆ s̄2
+ 2Qα

)
cos(ka), ∆k α = − J2

4

(
s̄2
+ Qz + ∆Qα

)
cos(ka).

The Hamiltonian, HM can be easily diagonalized by introducing the four-component vector Ψk =

(t†
k z

t†
k α

t−k z t−k α). Thus, HM can be expressed as

HM = E0 −
1

2

∑
k

(Λk z + 2Λk α) +
∑
k

Ψ
†
k

Hk Ψk ,

Hk =

(
Ak Bk

Bk Ak

)
, Ak =

1

2

(
Λk z 0

0 Λk α

)
, Bk =

(
∆k z 0

0 ∆k α

)
.
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In terms of bosonic operators, Bogoliubov transformation means diagonalization of the matrix IBHk ,

where

IB =

(
I 0

0 −I

)
, and I =

(
1 0

0 1

)
.

The positive eigenvalues of the matrix, IBHk are 1
2
ωk z and 1

2
ωk α, where ωk z =

√
Λ

2
k z

− 4∆2
k z

and

ωk α =

√
Λ

2
k α

− 4∆2
k α

. In terms of a new four-component vector Φ
†
k
= (γ†

k z
γ
†
k α

γ−k z γ−k α), HM looks

like

HM = E0 −
1

2

∑
k

(Λk z + 2Λk α) +
1

2

∑
k

Φ
†
k

Hd
k Φk ,

Hd
k
=

(
Ωk 0

0 Ωk

)
, Ωk =

(
ωk z 0

0 ωk α

)
, Φk = Tk Ψk ,

Tk =

(
uk vk

vk uk

)
, uk =

1√
2

©
«
√

1 +
Λk z

ωk z
0

0

√
1 +

Λk α

ωk α

ª®¬
, vk =

1√
2

©
«
√
−1 +

Λk z

ωk z
0

0

√
−1 +

Λk α

ωk α

ª®¬
.

HM can further be expressed as

HM = E0 −
1

2

∑
k

(Λk z + 2Λk α − ωk z − 2ωk α) +
∑
k

(
ωk z γ

†
k z
γk z + ωk α γ

†
k α
γk α

)
. (3.6)

Therefore, it turns out that ωk z and ωk α are like the non-degenerate longitudinal and doubly-degenerate

transverse branches of triplet dispersion relations, respectively. When ∆ = 1, the two branches merge to

each other leading to a triply-degenerate single triplet branch. The parameters µ, s̄, Pz , Pα , Qz and Qα

are determined by solving the six saddle-point equations:〈
∂HM

∂µ

〉
= 0,

〈
∂HM

∂ s̄

〉
= 0,

〈
∂HM

∂Pz

〉
= 0,

〈
∂HM

∂Pα

〉
= 0,

〈
∂HM

∂Qz

〉
= 0,

〈
∂HM

∂Qα

〉
= 0,

which lead to the following six self-consistent equations at T = 0 K.

µ =
J2

2N

∑
k

(
∆

2∆k z − Λk z

ωk z

+ 2
2∆k α − Λk α

ωk α

+ ∆ + 2

)
cos(ka) − J1

(
∆

4
+

1

2

)
,

s̄2
=

5

2
− 1

N

∑
k

(
Λk z

ωk z

+ 2
Λk α

ωk α

)
,

Pz =
1

N

∑
k

(
Λk z

ωk z

− 1

)
cos(ka),

Pα =
1

N

∑
k

(
Λk α

ωk α

− 1

)
cos(ka),

Qz = − 2

N

∑
k

∆k z

ωk z

cos(ka),

Qα = − 2

N

∑
k

∆k α

ωk α

cos(ka). (3.7)

For fixed values of J1, J2 and ∆, the six self-consistent solutions are obtained from equations (3.7) and

are employed to determine the dispersion relations, ground state energy, spin gap and dimer order. For

J2 = 0, values of the parameters, Pz , Pα , Qz and Qα must be zero, and they are non-zero when J2 , 0.

The solutions for µ are always negative while those for s̄2 are always positive. These six self-consistent
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equations are found to converge in most of the anisotropic parameter regions except the regime where

spin gap is vanishingly small which occurs when J1 ≈ J2 and ∆ ≈ 0. So, the values of ground state

energy, spin gap and dimer order in this regime are not plotted in the respective figures in subsequent

sections. The ground state energy per site (EG) is given by the following expression,

EG =
E0

N
− 1

2N

∑
k

(Λk z + 2Λk α − ωk z − 2ωk α) .

For J1 = J2 and ∆ = 1, EG = −0.45130123J1, which is only 0.18% lower than the exact Bethe-Ansatz

result, i.e., (0.25− ln 2)J1 = −0.44314718J1. The values of EG are very close to the exact diagonalization

results in the entire parameter regime except the point ∆ = 0 and those are shown in figure 2.

The expression of ground state dimer order looks like

〈OD〉 = D0 −
1

2

∑
k

(
Xk z + 2Xk α +

Λk zXk z − 4∆k zYz
ωk z

+ 2
Λk αXk α − 4∆k αYα

ωk α

)
,

D0 = −3

4
s̄2
+ PzPα − QzQα +

1

2

(
P2
α − Q2

α

)
,

Xk z =
1

4

[
1 + 2(s̄2 − 2Pα) cos(ka)

]
, Xk α =

1

4

[
1 + 2(s̄2 − Pz − Pα) cos(ka)

]
,

Yz =
1

4

(
s̄2
+ 2Qα

)
, Yα =

1

4

(
s̄2
+ Qz +Qα

)
.

The values of this OD along with plaquette and exact diagonalization results are shown in figure 1. Bond

operator results are discontinued at those points where convergence fails to be attained.

-0.32

-0.30

-0.28

-0.26

-1.0 -0.5 0.0 0.5 1.0

Diagonalization
Homogeneous

SAFM
Dimer
UAFM

Bond Operator

-0.55

-0.45

-0.35

-0.25

-1.0 -0.5 0.0 0.5 1.0

-0.38

-0.34

-0.30

-0.26

-1.0 -0.5 0.0 0.5 1.0

-0.65

-0.55

-0.45

-0.35

-0.25

-0.15

-1.0 -0.5 0.0 0.5 1.0

J2/J1

J2/J1

J2/J1

J2/J1

E
G
/J

1
E

G
/J

1

E
G
/J

1
E

G
/J

1

∆ = 0.0

∆ = 0.3

∆ = 0.7 ∆ = 1.0

Figure 2. (Color online) Plots of ground state energy per site as a function of J2/J1 for ∆ = 0.0, 0.3,

0.7, 1.0. Blue (solid line, circle) corresponds to the exact diagonalization data. Red (dashed line, square)

corresponds to the bond operator result. Different Jordan-Wigner based mean-field results: UAFM (dark-

cyan, dashed-dot line, pentagon), homogeneous (black, dashed-dot line, diamond), SAFM (green, dashed

line, triangle) and dimer (purple, dotted line, inverted triangle). Bond operator lines terminate at those

points where the convergence of self-consistent equations is not attained.
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The dispersion relations, ωk z and ωk α arising from the excitations of spin-triplet states are shown

in figure 3. J2 = 0 is a dispersionless point, where both ωk z and ωk α are flat since energy propagation

is impossible in the absence of inter-bond interaction J2. This particular point is not shown in figure 3.

For ∆ = 0, ωk z is almost flat with small curvature, concave down for AFM J2 while concave up for

FM J2, whereas, ωk α has the maximum curvature. ωk z will be perfect dispersionless if the part of the

Hamiltonian [equation (3.3)] containing four-t operators is neglected. It is interesting to note that even

though ∆ = 0, ωk z is non-zero. So, it establishes the fact that the existence of longitudinal mode is

quantum mechanically possible in the absence of the longitudinal part of the Hamiltonian. These modes

hardly participate in energy propagation. However, in general, both ωk z and ωk α are concave up for

AFM J2 and concave down for FM J2. Bandwidth for ωk z (ωk α) increases (decreases) with increasing

∆ for fixed value of J2. On the other hand, bandwidths for ωk z as well as ωk α increase with increasing

value of both AFM and FM J2 for fixed value of ∆. However, for a fixed value of AFM J2, bandwidths
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Figure 3. (Color online) Dispersion relations (in unit of J1) with respect to k. ωk z and ωk α are in red

(solid) and blue (dashed) lines, respectively.
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Figure 4. (Color online) Plots of EGap/J1 with respect to J2/J1. Blue (solid line, circle) and red (dashed

line, square) correspond to the exact diagonalization and bond operator results, respectively.
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for ωk z and ωk α are separately the same to them for that value of FM J2 for a definite value of ∆. The

minima of triplet dispersion relations, ωk z and ωk α are found at k = 0 when J2 > 0 and at k = π
when J2 < 0 as far as |J2 | 6 J1. So, the value of spin gap can be estimated by using the relations,

EGap = min [ωk z(k = 0), ωk α(k = 0)] when J2 > 0 and EGap = min [ωk z(k = π), ωk α(k = π)] when

J2 < 0. Since ωk α 6 ωk z for any value of the wave vector, k , in the anisotropic parameter regime

0 6 ∆ 6 1, EGap = ωk α(k = 0) for AFM J2 and EGap = ωk α(k = π) for FM J2. Figure 3 shows that the

value of EGap increases with the increase of ∆ in every case. Variation of EGap with J2/J1 is shown in

figure 4 along with the exact diagonalization results. EGap is found to decrease in the absence of the part

of equation (3.3) containing four-t operators terms.

4. Jordan-Wigner representation

This model is exactly solvable in terms of Fermi gas of spinless fermions for ∆ = 0 by using the

Jordan-Wigner transformation [29]

S+i = c†
i
e

iπ
∑i−1

j=1 n̂j ,

S−
i = e

−iπ
∑i−1

j=1 n̂j ci ,

Sz
i
= n̂i −

1

2
,

where ci and c†
i

are the spinless fermion annihilation and creation operators, respectively. n̂i = c†
i
ci is the

usual fermion number operator. This bond alternating system has a translational symmetry of two lattice

units and so it becomes useful to introduce two types of spinless fermions defined on odd and even lattice

sites by relabeling them as: ci = ai for odd sites and ci = bi for even sites. As a result, the Hamiltonian

becomes

H =
∑

i=1,3,5,...

[
J1

2

(
a†
i
bi+1 + b†

i+1
ai

)
+ J1∆

(
a†
i
ai −

1

2

) (
b†
i+1

bi+1 −
1

2

) ]

+

∑
i=1,3,5,...

[
J2

2

(
b†
i+1

ai+2 + a†
i+2

bi+2

)
+ J2∆

(
b†
i+1

bi+1 −
1

2

) (
a†
i+2

ai+2 −
1

2

)]
. (4.1)

For ∆ , 0, four-operator terms can be treated by the mean-field analysis. By allowing contractions of

types, say, Ca = 〈a†
i
bi+1〉 and Cb = 〈b†

i
ai+1〉, the mean-field Hamiltonian in momentum space reads as

HMF =

∑
k

[
Ck a†

k
bk + C̄k b†

k
ak + h

(
a†
k
ak − b†

k
bk

)]
+

N∆
8

(J1 + J2) +
N∆
2

(
J1 |Ca |2 + J2 |Cb |2

)
, (4.2)

where Ck = ( J1

2
− J1 ∆Ca) e−ika

+ ( J2

2
− J2 ∆Cb) eika and h = ∆

2
(J1 − J2). In this fermionic description,

h acts as a chemical potential whose value is the same for every particle but opposite in sign for two

different kinds of particles, say, positive for a and negative for b. In other words, h acts as a staggered

field giving rise to a periodic potential experienced by the particles with the periodicity of two lattice

units. As a result, Brillouin zone shrinks to its half yielding a spin gap in its boundary. On the other hand,

h vanishes for the uniform bond strength, i.e., when J1 = J2 and so the spin gap.

By using the fermionic Bogoliubov transformation

ak = uk αk + vk βk , bk = −v∗k αk + u∗k βk ,

where uk = r eiθk , vk = r ′eiθk and e2iθk = Ck/|Ck |, the diagonalized mean-field Hamiltonian looks like

HMF =

∑
k

E(k)
(
α
†
k
αk − β

†
k
βk

)
+

N ∆
8

(J1 + J2) +
N∆
2

(
J1 |Ca |2 + J2 |Cb |2

)
, (4.3)

where E(k) =
√

h2
+ |Ck |2.
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By allowing contractions of other possible ways, say, Da = 〈a†
i
ai − 1

2
〉 and Db = 〈b†

i+1
bi+1 − 1

2
〉, the

mean-field Hamiltonian in momentum space becomes

HMF =

∑
k

[
Dk a†

k
bk + D̄k b†

k
ak + ∆ (J1 + J2)

(
Db a†

k
ak + Da b†

k
bk

)]

− N
4
∆(J1 + J2) (Da + Db + 2DaDb) , (4.4)

where Dk =
1
2

(
J1 e−ika

+ J2 eika
)
. By performing the same Bogoliubov transformation, diagonalized

Hamiltonian reads as

HMF =

∑
k

ω(k)
(
α
†
k
αk − β

†
k
βk

)
− N

2
D h, (4.5)

where ω(k) =
√

h2
+ |Dk |2 and h = −∆(J1 + J2)D, when Da = −Db = D.

The mean-field parameters, Ca, Cb, and D will be determined by solving self-consistent equations

defined in the four different phases [30].

i) Paramagnetic (homogeneous) phase: when Ca = Cb [8],

Ca = − 1

N

∑
k

cos2(ka)
E(k)

[(
J1 + J2

2

)
(1 − 2∆Ca)

] [
nβ(k) − nα(k)

]
. (4.6)

ii) Staggered AFM (SAFM) phase: when Ca = −Cb,

Ca =
1

N

∑
k

sin2(ka)
E(k)

[(
J1 − J2

2

)
(1 − 2∆Ca)

] [
nβ(k) − nα(k)

]
. (4.7)

iii) Alternating NN hopping (dimer) phase: when Ca = η + δ and Cb = η − δ,

η = − 1

N

∑
k

cos2(ka)
E(k)

[(
J1 + J2

2

)
(1 − 2∆η) − δ∆(J1 − J2)

] [
nβ(k) − nα(k)

]
,

δ =

1

N

∑
k

sin2(ka)
E(k)

[(
J1 − J2

2

)
(1 − 2∆η) − δ∆(J1 + J2)

] [
nβ(k) − nα(k)

]
. (4.8)

iv) Uniform AFM (UAFM) phase: when Da = −Db ,

1 =
1

N

∑
k

∆(J1 + J2)
ω(k)

[
nβ(k) − nα(k)

]
. (4.9)

Da vanishes when J1 = −J2. Another choice Da = Db, which corresponds to the uniform FM phase gives

rise to Da = 0. So, this choice does not produce a non-trivial result, and thus deserves no further attention.

nα(k) = 〈α†
k
αk〉 and nβ(k) = 〈β†

k
βk〉 are the fermionic occupation probabilities at temperature T . At zero

temperature, only the negative energy states are filled up, so, nα(k) = 0 and nβ(k) = 1. In this situation,

the expressions of EG can be written down easily for each mean-field case. For example, in the dimer

phase (iii), it is given by

EG = − 1

π

π/2∫
0

Ek dk +
∆

2

[
J1(η + δ)2 + J2(η − δ)2

]
+

∆

8
(J1 + J2) .

For ∆ = 0, ground state energy can be exactly evaluated for any values of both
J2

J1
and temperatures. For

example, at T = 0, EG = − 1
π

J1 = −0.31830989J1, when
J2

J1
= 1 and ∆ = 0.
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This mean-field ground state energy has been improved by considering the second order contribution

attributed to the fluctuations around the mean field. This correction may be evaluated by using the

standard expression at T = 0 [31],

∆E =
∑
f

|〈g |(H − HMF)| f 〉|2
Eg − E f

, (4.10)

where |g〉 = ∏
k β

†
k
|0〉 and | f 〉 = α

†
k1+q

α
†
k2−q |0〉 are the ground state and the excited states of HMF,

respectively. The state | f 〉 has two excited particles at wave vectors k1 + q and k2 − q at the positive

energy branch. Non-zero contributions come from the four-operator terms in equation (4.1). Numerical

evaluation of equation (4.10) leads to ∆E = −0.0171J1 per site for J2

J1
= 1 and ∆ = 1. The final value of

the ground state energy is EG(∆ = 1, J1 = J2) = −0.4367J1, after the second order correction which is

very close to the exact Bethe-Ansatz result, i.e., −0.4431J1.

The mean-field ground state energies have been plotted along with the exact diagonalization and

bond operator results in the figure 2. Different Jordan-Wigner based mean-field results are UAFM (dark-

cyan, dashed-dot line, pentagon), homogeneous (black, dashed-dot line, diamond), SAFM (green, dashed

line, triangle) and dimer (purple, dotted line, inverted triangle). For ∆ = 0, Jordan-Wigner representation

provides the exact ground state energy and thus it coincides with the exact diagonalization result (figure 2).

However, when∆ > 0, SAFM and UAFM phases do not at all agree with the exact diagonalization results.

EG evaluated in the UAFM phase is always higher, while that evaluated in SAFM phase is higher (lower)

when J2 is AFM (FM). Dimer and homogeneous phases do agree with the exact diagonalization result

only in the AFM J2 region. On the other hand, EG evaluated in the bond operator formalism mostly

coincides with the exact diagonalization result apart from the point ∆ = 0. For ∆ = 0, EG derived in this

formalism coincides with the exact diagonalization result around |J2/J1 | ≈ 0.

5. Exact diagonalization results

The ground state energy, spin gap and several ground state correlation functions have been obtained

numerically at zero temperature. Ground state energy has been compared with the theoretical results.

The spin gap is defined as the difference between the energies of ground state and the lowest excited state

for a chain of finite number of spins. The Lanczos exact diagonalization technique is the most suitable

algorithm when a few extreme eigenvalues are required. To find the ground state energy, the Hamiltonian

is diagonalized in a subspace where Sz
T
= 0. The Hilbert space is further reduced by exploiting two

different symmetries of this Hamiltonian. The first one is the translational invariance of two lattice units

while the second one is the spin inversion in every site. Due to the spin inversion symmetry, the energy

eigenvalues satisfy the relation, E(Sz
T
) = E(−Sz

T
). The periodic boundary condition is taken into account

in every case. As a result, two different momentum wave vectors, qT2 and qR are defined to associate the

symmetries of Hamiltonian with the translation of two lattice units and the spin inversion, respectively.

Eventually, including those symmetries in the modified Lanczos algorithm [32], this computational

procedure could find the eigenenergies of the spin chain up to the length (N) of 32 sites. The ground

state is unique and corresponds to the wave vectors qT2 = 0 and qR = π modulo (N, 4) for both AFM

and FM J2. The doubly degenerate lowest excited state corresponds to the Sz
T
= ±1 and qT2 = 0 but

qR = 0 for AFM J2 while qR = 4π
N

quotient (N, 4) for FM J2. The Hamiltonian, H, [equation (1.1)]

exhibits another useful symmetry in which the unitary operator, U =
∏

j exp(iπ jSz
j
) transforms H as

UH(J1, J2,∆)U†
= H(−J1,−J2,−∆). This symmetry transformation leads to the following result: when

∆ = 0, UH(J1, J2,∆ = 0)U†
= −H(J1, J2,∆ = 0). So, energy spectrum of H has the reflection symmetry

around the zero energy. This symmetry is observed in the energy spectrum for ∆ = 0 and is shown in

figure 5. The spectrum for ∆ = 0 is also symmetric around the point J2 = 0, although no transformation

is found to justify this symmetry. Obviously those symmetries are lost when ∆ , 0.

The full energy spectra of this model for four different values of ∆ are plotted with respect to J2/J1

and are shown in figure 5 in which the uniqueness of the ground state and finite spin gap has been

observed clearly. For ∆ = 0, the spectrum is symmetric around zero energy, but the spectra move toward
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Figure 5. (Color online) Plot of all energies (in unit of J1) with respect to J2/J1 for ∆ = 0.0, ∆ = 0.3,

∆ = 0.7, ∆ = 1.0 and N = 16. With the increasing ∆, the width of the energy band increases and moves

toward the low energy side.

low energy side and at the same time symmetry is lost when ∆ , 0. The spectra are found to split into

several bands around J2 = 0. The number of bands increases with a decreasing ∆. The nature of those

energy spectra remains unaltered in the open boundary condition.

To examine the effect of non-uniformity of the alternating bond strength on the spin gap, the modified

Lanczos algorithm is employed designed for finite-size spin chain having integral multiple of 4, N =
16, 20, . . . , 32. Ground state energy per site as well as spin gap depend on both the chain length (N) and

the relative difference between alternating bond strengths, i.e., δ = (J1 − J2)/J1. The spin gap is defined

as

EGap(N,∆, δ) = EF

(
N,∆, δ, Sz

T
= ±1

)
− EGr

(
N,∆, δ, Sz

T
= 0

)
, (5.1)

where EGr and EF are the ground state and the first excited state energies, respectively. For δ = 0, the

spectrum is gapless for the entire range of 0 6 ∆ 6 1, for AFM J2 whereas, spin gap is found to develop

as soon as δ , 0 for the same range of ∆ and AFM J2. Thus, δ = 0 serves as the critical point for this

transition. On the other hand, for FM J2, this spin gap is observed for any value of δ and ∆. The spin gap

has been estimated by using several values of δ and ∆ within the range 0 < δ 6 0.10 and 0 < ∆ 6 1.0

for the chain lengths those are integral multiple of 4, i.e., N = 16, 20, . . . , 32.

To obtain the values of EG and EGap in large N limit, finite size extrapolations have been performed

by using the Vanden-Broeck-Schwartz (VBS) algorithm [33] with αVBS = −1 in addition to the Bulirsch-

Stoer (BST) algorithm [34]. Comparisons of those estimates with theoretical results reveal that the

VBS algorithm yields more accurate values for both EG and EGap than the BST algorithm. For the

extrapolations, the values of EG and EGap for chains of five different lengths like N = 16, 20, . . . , 32 are

considered. The extrapolated value of EG agrees with the exact result up to the sixth decimal positions. For

example, when ∆ = 1 and δ = 0, the extrapolated value of ground state energy per site is −0.44314728J1

which is extremely close to the exact Bethe-Ansatz value,−0.44314718J1 or thus only 0.0000225% lower

than the exact value. On the other extreme point, i.e., when ∆ = 0 and δ = 0, the extrapolated value of EG

is −0.31830988J1 which completely agrees with the exact value −J1/π = −0.31830988J1. Therefore,

it is expected that the accuracy of those numerical estimations is very high. The extrapolated values of

EGap are found by using the VBS algorithm and are plotted in figure 6 (a). This three-dimensional plot
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Figure 6. (Color online) Three dimensional plots of EGap/J1 (a), OD (b), Oz
S

(c) and Ox
S

(d) with respect

to both J2/J1 and ∆.

reveals that EGap vanishes over the line J2/J1 = 1 and on the point, J2/J1 = −1, ∆ = 0. EGap is found to

increase with the increase of both δ and ∆ up to the line J2/J1 = 0. However, it again decreases toward

FM region. The magnitude of spin gap is symmetric around J2 = 0 for ∆ = 0, due to the symmetry of

energy spectrum.

6. Ground state properties

The results obtained using various methods in the previous sections are summarized here. A compari-

son of values of EG obtained in exact diagonalization, bond operator formalism and various Jordan-Wigner

based mean-field methods has been displayed in figure 2. It shows that the values of EG obtained in exact

diagonalization and bond operator based mean-field formalism agree remarkably when ∆ > 0 while

Jordan-Wigner based mean-field methods totally disagree. On the other hand, for ∆ = 0, Jordan-Wigner

based exact result coincides with the exact diagonalization value but the results obtained by bond operator

formalism show a qualitative agreement. Thus, it reveals that these two different analytic formalisms,

bond operator and Jordan-Wigner, predict the true values of EG in two different regions for these bond

alternating models.

Ground state expectation value of the dimer order, OD, has been evaluated numerically. In this

expression, the stronger AFM bonds (J1) are assumed between the sites i and i + 1 while the FM or

weaker AFM bonds (J2) are acting between the sites i + 1 and i + 2. The variation of OD with respect to

both∆ and J2/J1 has been shown in figure 6 (b). The values ofOD obtained by using exact diagonalization,

bond operator formalism and four-spin plaquette have been shown in figure 1. All the methods show a

good qualitative agreement. However, the bond operator based results do not vanish over the line J1 = J2.

The exact diagonalization results quite agree with the DMRG results reported earlier by Watanabe and

Yokoyama for ∆ = 1 [22]. OD should vanish over the line J1 = J2 for an obvious reason but otherwise

non-zero. OD is found to increase steadily in AFM J2 region and finally gets saturated in the FM region at

the isotropic point, ∆ = 1. On the other hand, it decreases continuously in the anisotropic region towards

the lower values of ∆. Variations of EGap with J2/J1 obtained by exact diagonalization and bond operator
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formalism are shown in figure 4. Exact diagonalization results show that EGap vanishes over the line

J1 = J2. Once again, bond operator formalism fails to estimate the value of EGap close to the line J1 = J2.

It always predicts a non-zero value of EGap over this line for any value of ∆. In addition, this formalism

underestimates (overestimates) the value of EGap in FM (AFM) J2 region.

In order to characterize the Haldane phase in S = 1 Heisenberg chain, string correlation functions

Oα
S
(i − j) and string order parameter Oα

S
have been introduced by den Nijs and Rommelse [3] and

Tasaki [4] and those are defined as

Oα
S (i − j) = −〈Sα

i e
iπ(Sα

i+1
+Sα

i+2
+...+Sα

j−1
) Sα

j 〉,
Oα

S = lim
|i− j |→∞

Oα
S (i − j), where α = x, y, z.

Here, Sα
i

is the α-component of the spin operator Si with the unity magnitude at the i-th site. The S = 1
2

bond alternating Heisenberg chain can be mapped onto the isotropic AFM S = 1 Heisenberg chain when

J2 → −∞ and ∆ = 1 [15]. Hida also pointed out that bond alternating Hamiltonian with anisotropic

(∆ , 1) J1 bond and isotropic (∆ = 1) J2 bond can be mapped onto the anisotropic AFM S = 1 Heisenberg

chain when J2 → −∞ [35]. In the same way, string correlation functions can be expressed in terms of

S = 1
2

operators as [36]

Oα
S (i − j) = −4〈Sα

2i e
iπ(Sα

2i+1
+Sα

2i+2
+...+Sα

2 j−2
) Sα

2 j−1〉, α = x, y, z. (6.1)

In our model, Ox
S
(i − j) = Oy

S
(i − j) due to the U(1) symmetry of the Hamiltonian, equation (1.1).

Values of Oα
S
(m) for m = 1, 2, 3, . . . , 8 have been estimated numerically on a chain length of N = 32.

Oα
S

has been obtained by using the VBS algorithm for extrapolation out of these Oα
S
(m) values. For

∆ = 0, Oα
S

are symmetric about J2 = 0, although this symmetry is lost for ∆ , 0. The value of Oz
S

agrees with the previous estimation for ∆ = 1 [15]. Oz
S
= Ox

S
when ∆ = 1. Variations of Oz

S
and Ox

S
have been shown in figure 6 (c) and (d), respectively. A qualitative similarity is found in their behaviours

even in the anisotropic region. Both Oz
S

and Ox
S

are found to decrease rapidly when J2/J1 approaches

1.0, and ultimately vanish exactly over the line J2/J1 = 1. Coexistence of dimer order and string orders

are found throughout the anisotropic region in this bond alternating Heisenberg chain barring the point

J2/J1 = −1, ∆ = 0. The spin gap along with the string orders are found to vanish at the point, J2/J1 = −1,

∆ = 0, although the dimer order does not. So, it establishes the fact that the Haldane phase not only

exists in bond alternating Heisenberg chain at the isotropic point, J2/J1 , 1, ∆ = 1 as predicted by Hida

[15] but also in most of the anisotropic regions, J2/J1 , 1, 0 6 ∆ < 1. In addition, the only point in

the anisotropic region where the Haldane phase does not survive is J2/J1 = −1, ∆ = 0. Therefore, apart

from the FM point J2/J1 = −1, ∆ = 0 and AFM line J2/J1 = 1, 0 6 ∆ 6 1, the Haldane phase exists

in the whole parameter regime. It would be worth mentioning that for FM J2 and 0 < ∆ 6 1, all the

parameters, such as spin gap, dimer and string orders decrease with an increase of |J2/J1 | beyond the

value J2/J1 = −1. The nature of decay of those parameters (figure 6) indicates that they all will vanish

at larger values of |J2/J1 | in FM J2 region. Therefore, this result hints at the collapse of Haldane phase

for larger values of |J2/J1 | in the full anisotropic region. Thus, it is expected that either Néel or chiral

ordered phase may appear in the region |J2/J1 | ≫ 1, and 0 6 ∆ 6 1, by replacing the Haldane phase.

However, this case is not considered in this study.

7. Conclusions

In this work, ground state properties, dispersion relations and spin gap of a bond alternating anisotropic

S = 1
2

Heisenberg chain have been evaluated for both the AFM-FM and AFM-AFM cases and in the

full anisotropic regime 0 6 ∆ 6 1. Both analytic (bond operator and Jordan-Wigner formulations)

and numerical methods are employed to study those properties. Bond operator and Jordan-Wigner

formulations provide more accurate results in two different parameter regimes. Ground state energy,

dispersion relations, dimer order and spin gap have been derived by bond operator formalism. Longitudinal

and transverse modes of dispersion relations are found. Longitudinal mode is found to survive even in
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the absence of longitudinal part in the Hamiltonian. For ∆ = 0, the exact value of ground state energy

has been derived by using the Jordan-Wigner representation. Meanwhile, for ∆ , 0, the ground state

energy has been derived by using the Jordan-Wigner based mean-field theory. Those theoretical values

have further been supplemented by the exact diagonalization results and compared to the exact data at

extreme points. Numerical analysis shows that the ground state is non-degenerate (Sz
T
= 0), while the first

excited state is doubly degenerate (Sz
T
= ±1) for both the cases and throughout the regime 0 6 ∆ < 1.

Although the ground state remains unique, spin gap is found to develop in the excitation spectrum as

soon as the non-uniformity is introduced in AFM-AFM chain. The spin gap remains non-zero in most

of the AFM-FM region. The non-uniformity of bond strengths in a bond alternating system breaks

the full translational symmetry of the model. The gap attributes to the breaking of this translational

symmetry which ultimately gives rise to the Haldane phase. Spin gap, string orders and dimer order

have been obtained numerically. Spin gap and string orders are found to coexist and non-zero throughout

the parameter regime apart from the point J2/J1 = −1, ∆ = 0 and line J2/J1 = 1, 0 < ∆ < 1. This

phenomenon attributes to the existence of Haldane phase. Thus, the Haldane phase is present in the

whole parameter regime apart from the point J2/J1 = −1, ∆ = 0 and line J2/J1 = 1, 0 6 ∆ 6 1, like the

existence of the same at the isotropic point, J2/J1 , 1, ∆ = 1. In other words, the Haldane phase is not

only present at the isotropic point but in most of the anisotropic regime of the bond alternating spin-1/2

Heisenberg chain. However, the nature of decay of the parameters EGap, OD, Oz
S

and Ox
S

indicates that

they all will vanish at larger values of |J2/J1 | beyond J2/J1 = −1 in FM J2 region for 0 < ∆ 6 1, which

hints at the collapse of Haldane phase. For this case, it is expected that either Néel or chiral ordered phase

may appear in that region by replacing the Haldane phase.
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Властивостi основного стану спiн-1

2
анiзотропного

гайзенбергiвського ланцюжка з перемiнними зв’язками

С. Пол1, А.К. Гош2

1 Фiзичний факультет, Шотландський церковний коледж, Колката 700006, Iндiя
2 Фiзичний факультет, Джадавпурський унiверситет, Колката 700032, Iндiя

Дослiджено властивостi основного стану, дисперсiйнi спiввiдношення i скейлiнгову поведiнку спiнової

щiлини спiн- 1
2

анiзотропного гайзенбергiвського ланцюжка з перемiнними зв’язками, коли обмiнна вза-

ємодiя на навперемiнних зв’язках є феромагнiтною (FM) i антиферомагнiтною (AFM) в двох окремих ви-

падках. Результуючi моделi порiзно представляють ланцюжки з сусiднiми (NN) AFM-AFM i AFM-FM навпе-

ремiнними зв’язками. Енергiю основного стану оцiнено аналiтично за допомогою представлення опера-

тора зв’язку так i представлення Джордана-Вiгнера, а також чисельно, використовуючи точну дiагоналi-

зацiю. Отримано дисперсiйнi спiввiдношення, спiнову щiлину i декiлька типiв впорядкування основного

стану. Знайдено, що димерне впорядкування i стрiчковi впорядкування спiвiснують в основному станi.

Знайдено, що спiнова щiлина появляється як тiльки вводиться неоднорiднiсть сили навперемiнних зв’яз-

кiв в AFM-AFM ланцюжку, яка далi залишається ненульовою для AFM-FM ланцюжка. Ця спiнова щiлина

вздовж стрiчкових впорядкувань є характерною ознакою фази Галдейна. Знайдено, що фаза Галдейна

iснує в бiльшостi анiзотропної областi подiбно до iзотропної точки.

Ключовi слова: навперемiннi зв’язки, спiнова щiлина, оператор зв’язку, стрiчковi впорядкування,

димерне впорядкування, скейлiнговий закон
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