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Reverse engineering of gene regulatory networks is an intensively stu- died topic in Systems Biology as it

reconstructs regulatory interactions between all genes in the genome in the most complete form. The extre- me

computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene

regulatory network is a sig- nificant obstacle to further development of this area. In this article the two most

common methods for modeling gene regulatory networks are surveyed: Boolean and Bayesian networks. The

mathematical descrip- tion of each method is given, as well as several algorithmic approaches to modeling gene

networks using these methods; the complexity of al- gorithms and the problems that arise during its

implementation are also noted.
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Introduction. The gene regulatory network is a com-

position of indirectly related modular DNA elements

(genes), receiving multiple input signals in the form of

RNA and proteins, processing the signals and inducing

the rate of the network genes transcribing into RNA

and translating into proteins. The network architecture

reflects the interaction between its various elements

and provides us with the most complete information on

the regulation of cell functioning in contrast to the tra-

ditional study of single genes, thus, the reverse engi-

neering of gene regulatory networks is an important

topic of Systems Biology.

There are 10 currently used approaches to the en-

gineering of gene networks, including machine lear-

ning, Bayesian networks, Boolean networks, diffe-

rential equations, Information Theory, Petri nets, neural

networks, and genetic algorithms [1–3]. Each approach

has advantages and disadvantages, the definition of

which is complicated due to the lack of substantial

reviews in scientific literature. Another problem is that

the abovementioned approaches are used to reconstruct

small networks of only 10–30 genes. The increase in

the number of genes causes an exponential growth of

the calculation complexity: for 30 genes there are

2.71·10158 probable network variants in case of using

Bayesian networks [4], although for Information Theo-

ry the complexity estimate is considerably less [5].

However, the task of reverse-engineering of gene

networks is still NP-hard [1], therefore, a vital part of

reviews should be dedicated to estimating the com-

putational complexity of the inference algorithms and

the analysis of algorithms which will allow revealing

the possibility of parallelizing to use them in the dis-

tributed computing and clusters.

This article reviews two engineering methods –

Boolean and Bayesian networks, several algorithmic

approaches and their evaluation.

Different methods of presenting gene networks.

One and the same gene regulatory network may be
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represented in various ways (Fig. 1). The simplest me-

thod is directed or undirected graph.

The directed graph G is a pair <V, E>, where V –

vertex set and E – edge set. The vertices correspond to

genes (or other system components), while the edges,

indicated as a pair of vertices <i, j>, correspond to the

regulatory interactions between the components. The

graph is directed if i and j are the head and tail of the

edge, respectively. The definitions of vertices and ed-

ges may be extended to store additional information

about the genes and their interactions. For instance, an

edge may be defined as <i, j, properties>. A slot pro-

perties may indicate whether one gene inhibits (–) or

activates (+) another one (see Fig. 1, a). Also properties

may be the list of regulators and their effect on this

edge, for instance <i, j ((k, activator), (l, inhibitor as a

homodimer protein))> [6].

Boolean networks. The level of gene expression in

Boolean synchronous networks is defined by the binary

variable which is either 0 or 1, i.e. the gene is either

knocked-out or expressing. The status of genes changes

at each discrete time step, that is why the networks are

called synchronous. A new status of the gene may de-

pend on the previous state of this gene and other genes.

N Boolean network nodes is N genes of the regulatory

network, k inputs of each node (here k is the maximal

number of inputs for each node) is k interactions,

regulating the gene expression. k inputs into a specific

node determine the binary level of the expression for

the corresponding gene. As each vertex may be in two

states only, the network of N genes has 2N of different

states. N- dimentional vector of variables may describe

the state at time t. The value of each variable at time t +

1 depends on the input data, which may be computed

using Boolean functions. The number of probable

Boolean functions for the vertex with k inputs is 22k.

Let us consider an example of the rules, used for the

network, in Fig. 1, c:

a t f a t a t ka( ) ( ( )) ( ) , ;� � � �1 1

b t f c t d t c t d t k
b

( ) ( ( ), ( )) ( ( )) ( ), ;� � � � � �1 2

c t f a t b t a t b t kc( ) ( ( ), ( )) ( ) ( ), ;� � � � �1 2

d t f c t c t k
d

( ) ( ( )) ( ( )), .� � � � �1 1

These rules may be used to create the table of

transitions from one state to the other, which

demonstrates that this network has two types of the

stationary behavior. Given the initial state a equals 0,

the system acquires stable state 0101, which means that

genes a, c are knock-outs, while genes b, d are

knock-ins. Given the initial state a is 1, the system runs

into a cyclic path, constantly running the following line

of states: 1000 � � 1001 � 1101 � 1111 � 1010 �
1000 [6].

The sequence of the states, formed due to Boolean

transformation, is the system trajectory. As the number

of states is finite, the set of possible transitions is also

finite. Thus, each trajectory leads either to the statio-

nary state or to the cyclic state. These states are called

attractors. All the states, leading to the same attractor,

form the attraction basin.

ÔÐÎËÎÂÀ À. Î.

V = {a, b, c, d}

E = {(a, a, +), (a, c,+), (b, c,+),

(c, b, –), (c, d, –), (d, b, +)}

p(xa)

p(xb)

p(xc|xa, xb)

p(xd|xc)

a(t + 1) = a(t)

b(t + 1) = (not c(t)) and d(t)

c(t + 1) = a(t) and b(t)

d(t + 1) = not c(t)

à á â

a

c d

b
a

c d

b
a

c d

b

Fig. 1 Different ways of presenting the gene regulatory network of four genes a–d [6]: a – network in the form of the directed graph (interaction

course is indicated with “+” and “–”, i.e. activation and inhibition); b – respective model in the form of Bayesian network (it should be noted that

some interactions were neglected, in particular, the inhibition of gene b by gene c and the activation of gene b by gene d, in order to obtain a

network without cycles); c – Boolean network



The Boolean networks are used to study general

properties of large gene networks. Viewing the random

Boolean networks (number of inputs k per one gene and

corresponding Boolean functions are selected at ran-

dom), Kauffman [7, 8] revealed that this system demo-

nstrates rather an ordered dynamics at small k values

and specific sets of rules. The average expected number

of attractors is N , and the average length of attractors

is limited to the value in proportion to N . Kauffman

made an assumption about the interpretation of the

number of probable attractors as the number of cells of

different types. This number is in good agreement with

currently known information about the types of cells

[9].

The algorithm, described in [10, 11], may be used

for reverse engineering of Boolean networks using the

data of microarray experiments. This algorithm defines

whether the vertex set �1, �2, ..., �k, k 	 N explains the

expression of a specific vertex �i. Boolean function

“activator-inhibitor”, described for the vertex �i may

be defined using the enumeration method, it is as

follows

� � � � �( ) ( ( ) ( ) ... ) ( ( ) ( ) ... ) ,t t t t t
j j

� 
 
 � � 
 
�1 2 1

where the first bracket is activator vertices, and the se-

cond one is inhibitor vertices.

Obviously, given small k values, the algorithm

complexity is polynomial, but it may have considerable

effect on the quality of obtained network. As stated

above, the number of all the possible Boolean functions

equals 22k

, thus, the increase in the value of k leads to

exponential complexity.

A more generalized and substantial approach to

solving the problem is found in [12–14], the authors of

which used the limited Boolean networks. In this case

the regulatory relations are presented by the matrix An �

n, where aij = 1 at positive regulation of gene xi by gene

xj; aij = –1 at negative regulation of gene xi by gene xj

and aij = 0 in other cases.

Thus, Boolean function fi is defined in accordance

to matrix A and values of genes xj, j = 1, ..., n ó at timet:

x t

if a x t

if a x t

x t if

i

ij j

j

ij j

j

i

( )

, ( ) ;

, ( ) ;

( ),

� �

�



�

�1

1 0

0 0

a x t
ij j

j

( ) .�

�

�

�
��

�

�
�
�

�

�

�
��

�

�
�
�

� 0

The sum a x t
ij j

j

( ) �� 0 – is the input of gene xi ó

time t. As not all the Boolean functions may be defined

in this representation, the Boolean network is conside-

red to be constrained. The reconstruction of gene net-

works is limited to solving the constraint satisfaction

problem (CSP).

CSP is defined by a set of variables X = {x1, x2, ...,

xn}; tuples D = {D1, D2, ..., Dn}, where Di – domain

tuple for xi; constraints C = {C1, C2, ..., Cm}, restricting

the values, which may be accepted by the variables si-

multaneously, where each set of Ci has constraints of

the subset of variables and defines the feasible com-

bination of values for these variables. The solution of

CSP is the assigning to each variable xi the value from

its domain D ito satisfy all the constraints in C [15].

CSP, defined in finite domains, are usually solved

by search algorithms, namely, by stepwise assignment

of possible values to the variables and verification of

the constraints satisfaction. The known algorithms are

backtracking, constraint propagation, and local search

[12]. The processes of selecting variables and assigning

some values to these variables depend on the order of

selection, therefore, there are many heuristic methods

to solve CSP [15] which has evident effect on the

reconstruction accuracy.
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abcd � a'b'c'd'

Interpretation of states at a = 0 Interpretation of states at a = 1

0000 � 0001 1000 � 1001

0001 � 0101 1001 � 1101

0010 � 0000 1010 � 1000

0011 � 0000 1011 � 1000

0100 � 0001 1100 � 1011

0101 � 0101 1101 � 1111

0110 � 0000 1110 � 1010

0111 � 0000 1111 � 1010

The states of Boolean network



In addition to the abovementioned problem, there

are a number of general drawbacks of the Boolean

network reconstruction using the real data [6]:

1. Binarization is a complex process, significantly

affecting the result. Sometimes it is hard to define the

exact binarization level using the expression data.

2. The states are incomplete. In practice most

transitions between the states are lost after the

binarization.

3. The existence of a large number of time points is

critical. Many transitions between the states are requir-

ed to distinguish correct states from incorrect ones and

to achieve a stable result.

4. Time points should not be very close to one ano-

ther. This is an unsteady balance between the highest

possible number of transitions between the states and

false-positive states. If two time points are too close, the

transition between them does not demonstrate any

changes, as the binarization is a very rough threshold,

which does not allow distinguishing insignificant con-

centration variations. This leads to the occurrence of a

high number of false-positive cycles in the corres-

ponding graph.

It should be noted that Boolean networks are not

just a reconstruction method, rather it is the repre-

sentation method, therefore, many different approaches

are used for reverse engineering [16].

Thus, the Boolean gene network may be recon-

structed using the Information Theory as in the known

algorithm REVEAL [17]. However, the Information

Theory is a specific set of the reconstruction methods

requiring the discrete detailed review, so here we

confine to a mere mention [18–21]. As seen, the

classification of the reconstruction methods is not so

strict and the complex of approaches is often used to

solve the task of reverse engineering of gene networks.

The Bayesian networks reflect the regulatory

gene networks as a directed acyclic graph G = <V, E>.

Similarly to the definition for the usual graph, the

vertices i � Vcorrespond to the genes, and the edges –

to the regulatory interactions. The variables xi belong to

the vertices and define the regulatory properties, for

instance, the level of gene expression or the number of

active proteins. The conditional probability distr-

ibution p(xi | L(xi)) is defined for each xi, where L(xi) –

the variable, belonging to direct regulators i.

The directed graph G together with the conditional

distribution describe the joint probability distribution

p(x), defining the Bayesian network. It may be consi-

dered as follows

p x p x L x
i

i

i
( ) ( | ( )).��

The directed graph reflects the probability depen-

dencies: the level of gene expression, presented by the

daughter vertex, depends on the expression level of

parent genes. Hence, the graph also has conditional

independencies i(xi; y | z), which means that: xi does

not depend on y, given the availability of z. Two

graphs, reflecting the Bayesian network, are equi-

valent, if the sets of their independent relations are

equal. However, in this case they may be considered

only as equal undirected graphs. Completely equi-

valent graphs are impossible to reveal using the studies

of the variable x only [22].

For the network in Fig. 1, b, the conditional

independent relations are as follows [6]:

i x x i x x x xa b d a b c( ; ) ( ; , | ),�

while the joint probability distribution of the network

[6] is

p x x x xa b c d
( , , , ) �

� � � �p x p x p x x x p x xa b c a b d c( ) ( ) ( | ; ) ( | ).

The aim of reconstruction of gene regulatory net-

works from the expression data using the Bayesian net-

works is to find the network or the class of equivalent

networks, which explain the experiment data in the best

possible way. The problem is to define the initial

probability distribution. However, it is more reason-

able to use the dynamic Bayesian networks, which may

be considered as the expansion of common Bayesian

networks and which are capable of reflecting the

dynamics of gene networks. Given the variable of

time-series microarray experiment x� Rn �p, xti, where n

– the number of time points, and p – the number of

genes, is the observation of gene i at time t, then the

observation vector at time t may be presented as x(t) =

[xt1, ..., xtp]
T and i gene at all the time points is – x(i) = [x1i,

..., x]T .
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The dynamic Bayesian networks assume the tem-

poral dependence where the directed edges should

“move” forward with time [23].

There is a common assumption that these networks

are the first-order Markov model where each gene is

directly affected only by the previous genes [24]. As

these models are time-dependent, it is easy to create a

network with reverse cycles. Fig. 2 demonstrates a

simple transformation of a cyclic network of three ge-

nes into the acyclic dynamic Bayesian network [23].

The joint probability distribution for the dynamic

Bayesian network may be calculated as

P x x P x L xnp ti ti

t

n

i

p

( ,... , ) ( ) | ( ).
11

11

�
��

��

As stated above, the main aim of the gene network

inference is the creation of such networks which would

present the best explanation of the experimental data.

This requires to find the structure and parameters of the

dynamic Bayesian network using the data. This task

may be formulated as follows.

Given the data from different time points, when D =

{x1, ..., xn}, we should find the model M = (G, �),with

the best correspondence to D, where M is defined by

the structure of the dynamic Bayesian network G, as

well as with the corresponding parameter � from the

family of conditional probability distribution.

According to the Bayes’ rule, the posterior distri-

bution of model M

P M D
P M P D M

P D
( | )

( ) ( | )

( )
,�

where the denominator P(D) = � P(D | M)P(M) – a

normalizing factor, not dependent on M, thus, taking

the logarithm, one can calculate the valuation function

for M [25]:

S M P D M P M( ) log ( | ) log ( ),� �
where the parameter P(M) is a priori for the model, and

P( P(D | M) – marginal probability for the D data, given

the model is M.

P(D | M) = � P(D |�, G)P(� | G)d�, äå P(� | G) – – a

priori distribution for the parameters. The selection of

optimal model M comes to the maximization of the

marginal probability.

To evaluate the integral, one can use Dirichlet dis-

tribution for discrete polynomial distributions and Wis-

hart distribution – for continuous gaussian distributions

[23].

Even given the evaluation function, finding an op-

timal dynamic Bayesian network for reverse enginee-

ring of gene networks is a very complicated task. Fir-

stly, the parent vertex set for each vertex is2N, äå N –

where N is the total number of nodes. Therefore, the

optimization task of finding the model with the highest

evaluation function is exponential [26].

Secondly, the search algorithm is not always suc-

cessful in finding the best model, usually only a local

maximum is reached, therefore, the only selected model

with the maximal valuation function is not always the

best.

There are several traditional approaches to solving

the above task. One of them is a greedy hill-climbing

search with random restarts [27]. A random network

model is selected for each restart. The mutation of this

basic structure occurs via addition or subtraction of one

edge. The algorithm defines all the possible mutations

of the basic structure and selects the one with the
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Time: t t + 1
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Fig. 2 The transformation of a simple

network into the dynamic Bayesian

network [23]: a – simple gene

network, where X
2

and X
3

form a

cycle, and X
1

is self-regulated; b –

equivalent dynamic Bayesian

network without cycles



highest score, and then it becomes the basic one. This

procedure is repeated until the local maximum is

reached, then the model is saved, and the procedure

restarts. The result is the set of models, the number of

which equals to the number of restarts. This algorithm

is defined in the work [23]; it is formulated in pseudo-

code as follows:

Greedy Hill-Climbing Search with Restarts for DBN

Input: D (test data of time points))

Nres (number of restarts)

Output: Mout (set of models with the highest grades)

for i = 1 to Nres do

produce random structure M0

repeat

Mbest � M0

foreach pair of nodes in DBN do

if edge = 0 (no connection

between two vertices)

then

M' � addEdge(M0)

else

M' � removeEdge(M0)

end

if score(M') > Score(Mbest) then

Mbest � M'

end

end

until Mbest = M0 (local maximum

is reached)

return Mout � Mbest

end.

Another class of heuristic algorithms, used to solve

the task of selecting the best model is theMarkov Chain

Monte Carlo (MCMC) method [28] with the

multivariate complex distribution. The mechanism of

this method is the creation of Markov chain, where a

new model
~
M is generated only based on the previous

M. Finally there is a chain of models, coinciding with

the expected distribution. A sufficient condition for the

coincidence is the balance equation for all the models

[23]:

P M M P M D P M M P M D
i k k k i i

( | ) ( | ) ( | ) ( | ),�
where P M M

i k
( | ) – transition probability from P(Mk)

to P(Mi).

One of important MCMC algorithms is

Metropolis-Hastings algorithm, based on the algorithm

of sampling – acceptance-rejection sampling algorithm

[29]. At each restart the algorithm generates a new

model, the candidate distribution Q(
~
M , M), which is

the probability of return of a new model
~
M at given

model M. Given the candidate model
~
M , it is possible

to calculate the probability of its acceptance

�(
~

, ) min ,
(

~
| ) ( |

~
)

( | ) (
~

| )
,M M

P M D Q M M

P M D Q M M
�

�
�
�

�
�
�

1

If the probability satisfies these conditions, the Markov

chain selects the current candidate model. Let us refer

to the work [23] once again to illustrate the algorithm in

pseudocode:

Metropolis-Hastings sampling algorithm for DBN

Input: D (test data of time points)

Nsam (number of samples)

Output: Mout (chain of models)

Produce initial model M0

for i = 1 to Nsam do

sample a new model
~
M from Q(

~
M, M)

compute

�(
~

, ) min ,
(

~
| ) ( |

~
)

( | ) (
~

| )
,M M

P M D Q M M

P M D Q M M

i

i i

�
�
�
�

�
�
�

1

sample u from U(0,1) (uniform distribution

to (0,1))

if �(
~
M , Mi) > u then

Mi + 1 �
~
M

else

Mi + 1 � Mi

end

return Mout � Mi+1

end.

Besides, the application of MCMC to find the

optimal Bayesian network is a costly computational

task. An increase in the number of network nodes

results in the exponential increase in the algorithm

complexity [30]. Compared to the greedy hill-climbing

search with random restarts, MCMC demonstrates

better results and is faster [23].
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One of the examples of Bayesian networks infere-

nce software is Banjo, which studies the structure of

static and dynamic Bayesian networks (http://www.cs.

duke.edu/~amink/software/banjo/). The authors used

the greedy hill-climbing search with random restarts,

simulated annealing and genetic algorithms, which

demonstrated similar results under the condition of

long-term performance. However, each method requi-

res different different time to find the best network (20

genes per 2,000 points): on Dell PC, 2.26 GHz CPU, 1

GB RAM the greedy search was the fastest (minutes),

simulated annealing rated (dozens of minutes), while

the genetic algorithm was the slowest (hours) 31].

The Bayesian networks may be efficiently combi-

ned with other methods. For instance, in [32] the greedy

hill-climbing search by Banjo realization was used

along with LASSO (least absolute shrinkage and se-

lection operator) and Dantzig selector from the fa mily

of regressive methods.

Conclusions. The analysis of two different appro-

aches to solving the problem of reverse engineering of

gene networks demonstrates that the increase in the

number of genes in the network leads to the exponen-

tially complicated computational task.

In case of Boolean networks the binarization of the

gene expression value (active or passive) allows stu-

dying larger networks investigating their general pro-

perties. Besides, we can limit the number of regulators

of a specific gene, thus facilitating the algorithm to save

some time. However, the abovementioned facilitations

affect the network quality.

In case of Bayesian networks the presented algo-

rithms demonstrate that there is a high risk of getting

into a local maximum, as the exponential complexity

requires the application of heuristic algorithms.

In the author’s opinion better results in both cases

can be obtained by distributing the computing load

using the cluster of computers. It does not require the

algorithm parallelism, a simpler way is to distribute the

data among the cluster nodes. In addition, it is rea-

sonable to use ensemble-methods, i.e. combinations of

several approaches, which will definitely enhance the

engineering accuracy.

Thus, one may conclude that the algorithms of re-

verse engineering of gene networks on the basis of

Boolean and Bayesian networks require detailed ma-

thematical foundation, which would allow reconstru-

cting the network model with the most accurate corre-

spondence to the experimental data, as well as the

modern computing approaches in the informational

technology fields, sincethe considered methods do not

solve the problem of exponential search.
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À. Î. Ôðîëîâà

Îãëÿä ìåòîä³â ìîäåëþâàííÿ ìåðåæ

ãåííî¿ ðåãóëÿö³¿: áóëåâ³ ³ áàºñîâ³ ìåðåæ³

²íñòèòóòó ìîëåêóëÿðíî¿ á³îëîã³¿ ³ ãåíåòèêè ÍÀÍ Óêðà¿íè

Âóë. Àêàäåì³êà Çàáîëîòíîãî, 150, Êè¿â, Óêðà¿íà, 03680

Ðåçþìå

Îäí³ºþ ç ïðîáëåì ñó÷àñíî¿ ñèñòåìíî¿ á³îëîã³¿ º ìîäåëþâàííÿ ìå-

ðåæ ãåííî¿ ðåãóëÿö³¿, ÿê³ ó íàéïîâí³øîìó âèãëÿä³ â³äòâîðþþòü ðå-

ãóëÿòîðí³ âçàºìîä³¿ ì³æ ãåíàìè âñüîãî îðãàí³çìó. Íàäçâè÷àéíà

îá÷èñëþâàëüíà ñêëàäí³ñòü ö³º¿ çàäà÷³ òà â³äñóòí³ñòü ´ðóíòîâíèõ

îãëÿä³â ìåòîä³â ðåêîíñòðóêö³¿ ãåííèõ ìåðåæ º çíà÷íîþ ïåðåøêî-

äîþ äëÿ ïîäàëüøîãî ðîçâèòêó öüîãî íàïðÿìêó ñèñòåìíî¿ á³îëîã³¿.

Ó äàí³é ñòàòò³ ðîçãëÿíóòî äâà íàéïîøèðåí³øèõ ìåòîäè ìîäå-

ëþâàííÿ ìåðåæ ãåííî¿ ðåãóëÿö³¿: áóëåâ³ ³ áàºñîâ³ ìåðåæ³, òà íà-

âåäåíî ìàòåìàòè÷íèé îïèñ êîæíîãî ç íèõ, à òàêîæ ðîçêðèòî

äåê³ëüêà àëãîðèòì³÷íèõ ï³äõîä³â äî ìîäåëþâàííÿ ãåííèõ ìåðåæ çà

äîïîìîãîþ öèõ ìåòîä³â, âêàçàíî íà ñêëàäí³ñòü àëãîðèòì³â òà çà-

çíà÷åíî ïðîáëåìè, ùî âèíèêàþòü ïðè ¿õíüîìó çàñòîñóâàíí³.

Êëþ÷îâ³ ñëîâà: ðåêîíñòðóêö³ÿ ìåðåæ ãåííî¿ ðåãóëÿö³¿, áóëåâ³

ìåðåæ³, áàºñîâ³ ìåðåæ³.

À. Î. Ôðîëîâà

Îáçîð ìåòîäîâ ìîäåëèðîâàíèÿ ñåòåé ãåííîé ðåãóëÿöèè:

áóëåâû è áàåñîâû ñåòè

Ðåçþìå

Îäíà èç ïðîáëåì ñîâðåìåííîé ñèñòåìíîé áèîëîãèè – ìîäåëèðîâà-

íèå ñåòåé ãåííîé ðåãóëÿöèè, â íàèáîëåå ïîëíîé ìåðå îòîáðàæàþ-

ùèõ ðåãóëÿòîðíûå âçàèìîäåéñòâèÿ ìåæäó ãåíàìè âñåãî îðãàíèç-

ìà. Áîëüøàÿ âû÷èñëèòåëüíàÿ ñëîæíîñòü òàêîé çàäà÷è è îòñóò-

ñòâèå îñíîâàòåëüíûõ îáçîðîâ ìåòîäîâ ðåêîíñòðóêöèè ãåííûõ ñå-

òåé ÿâëÿþòñÿ çíà÷èòåëüíîé ïðåãðàäîé äëÿ äàëüíåéøåãî ðàçâè-

òèÿ ýòîãî íàïðàâëåíèÿ ñèñòåìíîé áèîëîãèè. Â äàííîé ñòàòüå

ðàññìîòðåíû äâà íàèáîëåå ðàñïðîñòðàíåííûõ ìåòîäà ìîäåëèðî-

âàíèÿ ñåòåé ãåííîé ðåãóëÿöèè: áóëåâûå è áàåñîâûå ñåòè, à òàêæå

äàíî èõ ìàòåìàòè÷åñêîå îïèñàíèå, à òàêæå ðàñêðûòî íåñêîëüêî

àëãîðèòìè÷åñêèõ ïîäõîäîâ ê ìîäåëèðîâàíèþ ãåííûõ ñåòåé ñ ïî-

ìîùüþ ýòèõ ìåòîäîâ, óêàçàíû ñëîæíîñòü àëãîðèòìîâ è ïðîáëå-

ìû, êîòîðûå âîçíèêàþò ïðè èõ èñïîëüçîâàíèè.

Êëþ÷åâûå ñëîâà: ðåêîíñòðóêöèÿ ñåòåé ãåííîé ðåãóëÿöèè, áóëå-

âûå ñåòè, áàåñîâûå ñåòè.
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