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We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted expo-
nents) starting from the renormalization group equations and the mean field behavior for a wide class of models
at the upper critical behavior (for short and long range ¢ -theories) and below it. This allows us to check the
scaling relations among these critical exponents obtained by analysing the complex singularities (Lee-Yang and
Fisher zeroes) of these [nodels. Moreover, we have obtained an explicit method to compute the ¢ exponent
[defined by & ~ L(logL)q] and, finally, we have found a new derivation of the scaling law associated with it.
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1. Introduction

One of the main achievements of Wilson’s [1] renormalization group (RG) was the definition of uni-
versality class by means of a finite number of critical exponents. These critical exponents determine the
divergences of some observables at the critical point [2H6].

In particular circumstances, logarithmic corrections arise multiplicatively in these critical laws. These
logarithms are of a paramount importance in some materials (for example, dipolar magnets in three di-
mensions, which is the upper critical dimension of the system [7]) and can be accessed experimentally [8].
Moreover, their effects are very important in the non-perturbative definition of quantum field theories
in four dimensions (the so-called triviality problem) [9].

In [10H12], the scaling relations of the exponents which characterize the logarithmic corrections were
derived using the Lee-Yang [13] and Fisher zeroes [14] techniques in a model-independent manner. In
this paper, we will explicitly compute, using RG and field theory, the value of these exponents and then
check the (scaling) relations among them. We have done this for a wide class of models [¢p" models at
their upper critical dimensions with short (SR) and long range (LR) interactions] and can also be applied
to the models in low dimensions (as the four-state Potts model in two dimensions).

In the presence of logarithmic corrections, the scaling laws for the observables near the critical point
must be modified as [2H6]]

& ~ 1t7[logltl|”, (1.1)
C ~ [t loglel|%, (1.2)
m ~ 1tP[logldl|” for £ <o, (1.3)
x ~ 1™ ogldl”, (1.4)

1We use in the definition of the critical exponents the standard notation, see, for example, [2H6] 10l [11].
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m ~ hY%loghl® for t=0, (1.5)

ny ~ 1t*[logle]|®, (1.6)
(logr)ﬁ

G(r) ~ m for t=0, 1.7)

which define the so-called hatted exponents (d being the dimension). The standard critical exponents
(e.g., a, B, v, etc.) satisfy the classic scaling laws (see, for example, [2H6]). In addition, in [10-H12], it was
shown that the hatted exponents satisfy the following scaling relations

A = B-7, (1.8)
Bo-1) = 86-7, (1.9
= y-v@2-mn. (1.10)

Finally, see [10H12], at the infinite volume critical point, the correlation length of the system defined on a
finite box of size L behaves as’| .
&~ LlogL)® (1.11)

and the associated related scaling relation is
a=de—dv. (1.12)

When a = 0 and the impact angle of the Fisher zeros satisfies ¢ # /4, the previous relation should be
modified as [11]
a=1+d%—db. (1.13)

Finally, an additional scaling relation can be written [12]
2B-7=dy—dv. (1.14)

In this paper we will mainly analyze generic ¢” theories, with Hamiltonian (for simplicity we write
the scalar version for the short range model)ﬂ

Jf:fddx %(0y¢)2+%r0¢2+%gn(p” ) (1.15)

2. Some mean field results

We will use RG to analyze the critical behavior of the models, and after a finite number of RG step
we will finish in the parameter region in which we can apply mean field results. In this section we will
briefly review the basic facts of the scaling in this mean field region [4} 5].

We start with the free energy per spin for a ¢"-theory:

_Q 2 & n
fim) = 2m + nm . 2.1)

Minimizing f(m), for ry <0, we obtain magnetization as:

7ol 1

1/(n-2)
m= (—) ~ o 2.2)
&n gnm

2Recall § = (d+2-n)/(d—2+1).

3In this paper we avoid the mean field region by working at and below the upper critical region.

4Using power counting, we can compute when the coupling g5 is marginal, obtaining the so-called upper critical dimension, that
for short range models is

2n
d, =
“Tn-2
and for long range models (with propagator 1/g9)
no
dy = .
“Th-2

For o = 2, we recover the short range result.
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where p,, =1/(n-2) and

rn/(n—Z)
0
fmin —gz/(n_z) . 2.3)
n
The susceptibility is
X X |r0| ) (24)
and the specific heat
;21 (n=2) 1
Cox ot = o (&5
8n 8n

where p. =2/(n—2). Finally, we can add a magnetic field [which induces a term —km in equation (2.1)]
and compute the minimum of the free energy just at the critical point, ro = 0 (which is relevant in the
computation of the critical isotherm)

n/(n-1)
Jmin(ro =0, h) o D (2.6)
&n
and the magnetization at criticality is
h Ph
m(rg =0, h) x (—) , 2.7
n

where p, = 1/(n— 1) Hence, since n > 2, g, is an irrelevant dangerous variable for magnetization,
critical isotherm and specific heat, yet, y is free of this problem.

3. Revisiting logarithmic corrections

The starting point is the behavior of the singular part of the free energy density (that we denote simply
as f and denoting g, by g) under a RG transformation

1
f(to, ho, o) = ﬁf[t(b),g(b),h(b)], (8.1

where b is the RG scaling factor and #(b), h(b) and g(b) (the running couplings) denote the evolution
of different couplings under a RG transformation, which are obtained solving the following differential
equations (we write them for the LR model)

dr _
dlogh = tlo+vy(@]l, (3.2)
dlogh  d Y
dogh ~ 2717 (3:3)
dg
- X 3.4
dlogh Pw(g) (3.4)

which define the functions Bw,y and ﬂﬂ For further use we define two functions F(b) and {(b) and we
assume the following asymptotic behavior [gg = g(1)]

[ g(b)
Y& a
F = dg—=—1| ~ b%logh)?, 3.5
| 80
1g(b) (@)
_ Y8 c x
= —=— | dg=—==—1| ~b°(loghb)*. 3.6
4¢3 exp zgf gﬁw(g) (logb) (3.6)
0

5The introduction of py, pr, and p. will be useful at the upper critical dimension to collect the extra logs yielded by the g
renormalizing to zero in a logarithmic way. Below the upper critical dimension, g, is not a dangerous irrelevant variable: in this
situation, we will use py, = pc = pj, =0, i.e., there will be no extra logs from the g5 (b) in the mean field region.

6We can compute the thermal and magnetic critical exponents by means of n=7v(g*) and 1/v = o +y(g*), where g* satisfies
Bw(g™) =0 [BIA3I.
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The solutions are (we also write the asymptotic behavior as b — oo) as follows:

g
1) = tob%exp fdgﬂ ~ b (logh)?, 3.7)
Bw(g)
8o
: g(b) (@)
4 ')/g ¢+l+c X
h(b) = hob?ex ——fd S| ~ hybZ (loghb)~, (3.8)
0 {9) 5 gﬁw(g) 0 g
80
g(b)
logh = ex dg—— (3.9
8 P A gﬂw(g)

In the asymptotic regime (and for the models under consideration in this paper where fw o g°), the last
equation can be written as
g(b) ~ (logh)™", (3.10)

and this defines the r exponent (1/7 = s —1). In particular, the useful relation #(b*) = 1 can be written as
b* ~ 517+ (log ) PO+, (3.11)

Therefore, we can identify v = 1/(oc + a) and ¥ = —p/ (o + a) = —pv. From the form of /(b), one can obtain
¢ = —1/2. By computing suitable derivatives of the free energy per spin [see equation (3.1)] and using
the renormalized couplings given by equations (3.7)-(3.9), and in the case of the upper critical dimension
using the expression of the intensive free energy in the mean field regime [equations (2.2), (2.4)-(2-6)],
we can obtain the following relations for the exponents which control the logarithmic corrections (see
the appendix for more details)

a=—-dv+rpc, (3.12)
T=v2-n)+2x, (3.13)
N d
ﬁ:—f/(——1+ﬂ)+x+rpm, (3.149)
2 2
6;\_ 2xd 4 (315)
_d+2—n Ph, '
A——f/(d+1—n)—x+r (3.16)
02 2 pm. '
A =2x. (3.17)

These equation must be read at the upper critical dimension withn=0(SR)orn=2-0 (LR) and d =
d,, otherwise, below d,,, all the p’s from the mean field are zero (p,;, = p. = pn = 0). With these explicit
expressions for the hatted exponents, it is easy to re-derive the scaling relations given by equations (1.8)-
(L.10), (@C.19).

In models with @ = 0 and impact angle of the Fisher zeroes ¢ # m/4, a circumstance equivalent to
A_/As =1 (being A the critical amplitudes of the specific heat) [16], the scaling of the free energy is
modified ad’]

1 1
[ (to, ho, 80) = ﬁf(t(b),g(b), h(b)) + ﬁ(logb)ﬁ(t(b),g(b), h(b)), (3.18)

where the functions f and f; satisfy additional constraints to generate the right logarithmic correc-
tions (for more details see [16] and references therein). This decomposition of the free energy can be

7 As described in [16] the appearance of this extra log term in the free energy can be explained either as a resonance between the
thermal and the identity operators or as an interplay between the singular and regular parts of the free energy.
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also understood in terms of a Lee-Yang and Fisher zeros analysis, see [11} [12]. For instance, in the two-
dimensional pure Ising model, only the “energy”-sector develops logarithmic corrections, and these cor-
rections (for the free energy, energy and specific heat) are provided by the term proportional to f;. How-
ever, the scaling of the “magnetic”-sector is given by the standard term, proportional to f. In the two
dimensional diluted Ising model, the magnetic sector also shows logarithmic corrections, provided by the
(standard) term proportional to f, whereas the corrections for the energy-sector are given by the term
proportional to f;. Hence, only the relation of & (which is computed with the f;-term) should be modified

aG=—-dV+rpc+1. (3.19)

We have checked that these equations provide correct hatted exponents in O(N)-¢* models{ﬂ in the
short range and long range interactions, tensor (short range) ¢ (which includes percolation, m-compo-
nent spin glasses and Lee-Yang singularities, and can also be related with lattice animals), all of them
at their upper critical dimension and in the four-state Potts models, pure Ising model and diluted Ising
model in two dimensions [12} [15} [17H20]. The logarithmic scaling relations for all these models were
thoroughly checked in [12] ]

Finally, using this theoretical framework we have been able to compute A for the four-state two-
dimensional Potts model, A, f, 7} and § for SR tensor ¢>-theories and A for the LR O(N) ¢*-theories.
Finally, ¢ has been computed for the LR O(N) ¢*-theories. The numerical values for all these exponents
were derived in references [10HI2] using the logarithmic scaling relations (I.8)-(T.10), (T.12), (T.14). See
[12] for the values of these hatted exponents.

4. Are-derivation of & = d9Q — dV
We start with the dependence of a singular part of the intensive free energy on L
fsimgox L74. .1)
This is the key point of the derivation. Below the upper critical dimension, one has L ~ ¢ and one can
write fsing o< ¢ =4 but due to the logarithmic corrections which appear at the upper critical dimension

this is no longer true.
We can also write the singular part of the free energy, using the scaling of the specific heat [see equa-

tion (1.2)], as
fingox L™ o< t*7%(log . (4.2)

Using equations and (T.11) one can write
L~ logd)® ~ 1" (log 4997 ~ 2% (log )? 4.3)
Identifying the exponents of log¢ of the last two expressions we obtain the scaling relation given by
equation (L.12).
When @ = 0 and ¢ # 7/4 [11], the free energy scales as f o« L™%logL [see equation <> and the
discussion of section 3]. This extra-log, using the previous arguments, provides the following scaling law:

a=1+d@-7), 4.4)

obtaining equation (L.13).

8Where N is the number of components of the field.
9In [12] other exponents were defined (e.g., é, V¢ and d@c). It is straightforward to compute them using the theoretical framework
of this paper.
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5. Computation of the 9-exponent

We will compute the exponent ¢ for a generic ¢" theory at its upper critical dimension for both short
and long range models. The starting point is the expression of y in terms of the free energyEG]

0°f(t(b), g(b), h
X~ b2(2 % (5.1)
h=0
This can be written as [using #(b*) =1 and b* ~ {]
X~ @)% o ¢ (logé)™ . (5.2)
In a ¢" theory we can rescale the field via ¢' = g'/”¢ [21]], and the free energy per spin verifies
_—an(HD) k()
f(tO)gOyhO)_L G(gZ/"'W . (5.3)
Differentiating twice equation with respect to the magnetic field (hg), we obtain
on(L)]* o° t(L h(L
yox L4 () ( (@) ) (@) ) ~ L2{(L)? ) (5.4)
0hy Oh(D)? "\ g(L)?n’ gm)ln ho=1o=0 g(L)?n
Comparing with equation (5.2), we finally obtain
L
¢~ g(L)2/(n@2+20]” (5.5
and assuming the asymptotic behavior of g(L) given in equation we finally get
A 2r 2r
6= (5.6)

n@2+20) n@e-n

For the short range (/)4 theory (0 =2, n=4,7=—-2c=0and r = 1) we obtain ¢ = 1/4. For the short range
¢3 theory (0 =2,n=3,7=-2c=0and r = 1/2) we get ¢ = 1/6. In addition, for the long range ¢* model
[n=4,n=-2c=2-0)and r=1],9=1/(20).

Another way to obtain ? is to use the scaling relation provided by equation and equation

. a TP
= — + = 57
¥ d v d 6.7
or for « =0 and ¢ # 7/4, equations (1.13), (3.19)
. a 1 rpc
=—4+V—-——= , 58
¥ d v d d 5.8

obtaining the same final result irrespectively of the value of @ and the impact angle ¢.

So, 9 = 0 below d,, since pc = 0 therein; at the upper critical dimension (SR models) d = d,, = 2n/(n-2),
then ¢ = r/n as computed before. For LR models, d,, = no/(n—2) and then we recover the result given
by equation (5.6).

In [15} [22], the § exponent was computed using a misidentification of the correlation length for a
lattice of size L =1 [see equations (4.1}, and (3.17), of [22]] and [15], respectivelyl, providing,
however, with the correct value of § in general <p4 theories (and, in particular, for the four dimensional di-
luted model, see reference [22], where the right value of ¢ = 1/8 was obtained [22])) but not in gb3 ones [15].
In this section we have developed a new general method which avoids the previous misidentification of
¢. In particular, we have obtained the correct value of § = 1/6 for the general class of ¢° theories, see
above.

10gince, in this section, we work with the susceptibility, we take into account only the term proportional to f in equation
independently of the value of @ and ¢. See discussion of section
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In [23] it was conjectured that there is a relationship between ¢ and 1/d,, which is frequently an
equality but not always so. Indeed, It was already known [24] that ¢ = 1/8 for the four dimensional Ising
model which is described by a ¢* theory which has d,, = 4. In this paper we have provided the general
relation between ¢ and d,,.

To finish this section, we present two examples in which ¢ # 1/d,, to understand the reasons behind
the modification of this behavior. The first one is based on the study of ¢?*-theories with k > 2 and the
second one is the two parameter qb4—theory which describes the four dimensional diluted Ising model.

5.1. ¢>*-theories with k > 2 and short range interactions

The upper critical dimension for these models is d;, = 2k/(k — 1). One can compute the RG equations
at d,, obtaining [5]
dgok
dloghb

and so g o 1/logL (r = 1), that using equation ( . ) provides ¢ = 1/(2k) which is different to ¢ = (k —
1)/(2k) (only works for k = 2)[T]

x g5 (5.9)

5.2. Diluted Ising model

One can obtain an effective field theoretical version of the diluted Ising model by using the replica
trick, with effective Hamiltonian given by [22] [25]

HettlPi] —fddx

where v is related with the original Ising coupling and u is a function of the disorder strength. In the
replica trick it is mandatory to take the limit of the number of replicas, 7, to zero (i = 1,...,n). The RG
equations are, in d =4 and n =0,

z 1 i=1

2
L I b ol IR o
,,¢> 2; 4!(Z¢’)+4!,-=Zl¢’]’ (5.10)

dl((i);b = 2r+4Qu+3v)(1-r1), (5.11)
dv = -12v(4u+3v), (5.12)
dlogh
e _ guau+3n). (5.13)
dloghb

In the standard ¢* theory one gets S o g. Hence, g < 1/logL and ¢ = 1/4. However, the RG flow of the
diluted model asymptotically finishes on the line 4u+3v = O(u?), so we need to include the next (cubic)
terms in the perturbative expression and the RG B-functions are no longer quadratic in the couplings.
Finally, one finds that u(b)? ~ v(b)? ~ 1/log b: hence, ¢ = 1/8 as derived in [22} 24].

6. Conclusions

By explicitly computing the hatted critical exponents for a wide family of models we have been able
to check the scaling relations among them using the RG framework and the behavior in the mean field
regime. Some of these hatted exponents (for some of the models) have been previously derived by using
the logarithm scaling relations.

In addition, we have generalized a conjecture regarding a relationship between ¢ and d, and de-
rived it.

Finally, we have found a new method to derive the scaling relation associated with ¢ and we have
briefly discussed the logarithmic corrections to the free energy when the Fisher zeros have an impact
angle other than 7/4 and a = 0.

111 addition, working at d;, for short range models, 7 =0 and so ¢ = 0.
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A. Appendix

In this appendix we give additional details of the computation of the hatted exponents, see section 3]
By differentiating once the free energy with respect to the magnetic field, then renormalizing to
t(b*) = 1, and finally evaluating the magnetization using the mean field behavior , we obtain

g(b*)

wy—d % 1 Y(8) 1
b db dl2+1 _ = f d
mec BT TBTeR 75 ) 9 Baie) | g

~(b*)_d/2+1+c(10gb*)x+pmr. (A1)
The susceptibility is obtained by differentiating twice the free energy with respect to the magnetic field
[notice that there is no dependence on g in the mean field region (2.4)]:

gb")
¥ (b*)fd(b*)dJrZeXp _ f dg & - (b*)2+26(10gb*)2x. (AZ)
Bw(g)
8o
To obtain the specific heat, we differentiate twice the free energy with respect to the temperature, renor-
malize to #(b*) = 1, and evaluate the specific heat using the mean field behavior (1.2), obtaining

g(b*)
Y 1
Cox (b*) 4 (b")* exp |2 f dg % IO (b*)~4r20+2a(|og h*)2PHTPe (A.3)
W c
8o
The correlation length is obtained from ¢(b*) =1
£0< b* - t()_ll(a+a)(10gt0)_p/(a+a). (A.4)

By putting the previous relation between b* and ¢ in equations (A.I)-(A.3) and matching the Lh.s. log-
arithms [given by equations (I.2)-(1.4)] with the r.h.s. ones [given by equations (A.I)-(A.3)] we obtain
equations (3.12)-(3.14).

To compute the Lee-Yang edge, the starting point is the renormalized potential [5]

(0 o g

V(t(b),g(b), h(b)) = - m m" —h(b)m. (A.5)

From the constraints dV/8m = 0 and 6°V/dm? = 0 and working in the broken phase with ¢#(b*) = -1, it
is possible to show that

h(b*) ~ m(b*) ~1/g(b*)Pm, (A.6)
that can be written as
gb")
h(b*) = ho(b*)$+ exp |2 f dg L8| pob*) 51 (logh™)* ~ (logh®)"Pm, (A7)
2 o Pw(g)

which allows us to compute /g as a function of b*, and knowing b* () , we can easily obtain A (f).
The comparison of the logarithm of i (#,) with that of equation provides us with relation (3.16).
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Relation can be obtained taking the Fourier transform of equation at b ~ 1/q (g being the
momentum), and comparing this with the renormalized propagator in momentum space (see [6]).

Finally, for the critical isotherm, we start with the free energy computed at the critical point
f(0, hy, go), differentiate once with respect to kg to compute the critical magnetization, then renormalize
to h(b*) =1 and use the mean field behavior of the critical magnetization , obtaining

_h(b*) [ h(b*) P a1 _ a1
mo (b*) ”’—[ ~ (") —gb*)Pr ~ (b*)"?—(logb™)"P", (A.8)
x no | g o Ty 08
where h(b*) =1
b* ~ haz/(d+2+2c) (log hg)~2¥/(d+2+20) (A.9)

By matching the Lh.s. and r.h.s. logarithms of equations and (A.8), respectively, we obtain the rela-
tion (3.15).

Remember that 2c=-n,v=1/(c +a) and v = —pv.
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J.J. Ruiz-Lorenzo

Nepernsapg (norapudmivyHmx) cniBBigHOWEHb CKEWANIHrY 3
BMKOPUCTAaHHAM peHopMrpynu

X.X. Pyic-floperco™23
T disnunuii dakynbTeT, YHiBepcuTeT EkcTpemagypu, 06071 bagaxoc, IcnaHis
2 IHCcTUTYT NepegoBux HaykoBux obumncneHs (ICCAEX), YHiBepcuTeT EkcTpemagypu, 06071 M. Bagaxoc, IcnaHis
3 IHCTUTYT BioobumcneHs i gisnkm cknagHmx cuctem (BIFI), m. Caparoca, IcnaHis

M1 ABHO 06UNCNHOEMO KPUTWUYHI MOKA3HMKW, NOB'A3aHi 3 1orapndMiyHMMU NonpaBkaMu, BUXOAAUM 3 PiBHAHb
peHOpMrpynu i cepeHbLOMOLOBOI NOBEAIHKN A/ISt LUIMPOKOTO KNacy MoAeneid ik Npu BULLLA KPUTUYHI BUMIp-
HOCTI (419 KOPOTKO- | AANEKOCKHNX " -Teopild), Tak i HUXUe Big Hei. Lie 403BONSE HaM NepeBipuTH CMiBBI4HO-
LLIEHHS CKeVIHTY, L0 NOB'A3YH0Tb KPUTUYHI MOKa3HWKW, aHani3yroumn KOMNAEKCHI CUHTYASPHOCTI (Hyni Jli-AHra
i ®iwepa) unx Mogeneii. OKpiM TOro, M1 3aNpOMNOHYBaM ABHMUI MeTOA ANS 06UMCAEHHS NokasHUKa ¢ [03Ha-
yeHoro Kk ¢ ~ L(logL)(‘)] i, HaKiHeLb, M1 OTPUManNN HOBe BMBEJEHHS 3aKOHa CKelNiHry, NoB'A3aHOro 3 UMM
MOKa3HNKOM.

KnrouoBi cnoBa: peHopMrpyna, cKeiininr, 1orapudmu, cepesHe none
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