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Thermodynamic quantities of the hard-sphere system in the steady state with a small heat flux are calculated

within the continuous media approach. Analytical expressions for pressure, internal energy, and entropy are

found in the approximation of the fourth order in temperature gradients. It is shown that the gradient contri-

butions to the internal energy depend on the volume, while the entropy satisfies the second law of thermody-

namics for nonequilibrium processes. The calculations are performed for dimensions 3D, 2D, and 1D.
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1. Introduction

It is known from statistical mechanics that the interparticle interaction manifests itself in thermody-

namic quantities gradually passing from low gas densities to intermediate ones, e.g. [1]. A similar picture

concerning the effect of the interaction on thermodynamic behaviour should be expected for nonequilib-

rium states. They are more complicated and thus are usually investigated for the case of weak deviations

from equilibrium.

As concerns the weakly nonequilibrium states with a heat flux, the main attention was paid to the

phenomenon of heat conduction [1–4] as well as to calculations of the linear thermal conductivity coeffi-

cient [5–7]. Such nonequilibrium macroscopic quantities as pressure, internal energy, and entropy have

remained less studied. Interests in the entropy weremainly associated with calculations of its production

[1–7] closely related to the approaching to equilibrium due to relaxation processes.

Theoretical investigations of the thermodynamic properties of systems in the heat-conduction steady

state can be divided into two groups in which a) the effect of the heat flux on the pressure, entropy, and

other quantities and corresponding densities is studied and b) attempts aremade to suggest some general

formalism analogous to the equilibrium Gibbs relation (the basic thermodynamic equality). For the hard-

sphere model as one of the simplest interparticle interactions, the Enskog kinetic equation [5, 7, 8] is often

used in the both cases.

Applications of kinetic theory. In order to determine the effect of heat transfer on the weakly nonequi-

librium pressure or entropy, it is necessary to take into account the terms of higher orders in temperature

gradient than the linear ones. Marques and Kremer [9] solved the Enskog kinetic equation in the higher

approximations using both Grad’s and Chapman-Enskog’s methods. The calculated pressure tensor con-

tains contributions from the temperature gradients of the second order, which is referred to the Burnett

level [10].

The Grad method was also used in solving the Enskog equation for two-dimensional hard disks [11].

The set of transport equations of the derived extended hydrodynamics was applied to two problems:
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1) the first one [12] was on the pressure difference between the equilibrium and nonequilibrium sta-

tionary heat-conduction hard-disk gases separated by a porous wall; the phenomenological conclusion

on the pressure difference claimed in [13] had not been confirmed; 2) the second problem concerned

the description of hard disks between two parallel walls with different temperatures [11]; for the weakly

nonequilibrium case, the pressure correction was estimated to be quadratic in the heat flux.

These results follow from the nonstationary Enskog equation. In application to the steady case, the

pressure calculations were determined by both stationary and time-dependent parts of the nonequilib-

rium distribution function. Besides, this function was sought as a normal solution, while the appropriate

boundary conditions were not taken into consideration explicitly. As a consequence, one can deal with

local quantities, e.g., the energy and entropy densities and the intensity of entropy production. The total

energy, entropy, and its production cannot be found, unless explicit solutions for the hydrodynamic fields

of the local number density and temperature are obtained.

Extensions of the thermodynamic formalism. The idea of extension, introduced by Grad [14] for the

hydrodynamic level, is known to be applied to the construction of the local thermodynamic description of

nonequilibrium states, which is expected to go beyond the domain of the assumption of local equilibrium.

As a starting equation, the generalized Gibbs-like relation is chosen in the form written for the local

entropy density which depends on the extended set of hydrodynamic variables (e.g., including the stress

tensor and the heat flux.)

An approach referred to as Extended Thermodynamics (developed by Liu, Müller, and Ruggeri with co-

workers in works [15–20]), is aimed at analysing the transport equations for an extended set of variables,

to search for the ways of closure procedures for them, and to produce the criteria of choices of closure

relations. The analysis of the constitutive closure relations is realized on the grounds of phenomeno-

logical principles of invariance of the local hydrodynamic description, increasing the local entropy, and

concavity of the entropy density functional [15, 16, 18–20]. However, regardless of the use of entropic

(that is thermodynamic) criteria, the notion “extended hydrodynamics” seems to be more suitable for

this approach.

Banach proposed [21] microscopic justification of this scheme for the hard sphere system based on

the Enskog kinetic equation of the RET variant [8]. A recent study [22] is concerned with the phenomeno-

logical analysis and closure procedure for the extended set of hydrodynamic equations for dense gases,

from which the hard sphere result is derived as a particular case.

Extended Irreversible Thermodynamics [23–25] develops a formalism of local thermodynamics for

nonequilibrium processes, which does not exploit the local equilibrium assumption and interprets the

heat flux as an additional thermodynamic degree of freedom. One expects that it is capable of catching

the effects that are unattainable in the linear irreversible thermodynamics [2, 3].

This approach has been applied to hard spheres [26]. Using the Enskog kinetic equation and the

method of molecular hydrodynamics [27], explicit expressions for the phenomenological coefficients ap-

pearing in the extended Gibbs relation are calculated.

However, the extended irreversible thermodynamics and specifically its notion of the nonequilib-

rium temperature [28, 29] were criticized from the viewpoint of computer simulations [30, 31], using

phenomenological ideas [32, 33], and even on the grounds of its own internal methodology [34]. To our

knowledge, the discussion has not been resolved as well as no crucial experiment which would approve

or refute the main assumptions of this approach has been proposed.

Computer simulations. The hard spheres or disks are investigated in computer simulations with re-

gard to their properties in the heat-conduction state and behaviour of local quantities. The measure of

deviation of the results for the heat flux from the linear Fourier law is also studied.

Using the nonequilibrium molecular dynamics, the temperature and number density profiles for the

hard-disk system are obtained [35], which are shown to be in agreement with the results of the continuum

media approach. However, the thermal conductivity coefficient is found [35] to differ appreciably from

that given by the Enskog theory.

The steady states of hard spheres with a heat flux are explored by numerical methods of solving the

Enskog equation. One of them is the generalization [36] of the direct simulation Monte Carlo, proposed
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and developed by Bird [37–39]. In [40], the spectral method is used for solving the Enskog equation for

hard spheres (both elastic and inelastic) in the heat-conduction states. The profiles of the number density,

kinetic as well as potential components of the pressure and heat flux are shown to agree well with the

direct simulation Monte Carlo data [36].

Morriss with co-workers consider a simplified spatial configuration— the quasi-one-dimensional sys-

tem of hard disks in a narrow linear channel with model thermal baths on the ends [41]. The disks are

coupled to the thermostats by deterministic rules [41–43]. The temperature profile, the local entropy den-

sity, its production, and the heat flux through the system are obtained for both low [44] and intermediate

and high [45] densities. The effect of spatial correlations on the local entropy is examined in [46].

These numerical methods provide results describing the heat-conduction steady states in detail. How-

ever, they do not solve the problem of establishing theoretical interrelations between different macro-

scopic quantities. In recent works by del Pozo et al. [47, 48] computer simulation data for the two-

dimensional hard disks in the heat-conduction steady states are analyzed in terms of the equilibrium-like

equation of state and the local Fourier law. Bulk behaviour of the temperature and particle density pro-

files are shown to obey specific scaling relations valid even for strong nonequilibrium conditions. High

accuracy and reliability of these objective laws considerably deepen the understanding of the nature of

the steady states.

In [49], there is calculated the pressure, internal energy, entropy, and free energy (not accurately) of

the low-density gas in the weakly nonequilibrium heat-conduction steady state by means of the contin-

uous media approach. Simplicity of the method and the fact that the entropy found satisfies the second

law of thermodynamics show the usefulness of these results. However, an interaction potential does not

enter the thermodynamic quantities with regard to low densities. Here, we attempt to take interparticle

interaction into account for the particular case of the hard-sphere system at intermediate densities mak-

ing use of one of its simplest equations of state. This demonstrates the applicability of the method to the

calculation of thermodynamic quantities of gases in the situations where the size of particles becomes

important.

In section 2 we describe the heat-conduction steady state. Next, we find the pressure and internal

energy, section 3. The entropy calculations and conclusions are given in section 4 and section 5.

2. Heat-conduction state of the hard spheres

Our aim is to study the effect of the size ofmolecules on thermodynamic quantities of the intermediate

density gas in the heat-conduction steady state using the hard-sphere model. We restrict ourselves to a

simple case of weak nonequilibrium. N hard spheres are contained in a vessel of macroscopic size and of

a parallelepiped form. The length of the edge and the cross area are denoted by L andΩ (figure 1). Heat is

transferred in the direction parallel to the edge, while the local temperature is independent of time and

changes slowly along this direction.

Local temperature. Putting the explicit determination of the temperature profile off, we consider the

problem of calculation of the thermodynamic quantities from rather general grounds and as before [49]

we describe the steady state by the set of temperature value T0 and values {G1, . . . ,Gr } of its r successive

gradients referred to the geometrical middle-point of the vessel. If axis OZ of the reference system is

chosen to be parallel to the heat flux (figure 2), then the quantities

T0 ≡ T (z)
∣

∣

∣

z=0
, Gk ≡

∂k

∂zk
T (z)

∣

∣

∣

z=0

can approximately determine the local temperature:

T (z) = T0 +G1z +
1

2!
G2z2

+ . . .+
1

r !
Gr zr . (2.1)

The approximation is defined by the number of the gradients in equation (2.1).
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Figure 1. The hard-sphere system in the heat-

conduction steady state.
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Figure 2. The local temperature profile along the

hard-sphere system.

The weak nonequilibriummeans that any two neighbouring terms in equation (2.1) differ by an order
1
k |Gk+1z|≪ |Gk | for all z. For boundary values z =±L/2, these inequalities read:

1

2(k +1)
|Gk+1|L ≪|Gk |, (2.2)

in particular, 1
2
|G1|L≪T0,

1
4
|G2|L≪|G1|, etc. Such conditions are standard in nonequilibrium statistical

mechanics and kinetic theory, e.g., [2, 4, 5]. It is convenient to distinguish different orders by a formal

small parameter δ introduced into expansion (2.1):

T (z)= T0

[

1+δg1z + . . .+δr gr zr
]

, (2.3)

where reduced gradients {g } ≡ {g1, . . . , gr } defined by gk ≡
1

T0

1
k ! Gk are used instead of {G} ≡ {G1, . . . ,Gr }.

According to this δ-expansion, any macroscopic quantity A will be represented below as a series in pow-

ers of δ:

A = A0 +

r
∑

i=1

δi Ai , (2.4)

where Ai contains contributions from the gradient combinations of order i .

Local equation of state. If we select (figure 2) the macroscopically small layer [z − 1
2
dz; z + 1

2
dz] (but

sufficiently large in comparison with the hard-sphere diameter), then with regard to the weak nonequi-

librium of the state, the pressure in this layer can be approximated by the equilibrium equation of state.

We choose the latter to be the van der Waals equation for hard spheres, e.g., [1, 50]:

PV dW −HS =
N kBT

V −N b
, (2.5)

where V is the volume of an equilibrium system and b means the volume referred to a particle in the

close-packing state. The corresponding internal energy and entropy read:

Eeq ≡
1

2
DN kBT, (2.6)

Seq ≡ N kB

[

− ln N + ln(V −N b)+
1

2
D ln T +ξ(D)

S

]

, (2.7)

with D being the dimensionality and ξ(D)
S

≡
1
2

D ln(2πkBm/h2)+1+ 1
2

D , where m is themass of the particle

and h is Planck’s constant, see e.g., [1].

We substitute the real local values of the temperature T (z) and the number density n(z) into equa-

tion (2.5) to get the local pressure assumption for the weakly nonequilibrium heat-conduction steady

state:

P (z) =
n(z)kBT (z)

1−bn(z)
. (2.8)
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The local densities of the internal energy and entropy can be obtained from the equilibrium counterparts

Eeq/V and Seq/V in the same way:

ε(z) ≡
1

2
D n(z)kBT (z), (2.9)

s(z) ≡ kBn(z)

(

ln
{

[n(z)]−1
−b

}

+
1

2
D ln T (z)+ξ(D)

S

)

. (2.10)

3. Baric and caloric equations of state

Next, we turn to calculation of the pressure. The fact that the hard spheres are maintained in a me-

chanical equilibriummeans that the pressure has the same value all over the vessel:

P (z) = const. (3.1)

This statement is a natural condition for the heat-conduction steady state. It is involved in the statistical-

mechanical description of light scattering [51–53] and the BGK-model kinetic calculations [54, 55], while

in computer simulations checking of this condition ensures additionally the validity of results for the

steady state, e.g., [44]. Consequently, we have a constant quantity in the left-hand side of equation (2.8)

for the case of the steady state, henceforth denoted as P .

Number density n(z) obeys the normalization condition:

Ω

L/2
∫

−L/2

dz n(z)= N , (3.2)

where integrations with respect to transverse coordinates x and y have been performed1 in the integral

over the volumeΩ×L; N is the total number of particles in the system. The density n(z) can be expressed

through T (z) and P using equation (2.8): n(z) =C/[T (z)+bC ], where C ≡ P/kB is a constant. Substitution

of the expansion for the local temperature, equation (2.3), yields:

n(z) = n0
1

1+δγ1z + . . .+δrγr zr
, (3.3)

with

n0 ≡
C

T +bC
, γk ≡

1

k!

1

T +bC
Gk ; (3.4)

here and below, the middle-point temperature value is denoted by T (in place of T0).

It follows from the weak nonequilibrium conditions (2.2) that
∑

δkγk zk ≪ 1 and the fraction in equa-

tion (3.3) can be expanded (up to the r -th order):

n(z) = n0

[

ν0 +δν1z + . . .+δrνr zr
+ . . .

]

, (3.5)

with coefficients dependent on C through the parameters {γ}, equation (3.4):

ν0 = 1, ν3(C ) =−γ3 +2γ2γ1 −γ3
1,

ν1(C ) =−γ1, ν4(C ) =−γ4 +2γ3γ1 +γ2
2 −3γ2γ

2
1 +γ4

1,

ν2(C ) =−γ2 +γ2
1, . . .

In what follows, we restrict ourselves to the fourth order though it is not so hard to derive higher-order

contributions.

1
Ω= 1 in the 1D case, while for the 2D caseΩ means the linear size in the perpendicular direction.
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Perturbations for the pressure. Equation (3.5) inserted into the normalization condition (3.2) can be

integrated explicitly

n(T +bC )=C
[

1+δ2
κ2(C )+δ4

κ4(C )+ . . .
]

, (3.6)

where equation (3.4) has been used for n0; here, n ≡ N /ΩL is the number density in the state of thermal

equilibrium, while the coefficients introduced read:

κ2(C )≡
1

12
ν2(C )L2, κ4(C ) ≡

1

80
ν4(C )L4. (3.7)

Expression (3.6) is an equation to determine the constant C . Since ν2, ν4, . . . depend on C too, equa-

tion (3.6) is highly nonlinear. Its solution for the weak nonequilibrium can be sought by perturbations:

C =C (0)
+δ2C (2)

+δ4C (4)
+ . . . . (3.8)

Even orders in δ are absent here because they are absent in equation (3.6).

We note that the coefficients κ2, κ4, . . . are also to be expanded in δ:

κi (C )= κ(0)
i

+δ2
κ

(2)
i

+δ4
κ

(4)
i

+ . . . , i = 2; 4; . . . , (3.9)

where κ
(k)
i

is caused by those contributions to C whose order is not higher than k ; in particular, κ
(0)
i

is determined by the term C (0), κ
(2)
i

is determined by the terms C (0) and C (2), etc. After substitution of

expansion (3.9) into equation (3.6), the series in the square brackets is rearranged:

1+δ2
κ2 +δ4

κ4 + . . . = 1+δ2
κ(2) +δ4

κ(4) + . . . , (3.10)

where κ(2) ≡ κ
(0)
2 and κ(4) ≡ κ

(0)
4 +κ

(2)
2 contain terms of their own orders in the gradients. In accordance

with equations (3.7), they are related to

ν(2) ≡ ν(0)
2 , ν(4) ≡ ν(0)

4 +
20

3
L−2ν(2)

2 , . . . (3.11)

Explicit expressions for these coefficients are given in the Appendix.

Insertion of equations (3.8) and (3.10) into expression (3.6) gives equations for C (k):

n T +ηC (0)
=C (0), ηC (2)

=C (0)
κ(2) +C (2), ηC (4)

=C (0)
κ(4) +C (2)

κ(2) +C (4),

with η≡ nb being the reduced partial volume. Finally, we obtain the solutions:

C (0)
= n T η̃−1,

C (2)
=C (0)η̃−1[−κ(2)],

C (4)
=C (0)η̃−1

[

−κ(4) + η̃−1
κ

2
(2)

]

.

Here, η̃≡ 1−η denotes the reduced accessible volume. The result for C (4) has been obtained by the use of

the formula for C (2).

The contributions C (k) can be expressed through the gradients {g } and we deduce the baric equa-

tion of the weakly nonequilibrium heat-conduction steady state for hard spheres in the van der Waals

approximation [56]:

P (N ,Ω,L;T, g1 , . . . , g4) =
N kBT

ΩL−N b
(p0 +p2 +p4 + . . .), (3.12)

where powers of δ are omitted, and p0 ≡ 1, p2 ≡
1

12

(

g2 − g 2
1 η̃

)

L2, and

p4 ≡
1

80

[

g4 −2g3g1η̃−
4

9
g 2

2 η̃+
17

9
g2g 2

1 η̃

(

1−
12

17
η

)

−
4

9
g 4

1 η̃
2

(

1+
1

4
η

)]

L4.

The quantities p2 and p4 describe the corrections to the pressure from the gradients in corresponding

orders. The effect of particle’s size is involved in the reduced volume η referred to the particles, mainly in
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combination η̃≡ 1−η. Tending b → 0 causes η→ 0, η̃→ 1 which results in the expressions transforming

to those for the low-density case [49].

The gradient expansion for the middle-point value of the number density, equation (3.4), can be also

found as

n0 = n(0)
0 +n(2)

0 +n(4)
0 + . . . , (3.13)

in which the coefficients are defined as follows [56]: n(0)
0 = n, n(2)

0 = n 1
12

(

g2η̃− g 2
1 η̃

2
)

L2, and

n(4)
0 = n

1

80

[

g4η̃−2g3g1η̃
2
−

4

9
g 2

2 η̃

(

1+
1

4
η

)

+
17

9
g2g 2

1 η̃
2

(

1−
2

17
η

)

−
4

9
g 4

1 η̃
3

(

1+
3

2
η

)]

L4.

The internal energy is calculated by integration of its density ε(z), equation (2.9):

E ≡Ω

L/2
∫

−L/2

dz ε(z). (3.14)

It follows from the local equation of state (2.8) that ε(z) = 1
2 DP [1−bn(z)] is not constant along the heat

flux, contrary to the low-density gas case [49]. Normalization condition (3.2) simplifies the integration in

equation (3.14) resulting in E =
1
2

DPΩLη̃. Using expression for P yields:

E (N ,Ω,L;T, g1, . . . , g4) =
1

2
DN kBT (1+e2 +e4 + . . .) (3.15)

with coefficients ek = pk dependent on {g } and η = bN /(ΩL). We conclude that the internal energy of

hard spheres in the heat-conduction steady state depends on the volume ΩL and differs from the low-

density result [49], while the equilibrium energies of these systems are known to be identical and inde-

pendent on volume.

4. Entropy

Expression (2.10) for s(z) is related to a number of states in the phase space owing to the starting

equilibrium entropy (2.7). For this reason, we accept an integral quantity

S ≡Ω

L/2
∫

−L/2

dz s(z) (4.1)

to be the entropy of the weakly nonequilibrium heat-conduction steady state. After its calculation, S is

shown to satisfy the second law of thermodynamics for nonequilibrium processes [2, 3, 57].

Contributions to S. Using the local equation of state (2.8) for the expression
{

[n(z)]−1 − b
}

in equa-

tion (2.10), we obtain:

s(z)= kBn(z)
[

d1 ln T (z)− ln(P/kB)+ξ(D)
S

]

, (4.2)

with d1 ≡
1
2 D+1. This expression inserted into equation (4.1) produces three contributions corresponding

to the terms in the square brackets:

S = ST +SP +Sξ .

SP and Sξ can be found by virtue of the normalization condition, equation (3.2):

SP =−N kB ln(P/kB), Sξ = N kBξ
(D)
S

. (4.3)

Expanding ln(P/kB) into a series yields

SP = N kB

(

sP,0 + sP,2 + sP,4 + . . .
)

, (4.4)

where the coefficients read: sP,0 ≡− ln(n T η̃−1), sP,2 ≡
1

12

(

− g2 + g 2
1 η̃

)

L2, and

sP,4≡
1

80

[

−g4 + g3g12η̃+ g 2
2

(

13

18
−

4

9
η

)

+ g2g 2
1 η̃

(

−
22

9
+

4

3
η

)

+ g 4
1 η̃

2

(

13

18
+

1

9
η

)]

L4.
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Calculation of ST . We insert equation (4.2) into definition (4.1):

ST ≡Ωd1kB

L/2
∫

−L/2

dz w(z), (4.5)

where w(z) ≡ n(z) lnT (z). After the expansion of this function is used,

w(z) = n0

(

w0 +w1z +w2z2
+ . . .

)

,

we can integrate in equation (4.5) in explicit way:

ST = Ωd1kBn0L

(

w0 +
1

12
w2L2

+
1

80
w4L4

+ . . .

)

. (4.6)

Now, we use the expansion (3.5) for n(z) and the series lnT (z) = τ0 +τ1z +τ2z2 + . . . with the coeffi-

cients calculated from equation (2.1), which read:

τ0 = lnT, τ3 = g3 − g2g1 +
1
3

g 3
1 ,

τ1 = g1, τ4 = g4 − g3g1 −
1
2 g 2

2 + g2g 2
1 −

1
4 g 4

1 ,

τ2 = g2 −
1
2

g 2
1 , . . .

The quantities wi can be identified as discrete convolutions of {ν} and {τ}:

wi ≡ νiτ0 + . . .+νi−kτk + . . .+ν0τi . (4.7)

The series in equation (4.6) is to be rearranged in a similar way to the pressure case given above, as

wi are linear combinations of coefficients {ν}:

ST =Ωd1kBn0L

[

w(0) +
1

12
w(2)L

2
+

1

80
w(4)L

4
+ . . .

]

, (4.8)

where the new coefficients read:

w(0) ≡ w0, w(2) ≡ w (0)
2 , w(4) ≡ w (0)

4 +
20

3
L−2w (2)

2 , . . . ;

here, w (0)
i

≡
∑i

k=0
ν(0)

i−k
τk and w (2)

2 ≡ ν(2)
2 τ0 +ν(2)

1 τ1.

After substitution of expansion (3.13) for n0 into equation (4.8), we obtain the following result:

ST = N kB

(

sT,0 + sT,2 + sT,4 + . . .
)

, (4.9)

where sT,0 ≡ d1 ln T , sT,2 ≡ d1
1

12

[

g2 − g 2
1

(

3
2 −η

)]

L2, and

sT,4 ≡ d1
1

26·32 ·5

[

36g4 + (−108+72η)g3 g1 + (−34+16η)g 2
2 +

+
(

148−160η+48η2
)

g2g 2
1 +

(

−45+56η−16η2
−4η3

)

g 4
1

]

L4.

Compatibility with the second law of thermodynamics. We collect the contributions found in equa-

tions (4.3), (4.4), and (4.9) to obtain the final expression [56]:

S = N kB

(

s0 + s2 + s4 + . . .
)

(4.10)

with the coefficients defined by si ≡ sT,i + sP,i + sξ,i :

s0 ≡ ln(ΩL/N −b)+
D

2
ln T +ξ(D)

S
,

s2 ≡
1

23 ·3

{

Dg2 +

[(

−
3

2
+η

)

D −1

]

g 2
1

}

L2,

s4 ≡
1

27 ·32·5

(

σ4g4 +σ31g3g1 +σ2g 2
2 +σ21g2g 2

1 +σ1g 4
1

)

L4;
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the σα’s multiplying the gradients in s4 are written as follows:

σ4 ≡ 36D, σ21 ≡ (148−160η+48η2 )D+120−48η,

σ31 ≡ (−108+72η)D −72, σ1 ≡ (−45+56η−16η2 −4η3)D −38+16η+4η2 .

σ2 ≡ (−34+16η)D −16,

We notice that the coefficients si for the entropy (an additive quantity) depend on the dimensionality D ,

contrary to the pressure ones, pi . In the limit b → 0 (and η→ 0), the low-density gas results are recovered,

which coincide for value D = 3 with those found earlier [49].

Any nonequilibrium state undergoes a relaxation at the conditions of the free evolution, which is

accompanied by the entropy increase [2, 3, 57]. We show that the entropy calculated (4.10) possesses this

feature. To this end, let us imagine that the system is made isolated on the boundaries z = ∓
1
2

L and

afterwards it is allowed to relax during a macroscopically large time interval. The entropy Sfin of the

final equilibrium can be compared to that of the initial steady state, equation (4.10).

The internal energy of the hard spheres does not change after the isolation, thus E =
D
2

N kBTfin, where

Tfin is the temperature ascribed to the final state. We derive from equation (3.15) for the internal energy:

Tfin = T
(

1+e2 +e4 + . . .
)

.

Substitution of this result into equation (2.6) leads to the entropy of the final equilibrium:

Sfin = N kB

{

ln

(

ΩL

N
−b

)

+
D

2
ln T +

D

2

[

p2 +

(

p4 −
1

2
p2

2

)

+ . . .

]

+ξ(D)
S

}

,

where we have used that ek = pk , while the third term in the curly brackets is an expansion of the

logarithm.

The entropy difference ∆S ≡ S −Sfin takes the form ∆S =∆S(2) +∆S(4) + . . . with

∆S(2)
≡ N kB

D +2

48

(

− g 2
1 L2

)

,

∆S(4)
≡ N kB

D +2

27 ·32 ·5

[

−36g3g1 −8g 2
2 + (60−24η)g2 g 2

1 +
(

−19+8η+2η2
)

g 4
1

]

L4.

It is obvious that ∆S(2) < 0, while the sign of ∆S(4) is undetermined and depends on the values of the

fourth-order gradients. However, the restrictions (2.2) imposed on the weak nonequilibrium ensure that

|∆S(4)| ≪ |∆S(2)|. For this reason, we conclude that the nonequilibrium entropy found is less than the

entropy of the corresponding equilibrium state and as a consequence it satisfies the second law of ther-

modynamics for nonequilibrium processes [2, 3, 57].

5. Conclusions

We have considered the pressure, internal energy, and entropy of the hard-sphere system in the

weakly nonequilibrium heat-conduction steady state. They are calculated in the continuous media ap-

proach using integrations of the proper local densities.

The results are obtained in the form of expansions in the temperature gradients evaluated in the

geometrical middle of the system up to the fourth order. They describe the effect of the particle size on

thermodynamic quantities at intermediate densities. The coefficients of the expansions depend on the

packing parameter (referred to the uniform equilibrium), revealing dependence of the nonequilibrium

corrections on the volume of the system. The entropy calculated is shown to obey the second law of

thermodynamics for nonequilibrium processes.

The results are applicable for dimensions D = 1;2;3. The van der Waals approximation for hard

spheres used restricts the applicability to the domain of not high densities for three- and two-dimensional

systems where this approximation is valid for the equilibrium. In the one-dimensional case, the equilib-

rium van der Waals equation of state is exact [58]. For this reason, we expect that our results can be used

at high densities while the probable inaccuracy may be caused only by the method used rather than by

the local equation of state.
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Our calculations do not go beyond the scope of thermodynamic ideas, since no external results coming

from other nonequilibrium theories (e.g., kinetic theory, informational theory, or the approach of fluctu-

ation theorems) have been used. The simplicity and explicit analytical description can be also regarded

as positive features.
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A. Expressions for coefficients {ν} and {κ}.

First of all, we expand quantities {γ}, which define coefficients {ν} by the expressions given after

equation (3.5). Note that γ j is of the order ∼ δ j , equation (3.4):

γ j =
1

j !

G j

T +bC (0)

1

1+δ2ζ(2) +δ4ζ(4) + . . .
,

where ζ(k) ≡ bC (k)/[T +bC (0)]
∣

∣

k=2;4; .... For the fourth order it is sufficient to expand only γ1 and γ2, while

γ3 and γ4 are to be taken in the lowest approximation:

γ j

∣

∣

j=1;2 = g j η̃
{

1+δ2[−ζ(2)]+ . . .
}

, γ j

∣

∣

j=3;4 = g j η̃
(

1+ . . .
)

,

where g j ≡
1
j !

G j /T . A contribution from ζ(2) is also needed in γ2
1 = g 2

1 η̃
2
{

1+δ22[−ζ(2)]+ . . .
}

.

From the definitions given after equation (3.5), we find the lowest-order contributions to {ν} in the

form:
ν(0)

1 =−g1η̃, ν(0)
3 =−g3η̃+2g2g1η̃

2 − g 3
1 η̃

3,

ν(0)
2 =−g2η̃+ g 2

1 η̃
2, ν(0)

4 =−g4η̃+2g3g1η̃
2 + g 2

2 η̃
2 −3g2g 2

1 η̃
3 + g 4

1 η̃
4.

The result ζ(2) =−
L2

12
η̃−1ην(0)

2 gives the corrections as follows:

ν(2)
1 =

L2

12
η

(

g2g1η̃− g 3
1 η̃

2
)

, ν(2)
2 =

L2

12
η

(

g 2
2 η̃−3g2g 2

1 η̃
2
+2g 4

1 η̃
3
)

which are of the third and fourth orders. Due to the factor η ∼ n, ν(2)
i

are small in comparison with

ν(0)
i

at low densities. Expressions for κ(0)
2 , κ(2)

2 , and κ(0)
4 can be obtained using the formulae for ν(k)

i
and

equations (3.7). Then, the rearranged coefficients read:

κ(2) =
L2

12

(

− g2η̃+ g 2
1 η̃

2
)

,

κ(4) =
L4

80

[

−g4η̃+2g3g1η̃
2
+ g 2

2 η̃

(

1−
4

9
η

)

−3g2g 2
1 η̃

2

(

1−
4

9
η

)

+ g 4
1 η̃

3

(

1+
1

9
η

)]

.
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Тиск i ентропiя твердих кульок у слабонерiвноважному

теплопровiдному стацiонарному станi

Й.А. Гуменюк

Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв, Україна

В рамках пiдходу суцiльного середовища розраховано термодинамiчнi величини системи твердих кульок

у стацiонарному станi з малим тепловим потоком. Аналiтичнi вирази для тиску, внутрiшньої енергiї та

ентропiї знайдено в наближеннi четвертого порядку за ґрадiєнтами температури. Показано, що ґрадiєнтнi

внески до внутрiшньої енергiї залежать вiд об’єму, а ентропiя задовольняє II-е начало термодинамiки для

нерiвноважних процесiв. Розрахунки проведено для вимiрностей 3D, 2D та 1D.

Ключовi слова: тепловий потiк, температурнi ґрадiєнти, рiвняння стану, нерiвноважна ентропiя,
термодинамiка стацiонарного стану
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