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A note to our paper “Automorphisms of

homogeneous symmetric groups and

hierarchomorphisms of rooted trees”

Yaroslav V. Lavrenyuk, Vitaly I. Sushchansky

Abstract. The results on automorphisms of homogeneous

alternating groups are corrected and improved.

This note is a supplement to the recent paper [LS]. We assume that
the paper is available to the reader, and freely use notations and termi-
nology introduced there.

It was falsely asserted in [LS] that every automorphism of A(∂TΘ) is
locally inner. So, some parts of assertions of Proposition 10, Corollary 2,
Theorem 13, namely the assertions in parenthesis, are false.

We give below slightly modified and corrected Proposition 10 with
corrected and more clear proof and state result on the automorphisms of
the group A(∂TΘ).

Proposition 1. Let X denote either H or AH. Let α ∈ AutXΩ be such

that α(Xn) ≤ Xk where 1 < n ≤ k. Then α|Xn
∈ InnHk.

Proof. Let g ∈ XΩ. We have g ∈ Xn for some n ∈ N. Since XΩ is union
of its subgroups Xn (n ∈ N), there exists k ∈ N such that

α(Xn) ≤ Xk.

Let us show that α|Xn
is induced by an inner automorphism of Hk. By

Corollary 3.13c of [Rub] the automorphism α is induced by a homeomor-
phism γ of ∂TΩ. Note that every homeomorphism belonging to Hk is de-
termined by its action on Vk(TΩ). Suppose that for some 1 ≤ i, j ≤ fΩ(n),
i 6= j and 1 ≤ l ≤ fΩ(k) we have

γ−1(Pkl) ∩ Pni 6= ∅, (1)
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γ−1(Pkl) ∩ Pnj 6= ∅. (2)

Let g ∈ Xn be such that

g(Pni) = Pni, (3)

g(Pnj) 6= Pnj . (4)

Since gγ ∈ Xk, we get gγ(Pkl) = Pkm, where 1 ≤ m ≤ fΩ(k). Taking
into account (1) and (3) we get gγ(Pkl) = Pkl and by gγ ∈ Xk we have
gγ(x) = x for all x ∈ Pkl.

Also taking into account (2) and (4) we get that there exists x0 ∈
Pkl ∩ γ(Pnj) such that gγ(x0) 6= x0. This is a contradiction. Hence,
γ−1(Pkl) ⊂ Pni for some i such that 1 ≤ i ≤ fΩ(n).

Let

γ(Pni) = Pkli1 t . . . t Pkli,r(i)

for some r(i), where 1 ≤ li1, . . . , li,r(i) ≤ fΩ(k).

Since Xn is transitive, we can choose gi ∈ Xn, 1 ≤ i ≤ fΩ(n) such
that gi(Pni) = Pn1. Since gγ

i ∈ Xk and the sets γ(Pni) and γ(Pnj) do not
intersect, there exists a mapping

t : {1, . . . , r(i)} × {1, . . . , fΩ(n)} → {1, . . . , r(1)}

such that for every m and i, 1 ≤ m ≤ r(i), 1 ≤ i ≤ fΩ(n), the following
equality holds

gi

(

P γ−1

klim

)

= P γ−1

kl1,t(m,i)
. (5)

Note that t(m, i) does not depend on the choice of gi. Obviously, t(m, i)
is a bijection for every fixed i. Thus r(i) does not depend on i for 1 ≤
i ≤ fΩ(n). It is easy to see that r = r(i) = fΩ(n)/fΩ(n − 1) for all
1 ≤ i ≤ fΩ(n).

Let us define a homeomorphism π ∈ Hk as follows: the homeomor-
phism π maps the vertex vklim corresponding to the ball Pklim to the
vertex g−1

i (vk,t(m,i)) corresponding to the ball g−1
i (Pk,t(m,i)), for every i,

1 ≤ i ≤ fΩ(n), and for every m, 1 ≤ m ≤ r. Here t(m, i) is as in (5).
Since gi ∈ Xn, g−1

i (Pn1) = Pni and the vertex vk,t(m,i) lies under the
vertex vn1, the homeomorphism π is well-defined and does not depend
on the choice of gi. We remind that gi is an element of Xn such that
gi(Pni) = Pn1.

Let g ∈ Xn such that g(Pni) = Pnj . According to (5), we get

g
(

P γ−1

kl
i,t−1(m,i)

)

= P γ−1

kl
j,t−1(m,j)

. (6)
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Obviously g′ = πγgγ−1π−1 belongs to Hk. Let Pks ⊂ Pni. Using (6), we
get

g′(Pks) = πγgγ−1
(

Pkl
i,t−1(s+r−ir,i)

)

=

= π
(

Pkl
j,t−1(s+r−ir,j)

)

= Pk,s+(j−i)r = g(Pks).

Therefore πγ centralizes Xn. Hence, gγ = gπ−1
for all g ∈ Xn.

So we have proved that α|Xn
is induced by an inner automorphism

of Hk.

The main result of this note is then stated as follows.

Theorem 2. The automorphism group of the subgroup AHΩ coincides

with the automorphism group of the group HΩ.

Proof. Let α be an automorphism of AHΩ. The relation α|AHn
∈

InnHk follows from Proposition 1. The last inclusion implies that
α ∈ NHomeo(∂TΩ)(HΩ). Hence Aut AHΩ ≤ Aut HΩ. On the other hand,
AHΩ is the commutant of HΩ. Thus Aut HΩ is a subgroup of Aut AHΩ.
So Aut AHΩ = AutHΩ.

We also correct a misprint in [LS]. On p. 38, line 7 of [LS], the phrase
“we have Pni ∩Pmj 6= ∅ if and only if Pni = Pmj that is n = m and i = j”
should be replaced by “we have Pni ∩ Pnj 6= ∅ if and only if Pni = Pnj ,
that is i = j”.
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