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LIMITS ON THE REAL LINE

OF SYMMETRIC SPACES ON SEGMENTS

In the same way as the known spaces Mp, My, and I, are constructed on the basis of the space Lp(-1,
1), we construct the corresponding “limit™ spaces Mg, Mg, and Je¢ on the real line on the basis of a
symmetric function space E on a segment and study some of their Banach properties.

3a cnmeTpuunny yHKIioHaNLHHM HpocTopoM E Ha Biapisky OyayloTeea sianosiini ,rpannuni”
npoctop Mg, Mg ta T na npamin i BuBYaloTECA e AKI X GaHAXIBCLKI BAACTHROCTI aHAJIOTIYHO ToO-
My, sK 3a npoctopoM Lp(-1,1) Gynyorhes Bitomi npoctopu Mp, My 1a Ip.

In connection with some questions of generalized harmonic analysis, Marcinkiewicz
[1] defined the class My, 1 <p <o, as the set of Borel measurable functions x(7) on
the rcal line with

1 T UP

Il = Bm | = [|x0)|7ar < oo,
Tes | 27 ’.f‘

By identifying functions whose difference has zero norm, he proved that (M. || ]])
is a Banach space. Later [2-4], a space similar to J,. namely. the space M, of
functions such that

p T - I/p
Il = up kG __’[Il.x(r)! ! <
and its subspace I, consisting of functions for which
1 T 1/p
lim | — J’ix{:)wr | =0
Toea| 21 r |

were investigated. Evidently, M, =M, /I,. The properties of these spaces having a
direct application to some questions of analysis and usual Banach propertics were
studied.

In the same way as the spaces Mp. M,. and 1, were constructed on the basis of
the space Lp(-1.1), we construct the corresponding “limit™ spaces Mz, My, and /g
on the real line on the basis of a symmetric function space E on a segment and study
some of their Banach properties. The majority of obtained properties are known for
M p. but some of them are new. Naturally. the methods of proofs are more abstract, as
it seems. less cumbersome, and more transparent with the point of view of the theory
of Banach spaces. First, we consider an abstract construction, which may be called the
inductive /..-limit of a sequence of Banach spaces.

1. Let X, beasequence of linear spaces, ¥, = X, ®...® X,. and let Y, be Ba-
nach spaces with norms || “. Assume also that, for each » and any v € Y,. we have
[[¥1, ;<M ¥, and the projection of Y, onto Y, along X, is bounded in the
norm ||, ,. Consider the set X = {x=(xj.... . X)) 1 X, € X, sup, |l (X ...

..... ta)ll, <e=}. Asusual, we identify the spaces X, and Y, with their natural em-

bedding into X, which is endowed by the coordinatewise linear operations. For v =
=X Xl weput Py = (X, .., x,.0, 0000,
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LIMITS ON THE REAL LINE OF SYMMETRIC SPACES ON SEGMENTS 47

It is easy to see that, for a sequence of Banach spaces X, and 1 <p <o, the
space X =[p(X,) satisfies these conditions. However, we shall consider the applica-
tions to other spaces (see condition (*) below).

Proposition 1. The set X with the norm | x|| = sup||P,x||, is a Banach
space. )

Proof. 1t is easy to show that (X, ||||) is a linear normed space. Completeness
can be verified as usually. Let xk k=T o, bea Cauchy sequence in the space X,
i.e., forany €> 0 there exists N such that, for each j, k>N, we have | x/ = x*| =
= sup || Ppr! - P,;.\'Lﬂn <eg. Then, for every n,

n

| P/ - Puxil, < e (1)

It is casy to see that every projection @, of X onto the subspace X, along the

| || -closed linear span [ X,,: m# n] is bounded in this norm and that the norms || ||
and || |j, coincide on the subspace X,. Thus, (X,.||||) is a complete space. Then,
for cach n, Q,x* k= T, e, is a Cauchy sequence and, therefore, it converges to some

n

, - H
clement x, € X, Consequently, P,x*=3" Q,x* convergesto Y "x,. Letus

m=1
show that the sequence Xk k=T o, converges to the element x=(x,.... .x,. ...) in
the space X. For any fixed n, we fix & and pass to the limit in inequality (1) as
j —» 0. Weobtain || Ppx — P,x¥| , < € This inequality is valid for every n: hence,
|| x - x*|| < . This implies that || x—x¥]] — 0 as k — os. Since sup || Pox¥||, <o

EH

k 5 4
and sup || P,x - P, <e. we get sup || P,x|[<oo. Therefore, x € X. Thus, the
n n
space X is complete.
Proposition 2. The space Xy = {xe X: lim||P,x||,=0} isa closed linear
n

subspace of X.
Proof. 1tis casy to verify that the set X, is linear. Let us show that it is closed.
Assume that a sequence Fe Xy converges to xe X. Since lim ||P,,_s.k{[" =0 for
M

any k£ and sup || P,,.rmP,,_\'kH“ — 0 as k— oo,

n "

im || Puxll, € Tim || Py — PN, + Tim || Poxb]l, < sup | Pux—Pux¥l, — 0
n n / n "

as k — oo. Consequently. lim || P,x||, =0, ic.. xe X,.
n
Consider the space ¥ = {y=(y. ... . Yo o) Yo € Yoo sup || yull, <o} with the
L
norm || y||= sup [ y.|], and its subspace Yy = {ye V: lim|[y,]],=0}. ic.. Y=
I n
=1_(Y,) and Yy =cy(Y,). Itis casy to see that the map 7, which associates an
element x =(x. ..., X, ...)€ X with the element Tx=y=(y.... .y,....). where
v, =P,x, is alinear isonietry of X onto some subspace of Y and TX, ¢ Y.
Proposition 3. If, for each n, Y, is separable, then the same is true for X .
If the dual spaces Y, are separable, then the same is true for X i
Proof. Since X isisometric to a subspace of ¢¢(Y,) and Xf, is 1sometric to a
quotient space of [ (Y,"), this fact is obvious.
We say that condition (*) holds if. for any y,, € Y,.. ||y, |l, = 0 as n — .

ISSN 0041-6053. Yep. mam. xyvpu., 1995, m. 47, N* |



48 0. V. KUCHER, A. M. PLICHKO

Evidently, if this condition is satisfied, then, for every n, Y, < X,.

Proposition 4. Ler condition (%) be satisfied. Then, for any € >0, the space
X contains a complemented subspace Z, (1+ €)-isometric to 1..; moreover,
Z (X contains a subspace (1 + €)-isometric to c.

Proof. Let €,>0, zr €; <€&. Weset ny=1 For iz=1, we choose x'=
=(0, ..., %0, ...), Xn,€ Xppand n;y; sothat |[x,[l, =1 and [|x,ll.,, <€
Denote by Z thc set

{x%= (a1x4,0,....0,02%,,0, ... ,a;x,,0,...): @ = (ay,....a;,...) € I}

Let us show that Z is a subspace of X, (1 + €)-isometric to /_. Obviously, Z is a
linear subspace.

On the one hand, for any n, there exists 7 such that n;, <n<n, ; and, by the
triangle inequality and the choice of »;,

,
Il Pux?|l, Z lael 125N, + laial N, < ) lagler + laial <
k=1 k=1
(Elﬁ*4prhui areeEa)
k=1 k
Hence,
Fxll < (1+€) sup lagl. (2)

On the other hand, let i€ N and let the number 1<j </ be such that
max |ai|=|a;|. Then
12k <i

_ ﬂ
e 1Pl 2 1Pl 2 lapll, = 12, 31, 2

, i=
2 |a;lllll,; - Z!aklllx"ll >

L]

X
> |a;| - Z]ak|€k |ﬂ|—(zﬁxJ|“;‘|2 (1"8)1"};:1’(_|“.{-l
] sk=i

‘.:
and
[x?Il = (1-¢€) sup|a;l. 3)
k

If follows from inequalities (2) and (3) that Z is (1 + €)-isometric 1o [,
If a=(ay....a;..)e cy then, forevery &> 0, there exists a number N such
that |a;|< 8 for i>N and

’ipl ||P,.,..r"||n‘_ < dim || Py x|, + lim || (P, - Py)x°]l, <

i

< il +E}fupfak] < (1+¢€)d.
-l

Consequently, X, Z contains the subspace Zo={x"eZ:aecy}, (1+ €)-
isometric to ¢g. Recall that a set of elements (x;: i € /) of a Banach space X is
called a complete minimal system if the closed linear span [x;: ie/] =X and. for
every je I, xj& [x;:i#j]. The dimension dimX of a Banach space X is defined as
a minimal cardinality of its subsets, the linear span of which is dense in X.
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LIMITS ON THE REAL LINE OF SYMMETRIC SPACES ON SEGMENTS 49

Corollary. Let dimX <c¢ and let X satisfy condition (*). Then the space X

" has a complete minimal system.
Proof. According to the preceding proposition, X has a closed subspace V,
which is a complement to Z =/_. Therefore, there exists a closed subspace W < Z

such that X /(V @& W) is isomorphic to a Hilbert space and dimX /(V ® W) =dim X
[5]. Since a Hilbert space has a complete minimal system, X also has one [6].
Proposition 5. Let condition () be satisfied and let, for all n, Y, be a reflex-

ive space. Then X= X .

Proof. Consider the spaces Yy and Y and the map 7 defined in the proof of
Proposition 2. Since Y, are reflexive, the space dual to Yo = co(Y,) is /;(Y,) and
the second dual is Y =1/_(Y,). It is also known that the second dual to the subspace
TXyc Yy isits weak® closure cl*(7Xp) in Y(;". Consequently, it suffices to prove
that cI*(TXo)=TX. If y=(¥,.e. .V oo)=Tx=T(xp, ... \Xp...)E TX and ye
¢ c1"(TXy). then, by the Hahn—Banach theorem, there exists a functional fe }’0'
such that f(cI'TX¢)=0 and f(y)=1. Since Y5 =11(Y,), f=(fireee s S oo )
fa€ Y., and f(y)= 3" f,(y,). By condition (*), the element y, € TXg:
therefore, for any n, f(y,)= f, (y,)=0; hence, f(y)=0. Thus, TX < cI"(TXy).

Now we show the converse inclusion. Suppose that a net (y*: ae A), y* =
= (\‘f )‘:) ="Tx™*'= 1(1‘,‘tf’,‘) c TXo weakly® converges to some
element y=(y.....y,. ...)€ Y. We need to show that there ex#sts an element x € X
such that y = Tx. Since, for every n, the space Y, is reflexive, the net y5, o € A,
converges weakly to an element y,. The net 'I’_l[y‘ff) = (1? ...... e U) e A,
1s also weakly convergent because 7' is an isometry. Finally, by continuity of the
projection , forany n. the net (\2‘] converges weakly to an element x,. Certain-
ly, T(xy, ... . X0 0,...) = y,. Since ye Y, sup|ly,ll, <eo. ic..theelement xe X
and, certainly, T'x=y. The proposition is provc’(il‘

Proposition 6. Suppose that there exists a constant ¢ < 1 such that, for every
n>1and every ye€ Y,_1. the condition ||y|l,<cllyll,_, holds. For an element

X = (X s Xp o) € X, owe put x|l = sup|lxnll,. Then the norm || x||, is
H
equivalent to the initial norm || x||; therefore, the spaces (X.|||l,) and (X,
I1lg) are equalto I _(X,) and cy(X,), respectively.
Proof. We first show that || x||< (1-¢)” 1|

that, for some a>1, |[x|[>(1-¢) "allx [l- Hence. for any €>0, there exists a

| x|[,. Indeed. assume to the contrary

number n such that, simultancously, || P, x|, > (1-¢€)||x]|| and

> -1 -1
I Froye + xall, = 1Pux]l, > (1=c) allxlly > (1=c) allx.ll,
From the last relation, we get

NPuixll, 2 I Puxll, = llxall, = (1= (1=c)a™ ") || P,x]l,,.
Taking into account the assumption of the proposition, we have

i -1
(1=-e)llxll < IPxll, < at@a=1+¢) ||P,_yx]|l, <
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50 0. V. KUCHER, A. M. PLICHKO

- i
< acla-1+c¢) l||P,,_,x||"_] <acla-1+¢) x|l

Since € is arbitrary, this leads to a contradiction,

On the other hand, ||x,|l, < ||Px|l, + Il Po_yxl, S P, +cllPyxll, -\
By taking supremum over all n on both sides of the inequality. we obtain || x||, <
< (1 +¢)|lx]|l. Inequalities (1 —c)|lx[l<|lxlly < (1+¢)|lx]l mean the equivalence
of the norms and the space X isequal to co(X,) and X isequalto /_(X,) in the

norm |||,

Recall that a Banach space is called weakly compactly generated (WCG) if it is a
closed linear span of its weakly compact subset. It is easy to sce that separable and
reflexive spaces are WCG spaces and if Y,, is a WCG space, then so is Y.

Corollary 1. Let at least one of the following conditions be satisfied:

1) Forall n,Y, isweakly compactly generated and (*) holds;

2) There exists ¢ <1 such that, for every n and any y € Y, |, we have

Iyll,<cliyll,-
Then the space X contains a complemented subspace isomorphic to ¢y and
Xo is uncomplemented in X.

Proof. To prove the first part of Corollary 1, we note that it condition 1) is satis-
fied, then X is a WCG space. By Proposition 4, it contains a subspace isomorphic to
cp. which, by [7, p. 115] and [8, p. 106]. is complemented there. Under condition 2).
by Proposition 6, the space X .is isomorphic to co(X,) and. certainly, contains a
complemented subspace isomorphic to cy.
~ Now we show that the subspace X is uncomplemented in X. [f condition 1)
(condition 2)) is satisfied, then, it follows from Proposition 4 (Proposition 6, respect-
ively) that X contains a subspace Z isomorphic to /_ and Z[) Xy contains a

subspace Z; isomorphic to co. Suppose that X is complemented in X. Then, by the
first part of this corollary, this is Zo and, in particular, Zg is complemented in 7.
But each infinite-dimensional complemented subspace of [ is isomorphic to [ _
[8. p. 57]. We arrive at contradiction. Corollary 1 is proved.

Corollary 2. Under the assumptions of Corollary 1. X is not isomorphic to a
dual space.

Proof. In the first case, X is a WCG space and. by Proposition 4, X contains a
subspace isomorphic to ¢;. Suppose that X is isomorphic to the dual space. Then it
contains a subspace isomorphic to /_ [8.p.103]. But a WCG space does not contain
such subspace; this can be easily deduced. for example, from Corollary 3 in [7, p. 114].

If the second condition is satisfied and X is isomorphic to the dual space, then it
is complemented in the second dual X(;'. But X c X(;' and, therefore, Xy is
complemented in X. This contradicts to Corollary 1.

o0

Definition 1. A sequence of closed subspaces X ,,. n =1,

. of a Banach space
Xo is said to form a basic decomposition if | X,,: n=1,0|=Xy and there are
projections P,: Xo— [ X; ]’; along [X;:i=n+l,e], n=1., which are
uniformly bounded. If, moreover, there is a constant k=1 such that, for every finite
collection (x;)';. x; € X and every collection of signs (6;)]. [1X6,x|l<
< K||Z x;||. then a basic decomposition is called unconditional and the minimal
number K is called an unconditional constant of a decomposition (X,) If,
moreover, there exists a number ¢ 2 1 such that, for every finite collection x . y;

i=Ln, x;,y;, € X, the inequality || y;||< || x;|| implies % ¥l < cl|S x|, then
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LIMITS ON THE REAL LINE OF SYMMETRIC SPACES ON SEGMENTS 51

the sequence (X,) is called a strong unconditional decomposition of X .

It follows immediately from this definition that, in our case, the subspaces (X,,
[l ]]) form a basic decomposition of the space X, and, under the conditions of
‘Proposition 6, they form a strong unconditional decomposition. It is easy to see that if
(X,) form a strong unconditional decomposition, for each », the subspace X, has an

unconditional basis (X")"_,, and, besides, their unconditional constants are uni-

m=1*
m

formly bounded, then the system (X ): =) 18 anunconditional basis of X,

2. Definition 2 [ 10, p.21]. Let (£2,Z, 1) be a measure space with a positive
measure . A Banach space E of (classes of) measurable functions on £ is
called symmetric if

)ye £ and |x(w)|<|y(w)| for almost al we Q imply xe E and
lxl<Ilylk

2)ye E and d\y(t)=d, (1) forall t>0 imply xe€ E and ||x||=]y]l
where d(1) = p{w: [x(w)|>1} isthe distribution function of | x(®)].

For a number 7> 0, denote by 9 the linear map of (-7, 7] onto [ -1, 1] with
p(-T)=—1., @(T)=1. Let E be asymmetric space on [—1, 1] with the normalized
Lebesgue measure A(—1, 1)= 1. Then all functions X(@,(1)). where x runs through
E. form a symmetric space E¢ on [-7,T] with the norm [[xe @ |, =l x|/, We
denote the composition of functions by the sign - Every function on the segment

[-7,T] isidentified with a function on the real line by defining it to be zero outside
[-T, T']. Denote the set of measurable functions on the real line, fpr which the number

lxlly, = sup|| x|l is finite by My and the subspace of My consisting of functions
T21 ;

for which _lim [[x|[;=0 by Ip. Itiseasy to see that (M, || ”Mr) is a linear normed
space and /g is its linear subspace. Certainly, for E=Lp(-1,1), A(-1,1)=1, our
construction gives the spaces M, and I, defined at the beginning of this paper. It is
also evident that the spaces M ; and I are normed lattices with a natural pointwise
order. Even the spaces M, and /, are not symmetric function spaces on the real line.
Some weak property of symmetry for the spaces Mg and [ will be mentioned below
(see the proof of Proposition 8).

Proposition 7. Let 7,21, 7,=1,T, >, and sup T,.1/T,=a for some

1<a<os. Then . ||).'“M}_ <2asup||x|l; for any x € My  and, therefore
- n "

sup || x ||;,-" is the norm on the space Mg, equivalent to the norm ||x|| e
! To prove this, we need the following lemma:

Lemma. If 1 <S<T, then Es C Etr and, besides, (S/T)||yllg<|lyll;<
< |l yllg for every y € Egs.

Proof. Let ye Eg. y=xo@g, where x€ E. It is necessary to find a function
z€ E suchthat xe@¢=ze@, and (S/T)|[ x|l <|lzllg <[l x|l We set
T : -
w() = Er if |ll<S/T,

0 if S/T<|l<1

and z=x-y. Since @Qp(t)=1/T and Qc(t)=1/S, Y(QUN=(T/SWt/T)= @g(t).
Thus, x -« @¢=z - @4 The operator :
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52 0. V. KUCHER, A. M. PLICHKO

g .
x| — f |l<S/T,
Dsrx(t) = ‘(s’] e )
0 it §/T<|tl1
associates a function z(r) with a function x(r). Asis known [9, p. 130], Dy acts in
the space E, its norm is at most 1, || Dyl € max (1, T/S) = T/S, and D gpDqyex =
-1
=% 0.5y Then DggDpgz==z and ||xllg=|l Dgppz lp=1Dpszll g =l Dpszll g <

<(r/Szllg
Proof of Proposition 7. Let us take an arbitrary number 1 < T <eo; for some n,
I'ysT<T,,; Denoteby yx, the characteristic function of the set {7: 7, <|t]<

< Tys1}. Then | x|l; = ”"'x[-?‘,,. ..,,n}+_\-xni|-‘,-. Consider two possible cases.
Lllxx g, il 2 (172)11xly. Then |lxllp< 2|l xlly, <24 supl| x |l .
2. lxx, Iy 2 (172) )| x|l Then, by Lemma, || xx,, |l < (Tost/ DI xx, 1y, , S
()",,+;;‘T,;)Il.rxnll?-“]. Consequently,

1A

lxlly < 20xx,lly < T/ Ty, <

< Tt/ T I xlly,,, < 2asupllxlly-

Since T is arbitrary, we obtain [|.x|l,,, = sup llxlly<2asup|lx]l; .
C Tzl n !

Note that, for the spaces Y, =E7,, X,={x¥,_,: x€ Er, }. X=(Mg. sup|| x|l ).
n 4
and Xo= (/. sup|| x||; ). the conditions of the first section of this paper are satisfied.
n n

Therefore, Propositions 1, 2, and 7 yield the following statement:

Corollary 1. Mg is a Banach space and I is its closed subspace.

Recall that the norm || || of a symmetric space E is said to be absolutely continu-
ous if, forevery x e E and every decreasing scquence €2, of measurable subsets of
€2 with empty intersection, |I.txﬂn || -0 as n — 0. Note also that a symmetric Ba-
nach space on (—1, 1) with an absolutely continuous norm is rearrangement invariant
in the sense of [9] and the Haar system forms a basis in E(—1.1) [9, p. 150].

Further, we consider symmetric spaces £ with an absolutely continuous norm
only. It is easy to see that if E is a symmetric space with an absolutely continuous
norm, then condition (*) is satisfied for the spaces Y, =Ey,, T, — eo. Therefore, the
reasoning presented after Definitions 1 and 2 and Proposition 7 yields the following
assertion:

Corollary 2. The subspaces E"={xY, ,:x€lg} form an unconditional
decomposition of the space [g with the unconditional constant equal to one.

The next corollary is a consequence of Propositions 3-5, 7 and Corollaries 1, 2 of
Proposition 6.

Corollary 3. The space Ig is separable, not isomorphic to a dual space, and
uncomplemented in Mg and contains a complemented subspace isomorphic to cq.
If E is areflexive space, then | ; =Mpg.

Since a space E on (-1, 1) with an absolutely continuous norm is separable,
dimMg =c and, by Proposition 4, Corollary of Proposition 4, and Proposition 7. we
obtain the following corollary:

Corollary 4. The space Mg contains a complemented subspace isomorphic to
I, and has a complete minimal system.
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LIMITS ON THE REAL LINE OF SYMMETRIC SPACES ON SEGMENTS 53

Denote by mE the set of (classes of) measurable functions x(7) on the real line
for which the following norm is finite: ||x|ImE = E [ x]l;. Thus, the functions x,
-y € Mg for which x—y € I are identified in the space My and My = M /Ir. Note
that the symmetric space of Besicowitch almost periodic functions E,p considered in
[10] is a subspace of M. '

Corollary 5. If a space E is reflexive, then m}: = l;}‘. where !é‘ is the
annihilator of Ig < Mg in the dual space ME.

Indeed, by Corollary 2, Iz = Mg, and, consequently, M; = I3 @ I;. But
Me=Mg/Ig.

Corollary 6. If a space E is reflexive, then mE contains a subspace iso-
morphic to 1 [co and, hence, T g has no equivalent strictly convex norm [11].

Indeed, by Corollary 3, Ig = U@® V, U is isomorphic to ¢o, and Mg = U™ @
ev”, U” is isomorphic to /. Therefore, mg =Mpg/lg contains a subspace iso-
morphic to U**/ U, ie., I./co.
by Recall that the lower and upper Boyd indices of a symmetric space E are defined

Py = ri_tilf(logs)fltiglle I and g, =  inf (logs)/log|lD]l,

respectively, where D is the operator defined in (4).

Corollary 7. Let E be a symmetric space with q, <. Then the space Mg
is isomorphic to 1 ,(E) and Ig is isomorphic to co(E).

To prove this corollary, we need two additional statemenis.

Lemma 1. Let E be a symmetric space with qg<eo. Then, for every S and
T, S<T, we have ||yll;<Cllyllg forevery y € Eg, where S T i a5 |

Proof. Since ¢, <(logs)/log||Ds|| forany 0<s<1, log||Ds|l < (logs)/q,=
=logs'/?t. Hence, || D;|| <s'“E. Further, by analogy with the proof of the lemma
after Proposition 7, putting s = S/ T, we get |[ylly=llz-@pllp=zllz=IDsxllg<
<Dl xllg = Cllx-@gllg=Cllyllg. where C=(S/T)!""E<1.

Lemma 2. Let a sequence T,21,T,— o and inf T, 1/T,>1, supT,/Th<
< oo. Then spaces E" constructed by this sequence are uniformly isomorphic to E.

Proof. Let E[-S,,S,] be a subspace of E consisting of functions XX_s st
where §,=1-71,_1/T,, infS,>0. Using the definition of Er, and the symmetry,
we see that the space E7, is isometric to £ and E” is isometric 10 E[—S,, S,). Then
the operator Dg, defined by (4) acts from E into its subspace E[-S,,S.] and has
the norm at most 1 and norm of the inverse operator is at most 1/,

Proof of Corollary 7. Choose a sequence T,21, T, —>e, such that 1<
< i|'1=f Tps1/ Ty and sup T/ T, <ee. Then, by Proposition 6 and Lemma 1, we find

that, for the subspaces E” constructed by this sequence, Mg = [ _(E") and Ig=

= ¢o(E™) in the equivalent norm. To complete the proof, we apply Lemma 2.
Remark. From the proof of Corollary 7, it becomes clear that if g, <o, then the

subspaces E " form a strong unconditional décomposilion of Ig.
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54 0. V. KUCHER, A. M. PLICHKO

Proposition 8. The space Ip has a (Schauder) basis.

Proof. Denote by A, m=1, oo, the Haar system in the space E " and enumerate
the Haar functions by one index as is shown on the scheme below

hi—=>n  hi—=h]

h my R

*/

h3

Let (h,-)‘l"' be the system obtained. It is clear that its linear span is dense in [g.
Therefore, by the sufficient condition of basisness [8. p. 2]. it suffices to verify that, for
any finite collection of scalars a,. i=1,k +1, the inequality ||| x|[| <[il ¥ [l holds for

k k+1
x= Y ah. y= Y ah,
! 1

where 7,21, T, =, sup T4/ Ty <ee, and ||| x]|| = sup [l is the norm equi-
n

valent, by Proposition 7, to the initial norm of 7. Comldcr two cases.

. If suppx#suppy, where suppx={r: x(t)#0}, ic.. there exists j such that
h,\,+I = h{, supph,,; N suppx =@, then, forall 7, | y(r)|=|x(r)| and, consequent-
ly. forevery n. [[ylly 21l xlly, and |yl = [[x]l.

2. The functions x and y coincide everywhere with the exception of an interval
Ac{r: T,<|t|<T,,1} onwhich x isa constant, say, it takes a value b there, and
v(1) isequal to b+ a;,; on the first half of A and to b —ay,; on the second half of

A. Let T be an automorphism of the real line which permutes the first half of A with
its second half and leaves invariant every point outside A. Itis easy to sce that, for this

automorphism, ||| ¥lll=llly-Tlll and x(1) =(y(0)+y(T(1)) /2 for every 1€ R.
Therefore, [[|x [l <[]yl

Proposition 9. The system (h;))] from the preceding proposition is an
unconditional basis of 1g if and only if p;-> 1 and qp <.

Proof. Since the Haar system A, m =1, forms an unconditional basis of E,
if and only if Ppn> 1 and Gpn <o [9, p 156]. these conditions are necessary.

By Lemma 2 of Corollary 7, the spaces E" are uniformly isomorphic to E. Be-
sides. under the assumptions of Proposition 9, the subspaces £” form a strong uncon-
ditional decomposition of [z (Corollary 7). Applying the remark after Definition 1,
we conclude that the system (h;);” forms an unconditional basis of this space.

Definition 3. Let K be a convex subset in a linear space X. An element xe€ K
is called an exireme point of K if, forany ye X, x ¥ ye K implies that y = 0.
Proposition 10. Ler

xe Mg, ||x|l = 1, and Tim||x|l; <1 as T —>ee. (5)

Then there exists an element y € Ig, ||y||#0, such that ||x ¥ y||<1. Thus,
any point with condition (5) is not an extreme point of the unit ball of Mg, and the
unit ball B(Ig) of I contains no extreme point.
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Proof. Let supy. |lx|l;=1 and. for some a <1, there exists a number S such
. that ||x|ly<a as T>S. Let ye Ig, ||yll<1-a,y#0,suppy€ [S,). For T<S,

Ilx ¥ ylly=llxll;, and, for T> S, [lx Fylly < lxlly+ I ylly S a+1-a <1. The
proposition is proved. '

Definition 4. A Banach space X is called uniformly convex (7, p .34] if
S(e)=inf {1 -|fx+y|l/2: llx-yll =€, x,ye B(X)}, €>0, is a strictly positive
function on R*: 8(-) is called the modulus of convexity of X.

Proposition 11. Let E be a uniformly convex symmetric space and let x €
€ B(Mpg). Suppose that there exists C>0 and a sequence T, — o such that
ilxliy > 1-8(C/T,). Then x is an extreme point of B(ME).

Remark. The condition of Proposition 11 says that if there exists a sequence T,
such that || x| |; -> 1 sufficiently fast, then x is an extreme point of B(ME).
Proof. Suppose that there exists an element y € Mg such that ||x ¥ y|] < 1 and

y() # 0 on [-S.5] forsome $>0. Weset C =||y|lg, u=x+y, v=x—y. Then,
for 7>S. ||lu—v|l =2llyll;228T!||yllg=28ST-'C>C/T. The uniform con-
vexity of 2 yields 8(C/T) < 1+|[u+v|/2=1-||x]lf ie.,. || x|l<1-8(C/T).
We arrive at a coutradiction,

Proposition 12. Let E be a uniformly convex symmetric space and u e B(Mg).
Suppose that there exists a sequence T, —>eo such that sup, T, 1/T, <o and
lim|[ufly =1 as n—>oo. Then u isan extreme point of B(Mg).

Proof. Let ve Mg be a point such that Tim7 o« u F v |l < 1. Let us show

n

that lim7 </l v]], = 0. Assumc the contrary. Then, by passing to a subsequence, if
necessary, we can assume that ||v|l; = e forsome &> 0. For each n, we consider
n
u and u F v as clements of Evp,. Since the norms |[||; are uniformly convex, by
L

putting # =v and « +v =y in Definition 4, we can find 6(e)>0 such that & < l—
—llu+wu+viy, /2 < 1=|lully,. Thiscontradicts to the hypothesis that lim |[u||, =

as n— oo, Thus, hm ,._m”‘»’"-;- = (. For an arbitrary T> 0, there exists n: T, <
<T<T,.. Then Hollp< Tua T vy p- T,Hj‘['n‘l||v}[?. .,- The boundedness
of {T,,1/T,} implies that the last term tends to 0 as T — . Therefore, Hvllm£=

=0 and u is an extreme point of B(Mg).
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