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The Grad method is generalized based on the Bogolyubov idea of the functional hypothesis for states at the
end of relaxation processes in a system. The Grad problem (i.e., description of the Maxwell relaxation) for
a completely ionized spatially uniform two-component electron-ion plasma is investigated using the Landau
kinetic equation. The component distribution functions and time evolution equations for parameters describing
the state of a system are calculated, and corrections are obtained to the known results in a perturbation theory
in a small electron-to-ion mass ratio.
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1. Introduction

This paper is devoted to a generalization of the Grad method [1, 2] in the physics of plasma. Although
the Grad method was proposed by Grad in 1949, that method and its modifications are still widely used
in modern statistical physics, for example, in the theory of granular materials [3, 4], in the investigation
of relativistic hydrodynamics [5], in the investigations of the shock wave structure [6], in the physics of
plasma [7, 8], etc. In this paperwe concentrate on the 13-momentGrad approximation. This approximation
describes the formation of dissipative hydrodynamic fluxes (the Maxwell relaxation), and thus it is very
important and popular.

Within the framework of the 13-moment Grad approximation, the reduced description parameters
(RDPs) (i.e., parameters describing the state of a system) are the component particle densities na,
component velocities υan, component temperatures Ta, component traceless momentum fluxes πo

anl
and component energy fluxes qo

an taken in the reference frame which accompanies the a-th component
(a = e, i is the component subscript). Under the widely used assumption [1, 2, 7], within the framework
of the 13-moment approximation, the component distribution functions (CDFs) are as follows:

fap =
[
1 +

hnlp
2manaT2

a

πoanl −
2
5

pl
naT2

a

(
5
2
−
εap

Ta

)
qo
al

]
pa→pa−maυa

· f Lap , (1.1)

where hnlp ≡ pnpl − p2δnl/3, εap ≡ p2/2ma and

f Lap =
na

(2πmaTa)
3/2 exp

[
−
(p − maυa)

2

2maTa

]
(1.2)

are the local equilibrium CDFs. In what follows, we will use the term “standard result” for the expres-
sion (1.1). The CDFs (1.1) are the product of CDFs f Lap and some combination of fluxes which can
be obtained based on the truncated Hermite polynomial expansion [1, 2] and the additional conditions,
which are the definitions of the RDPs in terms of the CDFs. In usual hydrodynamic states, the fluxes πo

anl
,

qo
an are values of the first order in the gradients of hydrodynamic variables, and (1.1) shows that f Lap gives
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a zero order contribution in gradients to the non-equilibrium CDFs fap. This result expresses the local
equilibrium assumption, which is widely used in the literature (see, for example, the discussion of the
temperature and velocity relaxation in a completely ionized plasma [9, 10], the discussion of temperature
relaxation in an electron-phonon system [11], etc.).

However, in some works [12–15], a violation of the local equilibrium assumption in spatially uniform
systems is discussed. In our paper [16] it is also stressed that the CDFs f Lap are not exact solutions of the
kinetic equation, and corrections to them in a perturbation theory in a small parameter

σ =
√

me/mi (1.3)

are obtained. Thus, we expect to obtain corrections to the expression (1.1) in the same perturbation
theory.

As known [17], a drawback of the Grad method is the lack of a small parameter, which does not
allow one to obtain the CDFs from the kinetic equation and that is why the CDFs are postulated. In the
considered problem, within the framework of the standard Grad method, the CDFs are postulated in the
form (1.1). In our paper [16], a system is investigated in the vicinity of its equilibrium state, and the
deviations of the RDPs from their equilibrium values are considered to be small. This yields an additional
small parameter, which allows one to calculate the non-equilibrium CDFs from the kinetic equation.

The use of such a small parameter that describes the deviation of states of a system from some classes
of non-equilibrium states is the main feature of our approach to the theory of relaxation processes that
can be observed in spatially uniform systems and can be taken into account in the theory of nonuniform
systems as well [18–20]. In other words, this is an approach to the investigation of the effect of kinetic
modes of a system on its evolution. This important problem is widely discussed in the literature without
the presence of a small parameter in the constructed theory (see, for example, [21]).

The idea of the present paper is similar to that of the work [16] devoted to the temperature and velocity
relaxation in plasma, but here the Maxwell relaxation is taken into account too. The aim of the paper
is to obtain the CDFs of the plasma based on the Landau kinetic equation and to obtain corrections to
a standard result (1.1) following the Grad theory. The time evolution equations for the RDPs are also
obtained. In the present paper, the developed theory is restricted by a linear approximation but it can
describe nonlinear relaxation processes (see paper [20] where a quadratic relaxation is discussed).

It should be noted that this paper is based on the Landau kinetic equation which can be obtained
using the Bogolyubov reduced description method based on the functional hypothesis that states: at times
which are much longer than the collision time, the many-particle distributions functions depend on time
through the one-particle distribution function. Such a theory is valid if the gas under consideration is
rarefied, and it adequately describes a completely ionized plasma. In the case of dense gases and liquids,
other approaches should be used. For example, a reduced description of a system by the one-particle
distribution function and the densities of hydrodynamic quantities is discussed in [22]. Some other
peculiarities should be taken into account for quantum systems (see, for example, [23, 24]). In fact,
the main trend of the modern theory of nonequilibrium processes is an extension of the set of reduced
description parameters. The 13-moment Grad problem discussed herein is concerned with this trend
using the energy and momentum fluxes in hydrodynamics as additional independent variables.

The paper is organized as follows. In section 2, the basic equations of the theory are presented, and
in section 3, the CDFs and time evolution equations for the RDPs are calculated within the framework of
a linear relaxation theory.

2. Basic equations of the theory

The paper is based on the Landau kinetic equation which in the spatially uniform case is of the form

∂t fap = Iap ( f ) , (2.1)

Iap ( f ) = 2πe2
aL

∑
c

e2
c

∂

∂pn

∫
d3p′

(
fcp′

∂ fap
∂pk

− fap
∂ fcp′

∂p′k

)
Dnk

(
p

ma
−

p′

mc

)
,
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D nk (u) ≡
u2δnk − unuk

u3 ,

where fap are the CDFs, Iap is the Landau collision integral, ea is the component charge (ee = −e,
ei = ze, e is the elementary electric charge, z is the ion charge number) and L is the Coulomb logarithm.

Standard definitions of the RDPs in terms of the CDFs are [2]

na =

∫
d3p fap , namaυan =

∫
d3p pn fap ,

3
2

naTa +
1
2

namaυ
2
a =

∫
d3p εap fap ,

πoanl =

∫
d3p

pnpl
ma

fa,p+maυa , qo
an ≡

∫
d3p

pnεap
ma

fa,p+maυa . (2.2)

The equilibrium temperature T and velocity υn of the system are also introduced by standard definitions:

υn
∑
a

mana =
∑
a

manaυan ,

3
2

T
∑
a

na +
1
2
υ2

∑
a

mana =
3
2

∑
a

naTa +
1
2

∑
a

manaυ
2
a . (2.3)

Based on (2.1)–(2.3), it can be shown that ∂tT = 0, ∂tυn = 0, ∂tna = 0. In what follows we use the
reference frame where υn = 0 and the electroneutrality condition ne = zni .

Let us introduce the deviations of the electron temperature and velocity from their equilibrium values:

un = υen − υn , τ = Te − T . (2.4)

As shown [16],
υan = raun , Ta = T + saτ + yau2, (2.5)

where
sa = δae − zδai , ya = −mez

(
1 + zσ2)δai/3, ra = δae − zσ2δai . (2.6)

Formulae (2.5), (2.6) express the component temperatures and velocities in terms of the deviations τ, un
and equilibrium quantities. Thus, the following set of the reduced description parameters can be chosen:

ξα : un , τ, πoenl , π
o
inl , qo

en , qo
in. (2.7)

The developed theory is based on the Bogolyubov idea of the functional hypothesis (see a review in [25]),
which can be written in the form:

fap (t) −−−−→
t�τ0

fap
(
ξ (t)

)
, (2.8)

where fap(ξ) is a function of the variables ξα, τ0 is some characteristic time which is much shorter than
the shortest relaxation time of the RDPs. According to (2.8), the Landau kinetic equation (2.1) can be
rewritten as an equation for the CDFs fap(ξ)∑

α

∂ fap (ξ)
∂ξα

Lα
(
f (ξ)

)
= Iap

(
f (ξ)

)
. (2.9)

Here, the time evolution equation for the RDPs is used in the form

∂tξα(t) = Lα
(

f
(
ξ(t)

) )
, (2.10)

where the function Lα( f ) is given by the definition of the RDPs and the kinetic equation.
In the present paper, we consider the system to be in the vicinity of its equilibrium state. All the RDPs

ξα vanish in the equilibrium state and we consider them to be small and estimate them by one small
parameter µ for simplicity. This parameter is introduced based on the dimensional estimates

τ ∼ µT, un ∼ µ (T/me)
1/2, πoanl ∼ µ nT, qo

an ∼ µ nT(T/me)
1/2. (2.11)
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The presence of this small parameter allows us to calculate the CDFs fap(ξ) and the right-hand side
La

(
f (ξ)

)
of the time evolution equations for the RDPs from the kinetic equation (2.9) in a perturbation

theory in the small parameter µ. In this investigation, the definitions of the RDPs in terms of CDFs fap(ξ)
(additional conditions to equation (2.9)) must be used. In such a way, in the present paper, the Maxwell
relaxation theory is built based on the Bogolyubov reduced description method.

Obviously, in the leading approximation, we obtain the Maxwell CDFs, and the RDPs are constant
ones:

f (0)ap = wap , wap =
na

(2πmaT)3/2
exp

(
−βεap

)
, L(0)α = 0 (2.12)

(β ≡ T−1). Here and in what follows, the subscript in parentheses denotes the order in µ:

fap = wap + f (1)ap +O
(
µ2), Lα = L(1)α +O

(
µ2) . (2.13)

Although in this paper we restrict ourselves to a linear relaxation theory, i.e., to a theory linear in the
small parameter µ, our method gives one an opportunity to obtain fap(ξ) and Lα( f ) in higher orders
in µ [20].

3. Calculation of the component distribution functions and time evolu-

tion equations for reduced description parameters

This section is devoted to the calculation of the CDFs within the framework of a linear relaxation
theory. In the first order in µ, due to the rotational invariance, the CDFs are of the form

f (1)ap = wap

(
Aτapτ + Au

appnun +
∑
b

Aπbaphnlpπobnl +
∑
b

Aqb
appnqo

bn

)
, (3.1)

where Aτap, Au
ap, Aπbap and Aqb

ap are some unknown functions which should be calculated. Based on (2.9)
and (3.1) it can be shown that the RDP time evolution equations (2.10) in the first order in µ are of the
form

(∂tτ)
(1) = −λT τ, (∂tul)(1) = −λuuul −

∑
b

λuqb qo
bl ,(

∂tπ
o
anl

) (1)
= −2

∑
b

λπaπbπ
o
bnl ,

(
∂tqo

al

) (1)
= −λqauul −

∑
b

λqaqb qo
bl , (3.2)

where the relaxation constants can be written as:

λπaπb =
1

10ma

∑
c

{
hnlp, hnlpAπbcp

}
ac
, λuqb =

1
3mene

∑
a

{pn, pnAqb
ap}ea ,

λuu =
1

3mene

∑
a

{pn, pnAu
ap}ea

, λqau =
1

3ma

∑
b

{
εappn, pnAu

bp

}
ab
−

5
2

ranaTλuu ,

λqaqb =
1

3ma

∑
c

{
εappn, pnAqb

cp

}
ac
−

5
2

ranaTλuqb . (3.3)

Here, the integral brackets {g, h}ab and the operator of the linearized collision integral K̂ab are introduced:

Mab (p, p′) ≡
(
δIap

/
δ fbp′

) ��
fp=wp

, Mab (p, p′) wbp′ ≡ −wapKab (p, p′) ,

K̂abhp ≡

∫
d3p′Kab (p, p′) hp′ ,

{
gp, hp

}
ab
≡

∫
d3p wapgpK̂abhp . (3.4)

An explicit expression for the operator of the linearized collision integral can be obtained from (2.1) and
its definition (3.4):

K̂abhp = 2πe2
aLw−1

ap

∂

∂pn

∑
c

e2
c

∫
d3p′

(
δbc

∂hp′

∂p′l
− δab

∂hp

∂pl

)
wapwcp′Dnl

(
p

ma
−

p′

mc

)
. (3.5)
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The exact integral equations for Aτap, Au
ap, Aπbap and Aqb

ap are obtained based on (2.9), (3.1) and (3.2):

λT Aτap =
∑
b

K̂abAτbp , 2hnlp
∑
b

λπaπb Aπbap =
∑
b

K̂abhnlpAπc
bp
,

Au
applλuu +

∑
b

Aqb
applλqbu =

∑
b

K̂abplAu
bp ,

Au
applλuqc +

∑
b

plA
qb
apλqbqc =

∑
b

K̂abplA
qc
bp
. (3.6)

There are additional conditions to the integral equations in (3.6):

〈Aτap〉a = 0,
3
2

nasa = 〈εapAτap〉a , δab =
8
15

ma〈ε
2
apAπbap〉a ,

ranaT =
4
15
〈ε2

apAu
ap〉a , δab =

2
3
〈ε2

apAqb
ap〉a (3.7)

following from the definitions of the RDPs (here, for an arbitrary function hp, the notation 〈hp〉a ≡∫
d3p waphp is used).
Equations (3.6) show that the functions Aτap, Aπbap are not coupled with any other functions from these

equations. The equation for Aτap completely coincides with the equations for the temperature part of f (1)ap

obtained in [16]. The equations for Aqb
ap and Au

ap are coupled with each other.
The functions Aτap, Aπbap, Aqb

ap and Au
ap are sought for in a σ perturbation theory and expansion in the

Sonine polynomials:

Aτap =
∑
n,s>0

g
τ[n]
as S1/2

s

(
βεap

)
, Au

ap =
∑
n,s>0

g
u[n]
as S3/2

s

(
βεap

)
,

Aqb
ap =

∑
n,s>0

g
qb [n]
as S3/2

s

(
βεap

)
, Aπbap =

∑
n,s>0

g
πb [n]
as S5/2

s

(
βεap

)
(3.8)

(here and in what follows, the superscript in brackets denotes the order in σ). The orthogonal Sonine
polynomials are defined by the formula:

Sαn (x) ≡
1
n!

ex x−α
dn

dxn
(
e−x xα+n

)
(3.9)

and satisfy the orthogonality condition
∞∫
0

dxe−x xαSαn (x) S
α
n′ (x) =

1
n!
Γ (n + α + 1) δnn′ . (3.10)

Such a choice of polynomials in (3.8) takes into account the fact that the functions Sαs (βεap) are orthogonal
with the weight εαapwap and the first few coefficients of polynomial expansions (3.8) can be obtained
from the additional conditions (3.7):

g
u[n]
e0 = βδn,0 , g

u[n]
i0 = −zσ2βδn,2 ,

g
qb [n]
a0 = 0, g

u[n]
a1 = 0, g

qb [n]
a1 = −

2β2

5na
δabδn,0 ,

g
πb [n]
e0 =

β2

2neme
δebδn,0 , g

πb [n]
i0 =

σ2β2

2nime
δibδn,2 ,

g
τ[n]
a0 = 0, g

τ[n]
e1 = −βδn,0 , g

τ[n]
i1 = zβδn,0. (3.11)

It is easy to see that a standard result (1.1) is completely given by expressions (3.11). Other contributions
to (3.8) give our corrections to (1.1) in the form of a series in σ. Therefore, the relaxation constants (3.3)
are also expanded into a series in σ.
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In what follows, the CDFs (3.1) and coefficients in the time evolution equations for the RDPs (3.2)
are sought for in a σ perturbation theory based on (3.6), (3.8), (3.11). This procedure is described in
detail in [16] (moreover, the equation for Aτap was solved in [16]). Then, for simplicity, in each order in
σ, the results for the CDFs are found in the one-polynomial approximation, which yields:

Au
ep = β + g

u[2]
e2 S3/2

2
(
βεep

)
+O

(
σ4

)
, Au

ip = −zβσ2 +O
(
σ6

)
,

Aqe
ep = −

2β2

5ne
S3/2

1
(
βεep

)
+ g

qe [2]
e2 S3/2

2
(
βεep

)
+O

(
σ4

)
, Aqe

ip = O
(
σ6

)
,

Aqi
ip = −

2β2

5ni
S3/2

1
(
βεip

)
+ g

qi [3]
i2 S3/2

2
(
βεip

)
+O

(
σ4

)
,

Aqi
ep = g

qi [2]
e2 S3/2

2
(
βεep

)
+ g

qi [3]
e2 S3/2

2
(
βεep

)
+O

(
σ4

)
,

Aπeep =
β2

2neme
+ g

πe [2]
e1 S5/2

1
(
βεep

)
+O

(
σ4

)
,

Aπiip =
β2σ2

2nime
+ g

πi [5]
i1 S5/2

1
(
βεip

)
+O

(
σ6

)
,

Aπiep = g
πi [2]
e1 S5/2

1
(
βεep

)
+ g

πi [3]
e1 S5/2

1
(
βεep

)
+O

(
σ4

)
,

Aπeip = g
πe [6]
i1 S5/2

1
(
βεip

)
+O

(
σ7

)
,

Aτep = −βS1/2
1

(
βεep

)
+ 3
√

2z (z + 1) βS1/2
2

(
βεep

)
σ2 +O

(
σ4

)
,

Aτip = zβS1/2
1

(
βεip

)
+ 2
√

2
(
1 + z−1

)
βS1/2

2
(
βεip

)
σ3 +O

(
σ4

)
, (3.12)

where the estimates of the type O (σn) are the priori ones. The numerical data for the coefficients in
(3.12) are given in table 1 for z = 1, 2, 3, 4.

Table 1. Numerical data for the coefficients in (3.12).

z ni
β2σ2 g

qe [2]
e2

ni
β2σ3 g

qi [3]
i2

ni
β2σ2 g

qi [2]
e2

ni
β2σ3 g

qi [3]
e2

nime

β2σ6 g
πe [6]
i1

1 39 4.2 −0.36 −0.082 −0.17
2 0.10 2.1 −0.44 −0.49 −0.21
3 0.33 1.4 −0.47 −1.3 −0.23
4 0.10 1.0 −0.49 −2.5 −0.24

z nime

β2σ2 g
πe [2]
e1

nime

β2σ5 g
πi [5]
i1

nime

β2σ2 g
πi [2]
e1

nime

β2σ3 g
πi [3]
e1

1
βσ2 g

u[2]
e2

1 0.097 −3.2 0.14 0.047 −39
2 0.061 −1.6 0.17 0.30 −2.8
3 0.045 −1.1 0.19 0.81 −2.0
4 0.035 −0.80 0.20 1.6 −1.6

The leading-in-σ terms for Au
ap, Aqe

ep, Aqi
ip, Aπeep, Aπiip, Aτap coincide with the standard result (1.1), but

our results (3.12) give corrections in higher orders in σ to (1.1). Although

Aπiep � Aπeep , Aπeip � Aπiip , Aqi
ep � Aqe

ep , Aqe
ip � Aqi

ip , (3.13)

Aπiep, Aπeip , Aqi
ep, Aqe

ip are not equal to zero in contrast to (1.1), and the electron distribution function
depends on the ion energy and the momentum fluxes and vice versa.
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Based on (3.2), (3.3) and (3.12), the following results for the RDP time evolution equations in the
leading and next-to-leading orders in σ are obtained:

(∂tun)(1) = −
∑
s=0,2

λ
[s]
uuun −

∑
s=0,2

λ
[s]
uqe qo

en − λ
[2]
uqi q

o
in ,(

∂tqo
en

) (1)
= −

∑
s=0,2

λ
[s]
qeuun −

∑
s=0,2

λ
[s]
qeqe qo

en − λ
[2]
qeqi q

o
in ,(

∂tqo
in

) (1)
= −

∑
s=1,2

λ
[s]
qiqi q

o
in , (∂tτ)

(1) = −
∑
s=2,4

λ
[s]
T τ,(

∂tπ
o
enl

) (1)
= −2

∑
s=0,2

λ
[2]
πeπeπ

o
enl − 2λ[2]πeπi π

o
inl ,(

∂tπ
o
inl

) (1)
= −2λ[2]πiπeπ

o
enl − 2

∑
s=1,2

λ
[2]
πiπi π

o
inl , (3.14)

where

λ
[0]
uu =

4
√

2z2

3T
Λ, λ

[2]
uu =

[
(4z − 2)σ2

3T
+

5
2
g
u[2]
e2

]
√

2z2
Λ,

λ
[0]
uqe = −

4
√

2z2

5neT2Λ, λ
[2]
uqe =

(
6σ2

5neT2 +
5
2
g
qe [2]
e2

)
√

2z2
Λ,

λ
[2]
uqi =

(
4σ2

5niT2 +
5
2
g
qi [2]
e2

)
√

2z2
Λ, λ

[0]
qeu = −2

√
2nez2

Λ,

λ
[0]
qeqe =

2
(
8 + 13

√
2z

)
15T

zΛ, λ
[1]
qiqi =

16z4

15T
σΛ, λ

[2]
qiqi =

4
√

2z3

T
σ2
Λ,

λ
[2]
qeu =

[
(3 − 2z)

√
2zσ2 − g

u[2]
e2 T

(
23

2
√

2
z + 2

)]
z2niΛ,

λ
[2]
qeqe =

[
−

11
√

2
5T

σ2 − g
qe [2]
e2

(
23

2
√

2
z + 2

)
niT

]
z2
Λ,

λ
[2]
qeqi =

[
−

58
√

2z
25T

−

(
23

2
√

2
z + 2

)
g
qi [2]
e2 niT

]
z2
Λ;

λ
[0]
πeπe =

4z
(
1 +
√

2z
)

5T
Λ, λ

[1]
πiπi =

4z4

5T
σΛ, λ

[2]
πiπi =

4
√

2z3

3T
σ2
Λ,

λ
[2]
πeπe =

[
2
√

2σ2

15T
+

6
5

(
1 + 2

√
2z

)
nimeTg

πe [2]
e1

]
z2
Λ,

λ
[2]
πeπi = −

[
8
√

2z
15T

σ2 +
6
5

(
1 + 2

√
2z

)
nimeTg

πi [2]
e1

]
z2
Λ,

λ
[2]
πiπe = −

8
√

2σ2

15T
z2
Λ, λ

[2]
T =

8
√

2σ2

3T
(z + 1)z2

Λ,

λ
[4]
T = −

4(
√

2 − 6z)
T

σ4(z + 1)z2
Λ, (3.15)

where Λ ≡ nie4L(π/meT)1/2.
The leading-in-σ contributions to the RDP time evolution equations (3.14), (3.15) are completely

defined by the standard CDFs (1.1), and in the cases known in the literature they coincide with the known
results (see [9, 16]).
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As for the next-to-leading terms in (3.14), (3.15), we have the following. The quantities λ[2]qiqi , λ
[2]
πiπi ,

λ
[2]
πiπe are completely defined by a standard result (1.1), and the time evolution equations for qo

in and π
o
inl

in the leading and next-to-leading terms in σ are completely defined by (1.1). However, the other time
evolution equations are not completely defined by (1.1). In the right-hand sides of the expressions for
λ
[2]
uu , λ

[2]
uqe , λ

[2]
uqi , λ

[2]
qeu , λ

[2]
qeqe , λ

[2]
πeπe , λ

[2]
πeπi , λ

[4]
T , the first terms come from the standard CDFs (1.1), but the

second terms come from our corrections (3.12). A comparison of these terms is given in table 2. Thus,
our corrections have a significant effect on the next-to-leading terms in the RDP time evolution equations.
These next-to-leading terms coincide with the known results in the cases known in the literature (see
[10, 16]).

Table 2. Comparison of the magnitudes of the terms which come from our corrections λ′′ and the terms
which come from (1.1) λ′.

Quantity Comparison

λ
[4]
T λ

[4]′′
T > λ

[4]′
T

λ
[2]
uqi λ

[2]′′
uqi > λ

[2]′
uqi

λ
[2]
πeπe λ

[2]′′
πeπe > λ

[2]′
πeπe

λ
[2]
uu λ

[2]′′
uu > λ

[2]′
uu for z = 1, 2, 3

λ
[2]
uqe λ

[2]′′
uqe > λ

[2]′
uqe for z = 1, 2, 3

λ
[2]
qeu λ

[2]′′
qeu > λ

[2]′
qeu for z = 1, 2, 3, 4, 5

λ
[2]
qeqe λ

[2]′′
qeqe > λ

[2]′
qeqe for z = 1, 2, 3, 4

λ
[2]
qeqi λ

[2]′′
qeqi < λ

[2]′
qeqi but they are comparable

λ
[2]
πeπi λ

[2]′′
πeπi < λ

[2]′
πeπi but they are comparable

It is interesting to note that numerically for z = 1 (for example, in the case of electron-proton plasma)
our corrections to the time evolution equations are most significant for (∂tun)(1) and (∂tqo

en)
(1). Namely,

although for this plasma σ2 = 5.5 · 10−4 we have

λ
[2]
uu

λ
[0]
uu

= −4.0 · 10−2,
λ
[2]
uqe

λ
[0]
uqe

= −2.2 · 10−2,

λ
[2]
qeu

λ
[0]
qeu

= −2.6 · 10−2,
λ
[2]
qeqe

λ
[0]
qeqe

= −2.0 · 10−2, (3.16)

the ratios (3.16) are of the order 10−2, rather than 10−4.

4. Conclusions

This paper is devoted to a generalization of the 13-moment Grad approximation for a spatially
uniform completely ionized two-component electron-ion plasma that describes the Maxwell relaxation.
The investigation is based on the Landau kinetic equation and our generalization of the Chapman–Enskog
method [18] with the help of the Bogolyubov idea of the functional hypothesis, which is the main idea
of his method of a reduced description.

The system is considered to be in the vicinity of its equilibrium state where the deviations of
the reduced description parameters from their equilibrium values are small. This introduces a small
parameter µ which allows us to calculate the component non-equilibrium distribution functions of a
system and obtain time evolution equations for the reduced description parameters in a corresponding
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perturbation theory. In contrast to the standard Grad method, our small parameter µ allows us to obtain
the CDFs based on the kinetic equation.

In the present paper, the investigation is restricted to a relaxation theory linear in µ for spatially
uniform states. However, our approach allows one to investigate a nonlinear relaxation in non-uniform
systems [18–20].

Our results for the component distribution functions are comparedwith the standard results of theGrad
method in plasma physics [2] given by expression (1.1). We first calculated the component distribution
functions in a perturbation theory in the small square root of the electron-to-ion mass ratio σ. Then,
in each order in σ, we restricted ourselves to the Sonine one-polynomial approximation for simplicity.
It is obtained that the leading-in-σ results for the component distribution functions coincide with the
standard result (1.1), but corrections to it in higher orders in σ are obtained. Moreover, it is obtained that
in contrast to (1.1), the electron distribution function depends on the ion energy and momentum fluxes
and vice versa, although this dependence takes place in higher-than-leading orders in σ.

Time evolution equations for the reduced description parameters are also calculated. They are obtained
in the leading-in-σ and next-to-leading orders. It is obtained that their leading-in-σ terms are completely
defined by the standard CDFs (1.1). The next-to-leading terms in the time evolution equations for the
ion fluxes qo

in and π
o
inl

are completely defined by (1.1), but our corrections to the component distribution
functions have a significant effect on the next-to-leading terms in the time evolution equations for the
deviations τ, un of the temperatures, velocities and electron fluxes qo

en, πoenl .
The Grad method is widely used in modern statistical physics and the idea of the paper may be applied

to its generalization not only for plasma, but also for other systems. Moreover, the obtained results may
be the basis for the investigation of spatially non-uniform states of plasma because they are the results of
the leading order in small gradients.
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Узагальнення метода Греда в фiзицi плазми

В.М. Горєв, О.Й. Соколовський
Днiпровський нацiональний унiверситет iменi Олеся Гончара, пр. Гагарiна, 72, 49010 Днiпро, Україна
Метод Греда узагальнюється на основi iдеї функцiональної гiпотези Боголюбова для станiв наприкiнцi
завершення релаксацiйних процесiв у системi. Для повнiстю iонiзованої однорiдної двокомпонентної
електрон-iонної плазми за допомогою кiнетичного рiвняння Ландау дослiджується проблема Греда (опис
максвеллiвської релаксацiї). Обчислюються функцiя розподiлу компонент i часовi рiвняння для параме-
трiв, якi описують стан системи, знаходяться корекцiї до вiдомих результатiв в теорiї збурень за малим
вiдношенням мас електрона до iона.
Ключовi слова:Максвеллiвська релаксацiя, метод Греда, узагальнений метод Чепмена-Енскога,

повнiстю iонiзована плазма, полiноми Сонiна
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