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Abstract. The notions of (G,φ)-crossed product and quasi-
crossed system are introduced in the setting of (G,φ)-quasiassocia-
tive algebras, i.e., algebras endowed with a grading by a group G,
satisfying a “quasiassociative” law. It is presented two equivalence re-
lations, one for quasicrossed systems and another for (G,φ)-crossed
products. Also the notion of graded-bimodule in order to study
simple (G,φ)-crossed products is studied.

1. Introduction

The (G,φ)-quasiassociative algebras were introduced by H. Albuquer-
que and S. Majid about a decade ago [4], and during the last years have
been studied with some collaborators (see [2] and the references therein).
Inspired by the theory of graded rings and graded algebras ([9–12]), in
the present paper we extend the concepts of crossed product and crossed
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system to the context of (G,φ)-quasiassociative algebras. The division
(G,φ)-quasiassociative algebras are (G,φ)-crossed products, as well as
some notable nonassociative algebras such as the twisted group algebras
like Cayley algebras. Among them, we stand out the octonions with
potential relevance to many interesting fields of mathematics, namely
spinors, Bott periodicity, projective and Lorentzian geometry, Jordan
algebras, and the exceptional Lie groups. We also refer its applications
to physics, such as, the foundations of quantum mechanics and string
theory. We prove some basic results about (G,φ)-crossed products and
quasicrossed systems, emphasizing the case of twisted group algebras.
Our work extends the study on unital antiassociative quasialgebras with
semisimple even part presented in [7].

In Section 2 we introduce the basic definitions and properties related
to (G,φ)-quasiassociative algebras. Section 3 is devoted to present some
results about the set of the units of this class of algebras. In Section 4
the (G,φ)-crossed products and quasicrossed systems are defined, and a
correspondence between them is presented with some examples. Then,
in Section 5, we present two equivalence relations, one for quasicrossed
systems and another for (G,φ)-crossed products, and in the end of this
section we relate them in a suitable way. In Section 6 we study some
compatibilities between (G,φ)-crossed products and the Cayley-Dickson
process. It is shown that the quasicrossed system corresponding to the
twisted group algebra obtained from the Cayley-Dickson process applied to
a twisted group algebra is related to the quasicrossed system corresponding
to the initial algebra. Section 7 is dedicated to simple (G,φ)-crossed
products. The definition of representation of a (G,φ)-quasiassociative
algebra is introduced and described in a commutative diagram. Some
examples of graded modules over (G,φ)-quasiassociative algebras are
included.

2. Preliminaries

Throughout this work, A denotes an algebra with identity element 1
over an algebraically closed field K with characteristic zero and G a
multiplicative group with neutral element e.

Definition 2.1. A grading by a group G of an algebra A is a decomposi-
tion A =

⊕
g∈GAg as a direct sum of vector subspaces {Ag 6= 0 : g ∈ G}

of A indexed by the elements of G satisfying

AgAh ⊂ Agh for any g, h ∈ G,
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where we denote by AgAh the set of all finite sums of products xgxh
with xg ∈ Ag and xh ∈ Ah. An algebra A endowed with a grading by a
group G is called a G-graded algebra. Moreover, if A satisfies the stronger
condition

AgAh = Agh for any g, h ∈ G,

it is called a strongly G-graded algebra.

In this paper G is generated by the set of all the elements g ∈ G such
that Ag 6= 0, usually called the support of the grading.

The subspaces Ag (with g ∈ G) are referred to as homogeneous
components of the grading, and a nonzero element xg ∈ Ag is called
homogeneous of degree g. Any nonzero element x ∈ A can be written
uniquely in the form x =

∑
g∈G xg, where xg ∈ Ag and at most finitely

many elements xg are nonzero.
Given two gradings Γ and Γ′ on A, Γ is a refinement of Γ′ if any homo-

geneous component of Γ′ is a (direct) sum of homogeneous components
of Γ. A grading is fine if it admits no proper refinement. Throughout this
paper, the gradings will be considered fine.

A subspace B ⊆ A is called a graded subspace if B =
⊕

g∈G(B ∩Ag).
Equivalently, a subspace B is graded if for any x ∈ B, we can write
x =

∑
g∈G xg, where xg is a homogeneous element of degree g in B, for

any g ∈ G. We say that a graded subalgebra is a subalgebra which is
a graded subspace, and we say that a graded ideal I ⊂ A is a graded
subspace I = ⊕g∈GIg of A such that IA+AI ⊂ I.

Definition 2.2. A map φ : G × G × G −→ K
× is a 3-cocycle (in the

following just cocycle) if

φ(h, k, l)φ(g, hk, l)φ(g, h, k) = φ(g, h, kl)φ(gh, k, l), (2.1)

φ(g, e, h) = 1, (2.2)

hold for any g, h, k, l ∈ G, where e is the identity of G.

Next lemma lists some properties of cocycles useful in the sequel.

Lemma 2.3. If φ : G × G × G −→ K
× is a cocycle then the following

conditions hold for any g, h ∈ G:
(i) φ(e, g, h) = φ(g, h, e) = 1;
(ii) φ(g, g−1, g)φ(g−1, g, h) = φ(g, g−1, gh);
(iii) φ(g, g−1, g)φ(g−1, g, g−1) = 1;
(iv) φ(h, h−1, g−1)φ(g, h, h−1) = φ(g, h, h−1g−1)φ(gh, h−1, g−1).
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Proof. First we show (i). In (2.1) we consider k = e and get

φ(h, e, l)φ(g, h, l)φ(g, h, e) = φ(g, h, l)φ(gh, e, l).

Now by (2.2) it comes φ(g, h, e) = 1. We obtain the other equality in a
similar way. To show (ii) we replace in (2.1) h by g−1, k by g, l by h and
take in account (i). The item (iii) is a particular case of (ii) with h = g−1.
Now we prove (iv) from the definition of cocycle. For any g, h ∈ G we
have

φ(h, h−1, g−1)φ(g, h, h−1) = φ(h, h−1, g−1)φ(g, hh−1, g−1)φ(g, h, h−1)

= φ(g, h, h−1g−1)φ(gh, h−1, g−1)

The category of G-graded vector spaces is monoidal by way of

ΦV,W,Z : (V ⊗W ) ⊗ Z −→ V ⊗ (W ⊗ Z)

(vg ⊗ wh) ⊗ zk 7−→ φ(g, h, k)vg ⊗ (wh ⊗ zk),

for any homogeneous elements vg of degree g in V , wh of degree h in W

and zk of degree k in Z.

Definition 2.4. A map F : G×G −→ K
× is a 2-cochain if

F (e, g) = F (g, e) = 1

holds for any g ∈ G.

The notion of (G,φ)-quasiassociative algebra was introduced in [4]. This
new class of algebras includes the usual associative algebras but also some
notable nonassociative examples, like the octonions.

Definition 2.5. Let φ : G×G×G −→ K
× be an invertible cocycle. A

(G,φ)-quasiassociative algebra (or simply a quasialgebra) is a G-graded
algebra A =

⊕
g∈GAg with product map A ⊗ A −→ A obeying the

quasiassociative law in the sense

(xgxh)xk = φ(g, h, k)xg(xhxk), (2.3)

for any xg ∈ Ag, xh ∈ Ah, xk ∈ Ak. Moreover, a (G,φ)-quasiassociative
algebra A is called coboundary if the associated cocycle is

φ(g, h, k) =
F (g, h)F (gh, k)

F (h, k)F (g, hk)
,

for a certain 2-cochain F with g, h, k ∈ G.



50 (G,φ)-crossed product

Remark 2.6. If A is an unital (G,φ)-quasiassociative algebra then Ae
is an associative algebra (1 ∈ Ae) and Ag is an associative Ae-bimodule
for any g ∈ Ag.

Example 2.7. All associative graded algebras are (G,φ)-quasiassociative
algebras (with φ(g, h, k) = 1 for any g, h, k ∈ G). In particular for the
group G = Z2, the (G,φ)-quasiassociative algebras admit only two types
of algebras. The mentioned associative case with φ identically 1, and the
antiassociative case with φ(x, y, z) = (−1)xyz, for all x, y, z ∈ Z2. The
antiassociative quasialgebras were considered in [3] and recently studied
in [1]. For G = Z3, every cocycle has the form

φ111 = α, φ112 = β, φ121 =
1

ωα
, φ122 =

ω

β
,

φ211 =
α

βω
, φ212 = αω, φ221 =

β

ωα
, φ222 =

ω

α

for some nonzero α, β ∈ K and ω a cubic root of the unity. Here φ111 is a
shorthand for φ(1, 1, 1), etc. Zn-quasialgebras are studied in [5].

Lemma 2.8. A (G,φ)-quasiassociative algebra A is strongly graded if
and only if 1 ∈ AgAg−1 for all g ∈ G.

Proof. Suppose 1 ∈ AgAg−1 for all g ∈ G. For any h ∈ G it follows that

Agh = 1Agh ⊂ AgAg−1Agh ⊂ AgAh,

hence Agh = AgAh. The converse is obvious.

Lemma 2.9. Let A be a strongly graded and commutative quasialgebra,
then G is an abelian group.

Proof. Since A is strongly graded, we have that AgAh = Agh 6= 0 for any
g, h ∈ G. Therefore there exist xg ∈ Ag and xh ∈ Ah such that xgxh 6= 0.
Since A is commutative, we have that xgxh = xhxg 6= 0, and this implies
gh = hg.

Lemma 2.10. Let A be a strongly (G,φ)-quasiassociative algebra. If
x ∈ A such that xAg = 0 or Agx = 0, for some g ∈ G, then x = 0.

Proof. Let x ∈ A such that xAg = 0 for some g ∈ G (the another case is
analogue). Then we have xAgAg−1 = 0, or equivalently xAe = 0. From
1 ∈ Ae, we conclude that x = 0.

Remark 2.11. By the previous result we have for a strongly (G,φ)-
quasiassociative algebra that always the support of the grading must be
the entire G.
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3. Units of a (G, φ)-quasiassociative algebra

Definition 3.1. An element u of a (G,φ)-quasiassociative algebra A is
called a left unit if there exists a left inverse u−1

L ∈ A such that u−1
L u = 1.

Similarly, u is said a right unit if there exists a right inverse u−1
R ∈ A such

that uu−1
R = 1. By an unit (or invertible element) we mean an element

u ∈ A that has a left and right inverses. We denote by U(A) the set of
all units of A.

Definition 3.2. An unit u of A is graded if u ∈ Ag for some g ∈ G.
The set of all graded units of A is denoted by Gr U(A) and we have
Gr U(A) =

⋃
g∈G(U(A) ∩Ag).

Lemma 3.3. Let u be a graded unit of degree g of a (G,φ)-quasiassociative
algebra A. The following assertions hold.

(i) The left inverse u−1
L and the right inverse u−1

R of u have degree g−1

and are related by u−1
R = φ(g−1, g, g−1)u−1

L .
(ii) The left inverse u−1

L and the right inverse u−1
R of u are unique.

(iii) If w is another graded unit of A of degree h, then the product uw is
a graded unit of degree gh such that,

(uw)−1
L =

φ(g−1, g, h)

φ(h−1, g−1, gh)
w−1
L u−1

L ,

(uw)−1
R =

φ(h, h−1, g−1)

φ(g, h, h−1g−1)
w−1
R u−1

R .

(iv) The set Gr U(A) is closed under product and inverse.

Proof. (i) We show that u−1
L ∈ Ag−1 (it is similar for the right inverse).

We can write u−1
L =

∑
h∈G uh, where uh ∈ Ah and at most finitely

many elements uh are nonzero. From 1 = u−1
L u =

∑
h∈G uhu it follows

that uh = 0 unless h = g−1. Thus u−1
L = ug−1 has degree g−1. The

quasiassociativity of A gives

u−1
R = 1u−1

R = (u−1
L u)u−1

R = φ(g−1, g, g−1)u−1
L (uu−1

R )=φ(g−1, g, g−1)u−1
L

as desired (cf. [6, 7]).
(ii) Suppose that there exist u−1

L and u′−1
L two left inverses of u, mea-

ning that u−1
L u = 1 and u′−1

L u = 1. Then u−1
L u = u′−1

L u. Since u is an unit
of A, there exists u−1

R satisfying uu−1
R = 1. We may write (u−1

L u)u−1
R =

(u′−1
L u)u−1

R , hence φ(g−1, g, g−1)u−1
L (uu−1

R ) = φ(g−1, g, g−1)u′−1
L (uu−1

R )

and we obtain u−1
L = u′−1

L . The case with the right unit is analogue.
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(iii) As AgAh ⊂ Agh then uw is a homogeneous element of degree gh.
Since A is quasiassociative, we get the expression of the left inverse of
uw doing

(w−1
L u−1

L )(uw)

= φ(h−1, g−1, gh)w−1
L

(
u−1
L (uw)

)
=
φ(h−1, g−1, gh)

φ(g−1, g, h)
w−1
L

(
(u−1
L u)w

)

=
φ(h−1, g−1, gh)

φ(g−1, g, h)
w−1
L w =

φ(h−1, g−1, gh)

φ(g−1, g, h)
.

In a similar way we obtain the right inverse of uw (cf. [6, 7]).

(iv) By (iii) we conclude that Gr U(A) is closed under product. To
show that Gr U(A) is closed under inverse, meaning that whenever u
is a graded unit then u−1

L and u−1
R are graded units too, we use (i) and

observe that (
φ(g−1, g, g−1)u

)
u−1
L = uu−1

R = 1

and

u−1
R

( 1

φ(g−1, g, g−1)
u
)

= u−1
L u = 1

completing the proof.

Remark 3.4. From Lemma 3.3(i)-(ii), the left and right inverses of any
u ∈ U(A) ∩Ag are also graded units of A and

(u−1
L )−1

R = u, (u−1
L )−1

L = φ(g−1, g, g−1)u,

(u−1
R )−1

L = u, (u−1
R )−1

R =
1

φ(g−1, g, g−1)
u.

Lemma 3.5. If A is a graded associative algebra, left and right inverses
are equal.

Proof. It is easy to chek that u−1
L = u−1

L (uu−1
R ) = (u−1

L u)u−1
R = u−1

R for
any u ∈ U(A).

Corollary 3.6. The left and right inverses of u ∈ U(A) ∩Ae are equal
and belong to Ae. Moreover, U(A) ∩Ae = U(Ae).

Proof. By Lemma 3.3-(i), the left and right inverses of u belong to Ae and
u−1
R = φ(e, e, e)u−1

L = u−1
L . Therefore U(A) ∩Ae ⊆ U(Ae). The converse

is trivial.
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Remark 3.7. The map deg : Gr U(A) → G preserves the product
and the elements u ∈ Gr U(A) such that deg u = e consist in the set
U(A) ∩Ae = U(Ae).

Lemma 3.8. (i) The map µ : Gr U(A) → Aut(Ae) defined by

µ(u)(x) := uxu−1
R for any u ∈ Gr U(A) and x ∈ Ae,

satisfies µ(uw) = µ(u) ◦ µ(w) for all u,w ∈ Gr U(A).
(ii) The right multiplication by u ∈ Ag ∩ U(A) is an isomorphism

Ae → Aeu = Ag of left Ae-modules.

Proof. (i) Let u,w be two graded units of A such that deg u = g and
deg w = h. Using Lemma 2.3-(iv) we obtain for any x ∈ Ae,

µ(uw)(x) = (uw)x(uw)−1
R = (uw)x

φ(h, h−1, g−1)

φ(g, h, h−1g−1)
(w−1

R u−1
R )

=
φ(h, h−1, g−1)

φ(g, h, h−1g−1)
(uw)

(
x(w−1

R u−1
R )
)

=
φ(h, h−1, g−1)

φ(g, h, h−1g−1)
(uw)

(
(xw−1

R )u−1
R

)

=
φ(h, h−1, g−1)

φ(g, h, h−1g−1)φ(gh, h−1, g−1)

(
(uw)(xw−1

R )
)
u−1
R

=
φ(h, h−1, g−1)φ(g, h, h−1)

φ(g, h, h−1g−1)φ(gh, h−1, g−1)

(
u(wxw−1

R )
)
u−1
R

= u(wxw−1
R )u−1

R = µ(u) ◦ µ(w)(x)

(ii) First we prove that the right multiplication is a monomorphism. Let
x, y ∈ Ae such that xu = yu. Thus (xu)u−1

R = (yu)u−1
R . Since x, y ∈ Ae

then x(uu−1
R ) = y(uu−1

R ) and x = y. To prove that it is an epimorphism,
we need to see if for any v ∈ Ag there exists x ∈ Ae such that xu = v. We
get it taking x = vu−1

R .

4. (G, φ)-crossed products and quasicrossed systems

In this section we introduce the concept of (G,φ)-crossed product in
the context of (G,φ)-quasiassociative algebras.

Definition 4.1. Let A be a (G,φ)-quasiassociative algebra. We say that
A is a (G,φ)-crossed product of G over Ae if for any g ∈ G there exists
g ∈ U(A) ∩Ag, meaning that, there exists an unit g in A of any degree g.
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The following examples illustrate that some important quasialgebras are
(G,φ)-crossed products.

Example 4.2. Any division (G,φ)-quasiassociative algebra A = ⊕g∈GAg
is trivially a quasicrossed product of G over Ae, because 1 ∈ Ae and every
nonzero homogeneous element is invertible.

Example 4.3. Interesting examples of division (G,φ)-quasiassociative
algebras, so of (G,φ)-crossed products, are twisted group algebras KFG

(see [4]). We present properly this class of algebras since we will pay
special attention to them in this paper. Consider the group algebra KG,
the set of all linear combinations of elements

∑
g∈G agg, where ag ∈ K

such that ag = 0 for all but finitely many elements g. We define KFG

with the same underlying vector space as KG but with a modified product
g.h := F (g, h)gh, for any g, h ∈ G, where F is a 2-cochain on G. Then
KFG is a coboundary graded quasialgebra. Moreover, any KFG is a (G,φ)-
crossed product. In fact, given g ∈ G and ag ∈ K

× then the homogeneous
element agg ∈ (KFG)g is an unit with left inverse and right inverse:

(agg)−1
L = φ(g, g−1, g)(agg)−1

R = F (g−1, g)−1a−1
g g−1.

There are two classes of modified group algebras particularly interesting,
namely the Cayley algebras and the Clifford algebras. We mention just
some well studied Cayley algebras:

1) The complex algebra C is a quasialgebra KFG with G = Z2 and
F (x, y) = (−1)xy, for x, y ∈ Z2.

2) The quaternion algebra H is a quasialgebra KFG with G = Z2 ×Z2

and F (−→x ,−→y ) = (−1)x1y1+(x1+x2)y2 , where −→x = (x1, x2) ∈ Z2 × Z2

is a vector notation.
3) The octonion algebra O is another quasialgebra KFG for G =

Z2 × Z2 × Z2 and F (−→x ,−→y ) = (−1)
∑

i6j
xiyj+y1x2x3+x1y2x3+x1x2y3 ,

where −→x = (x1, x2, x3) ∈ Z2 × Z2 × Z2.

Any Clifford algebra is a quasialgebra KFG for G = (Z2)n and 2-cochain

F (−→x ,−→y ) = (−1)
∑

i6j
xiyj where −→x = (x1, ..., xn) ∈ (Z2)n. Recall that C

and H are both Cayley and Clifford algebras.

Example 4.4. Let Matn(∆) be the Z2-graded algebra of the n × n

matrices over ∆ with the natural Z2-grading inherited from ∆, where
∆ = ∆0̄ ⊕ ∆1̄ is a division antiassociative quasialgebra ( ≃ 〈D,σ, a〉 see
[3], where σ is an automorphism of D and a is a nonzero element of D



H. Albuquerque, E. Barreiro, J. M. Sánchez-Delgado 55

such that σ2 = τa : d −→ ada−1 with σ(a) = −a) and n ∈ N. Consider
Matn(∆) = Matn(∆0̄)⊕Matn(∆0̄)u equipped with multiplication defined
by

A(Bu) = (AB)u, (Au)B = (AB)u and (Au)(Bu) = aAB

for all A,B ∈ Matn(∆0̄), where the matrix B is obtained from the matrix
B = [bij ]16i,j6n by replacing the term bij by σ(bij), for all i, j ∈ {1, . . . , n}.
Then the simple antiassociative quasialgebra Matn(∆) is clearly a (G,φ)-
crossed product of Z2 over Matn(∆0̄). It is clear that id is an unit in
Matn(∆0̄) and id u is an unit in Matn(∆0̄)u.

For n ∈ N, the set M̃atn,n(D) of 2n × 2n matrices over a division
algebra D, with the chess board Z2-grading:

M̃atn,n(D)0̄ :=

{(
a 0
0 b

)
: a ∈ Matn(D), b ∈ Matn(D)

}

M̃atn,n(D)1̄ :=

{(
0 v

w 0

)
: v ∈ Matn(D), w ∈ Matn(D)

}
,

and with multiplication given by
(
a1 v1

w1 b1

)
·

(
a2 v2

w2 b2

)
=

(
a1a2 + v1w2 a1v2 + v1b2

w1a2 + b1w2 −w1v2 + b1b2

)

is a (G,φ)-crossed product. Indeed, let a ∈ Matn(D) and b ∈ Matn(D)

be two invertible matrices, then

(
a 0
0 b

)
is an unit in M̃atn,n(D)0 with

(
a 0
0 b

)−1

R

=

(
a 0
0 b

)−1

L

=

(
a−1 0
0 b−1

)
.

These examples show that there are (G,φ)-crossed products which are
not division (G,φ)-quasiassociative algebras.

Example 4.5. Consider the (Zn, φ)-quasiassociative algebra of the de-
formed matrices Mn,φ(K) of the usual n × n matrices Mn(K) with the
basis elements Eij of degree j − i, for i, j ∈ Zn, and the multiplication

(X · Y )ij =
n∑

k=1

φ(i,−k, k − j)

φ(−k, k,−j)
XikYkj ,

for any X = (Xij) and Y = (Yij) in Mn(K) (cf. in [8]). This (Zn, φ)-
quasiassociative algebra is a (G,φ)-crossed product. Indeed, we easily find
an invertible element in each homogeneous component of Mn,φ(K).
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Remark 4.6. Observe that not all (G,φ)-quasiassociative algebras are
(G,φ)-crossed products. For example, we can easily extract subalgebras
of the algebra of Example 4.5 which are not (G,φ)-crossed products.
The subalgebra Tn,φ(K) of the (Zn, φ)-quasiassociative algebra Mn,φ(K)
formed by the upper triangular matrices is not a (G,φ)-crossed product.
For example, the 1-dimensional homogeneous component (Tn,φ(K))n−1

with basis {E1n} does not contain an invertible element.

Definition 4.7. Assume that B is an associative algebra. Given maps
σ : G → Aut(B), automorphism system, α : G×G → U(B), quasicrossed
mapping, and a cocycle φ : G×G×G −→ K

×, we say that (G,B, φ, σ, α)
is a quasicrossed system for G over B if the following properties hold:

σ(g)
(
σ(h)(x)

)
= α(g, h)σ(gh)(x)α(g, h)−1 (4.1)

α(g, h)α(gh, k) = φ(g, h, k)σ(g)(α(h, k))α(g, hk) (4.2)

α(g, e) = α(e, g) = 1 (4.3)

for any g, h, k ∈ G and x ∈ B.

Let A be a (G,φ)-quasiassociative algebra which is a quasicrossed product
of G over Ae. Then for any g ∈ G there exists an unit g ∈ U(A) ∩ Ag
with e = 1. Define a map σ(g) : Ae −→ Ae by

σ(g)(x) := gxgR
−1 for any x ∈ Ae. (4.4)

Lemma 4.8. For any g ∈ G, σ(g) is an automorphism of Ae, meaning
that for x, y ∈ Ae

σ(g)(xy) = σ(g)(x)σ(g)(y).

Proof. For any g ∈ G, as g is an unit it is obvious that the map σ(g) is
bijective. Applying Lemma 3.3-(i), we obtain for any g ∈ G and x, y ∈ Ae

σ(g)(xy) = gxyg−1
R =

(
gx(g−1

L g)
)
yg−1

R

=
1

φ(g, g−1, g)

(
(gxg−1

L )g
)
yg−1

R =
1

φ(g, g−1, g)
(gxg−1

L )(gyg−1
R )

= (gxg−1
R )(gyg−1

R ) = σ(g)(x)σ(g)(y)

as desired.

Proposition 4.9. Let A be a (G,φ)-quasiassociative algebra which is a
(G,φ)-crossed product of G over Ae. For any g ∈ G, fix an unit g in Ag
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with e = 1. Let σ : G → Aut(Ae) be the corresponding automorphism
system given by Equation (4.4) and α : G×G → U(Ae) defined by

α(g, h) := (gh)(gh)−1
R = φ((gh)−1, gh, (gh)−1)(gh)(gh)−1

L , (4.5)

for any g, h ∈ G. Then the following properties hold:

(i) A is a strongly (G,φ)-quasiassociative algebra with Ag = Aeg = gAe.
(ii) (G,Ae, φ, σ, α) is a quasicrossed system for G over Ae (to which we

refer as corresponding to A).
(iii) A is a free (left or right) Ae-module freely generated by the elements

g, where g ∈ G.
(iv) For all g, h ∈ G and x, y ∈ Ae,

(xg)(yh) = xσ(g)(y)α(g, h)gh. (4.6)

Conversely, for any associative algebra B and any quasicrossed system
(G,B, φ, σ, α) for G over B, the free B-module C freely generated by the
elements g, for g ∈ G, with multiplication given by Equation (4.6) (with
x, y ∈ B) is a (G,φ)-quasiassociative algebra (with Cg = Bg for all
g ∈ G) which is a (G,φ)-crossed product of G over Ce = B and having
(G,B, φ, σ, α) as a corresponding quasicrossed system.

Remark 4.10. We note that Proposition 4.9 generalizes the results
on quasiassociative division algebras presented by H. Albuquerque and
A.P. Santana (see Theorem 1.1 in [7] and Theorem 3.2 in [8]). The
quasiassociative division algebras are precisely the (G,φ)-crossed products
over the division associative algebras. Moreover, the three identities defi-
ning the multiplication in quasiassociative division algebras are now
condensed in equation (4.6).

Proof. (i) Let g ∈ G and take u ∈ U(A) ∩Ag. By Lemma 3.3-(i),

u−1
L , u−1

R ∈ Ag−1

and therefore 1 = u−1
L u ∈ Ag−1Ag and 1 = uu−1

R ∈ AgAg−1 . By Lemma
2.8, we conclude that A is a strongly graded quasialgebra. Applying
Lemma 3.8-(iii), Ag = Aeg and the argument of this lemma applied to
left multiplication shows that Ag = gAe, proving this item.

(ii) First we prove condition (4.1). Let g, h ∈ G and x ∈ Ae. We have

σ(g)(σ(h)(x)) = σ(g)
(
hxh

−1
R

)
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=
(
g(h(xh

−1
R ))

)
g−1
R =

1

φ(g, h, h−1)

(
(gh)(xh

−1
R )
)
g−1
R

=
φ(gh, h−1, g−1)

φ(g, h, h−1)
(gh)

(
(xh

−1
R )g−1

R

)
=
φ(gh, h−1, g−1)

φ(g, h, h−1)
(gh)x(h

−1
R g−1

R )

and we get

σ(g)(σ(h)(x)) =
φ(gh, h−1, g−1)

φ(g, h, h−1)
(gh)x(h

−1
R g−1

R ). (4.7)

Now, using Lemma 3.3 we observe that

(gh)−1
R (α(g, h))−1

R = (gh)−1
R

(
φ((gh)−1, gh, (gh)−1)(gh)(gh)−1

L

)−1

R

=
φ((gh)−1, gh, (gh)−1)

φ((gh)−1, gh, (gh)−1)φ(gh, (gh)−1, gh(gh)−1)

× (gh)−1
R

(
((gh)−1

L )−1
R (gh)−1

R

)

= (gh)−1
R

(
gh(gh)−1

R

)
=
φ((gh)−1, gh, (gh)−1)

φ((gh)−1, gh, (gh)−1)

(
(gh)−1

L gh
)
(gh)−1

R

=
(
(gh)−1

L gh
)
(gh)−1

R =
φ(h, h−1, g−1)

φ(g, h, h−1g−1)
h

−1
R g−1

R

and hence

h
−1
R g−1

R =
φ(g, h, h−1g−1)

φ(h, h−1, g−1)
(gh)−1

R (α(g, h))−1
R . (4.8)

Applying Lemma 2.3-(iii) we obtain

α(g, h)gh =
(
φ((gh)−1, gh, (gh)−1)(gh)(gh)−1

L

)
gh

= φ((gh)−1, gh, (gh)−1)φ(gh, (gh)−1, gh)(gh)
(
(gh)−1

L gh
)
= gh

then

α(g, h)gh = g h. (4.9)

Returning to (4.7), using (4.8) and (4.9) we have

σ(g)(σ(h)(x))

=
φ(gh, h−1, g−1)φ(g, h, h−1g−1)

φ(g, h, h−1)φ(h, h−1, g−1)
α(g, h)ghx(gh)−1

R (α(g, h))−1
R
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and by Lemma 2.3-(iv) we conclude

σ(g)(σ(h)(x)) = α(g, h)σ(gh)(x)(α(g, h))−1
R

proving (4.1). For any g, h, k ∈ G, by Lemma 4.8 and using condition
(4.9) we have

(g h)k = (α(g, h)gh)k = α(g, h)(gh k) = α(g, h)α(gh, k)ghk.

On the other hand, we obtain

g(h k) = g(α(h, k)hk) = (gα(h, k))hk. (4.10)

Using Lemma 2.3-(iii) we have

σ(g)(α(h, k))g =
(
gα(h, k)gR

−1
)
g = φ(g−1, g, g−1)

(
gα(h, k)gL

−1
)
g

= φ(g−1, g, g−1)φ(g, g−1, g)
(
gα(h, k)

)(
gL

−1g
)

=gα(h, k).

Returning to (4.10)

g(h k) = (gα(h, k))hk =
(
σ(g)(α(h, k))g

)
hk = σ(g)(α(h, k))(g hk)

= σ(g)(α(h, k))α(g, hk)ghk.

Since G is associative and (gh)k = φ(g, h, k)g(h k), we conclude that

α(g, h)α(gh, k) = φ(g, h, k)σ(g)(α(h, k))α(g, hk)

proving (4.2). Because e = 1 we have

α(g, e) = φ((ge)−1, ge, (ge)−1)(g e)(ge)−1
L = φ(g−1, g, g−1)g g−1

L

=
φ(g−1, g, g−1)

φ(g−1, g, g−1)
g g−1

R = 1

thus (4.3) is also true, proving (ii).
(iii) It is a direct consequence of (i).
(iv) Let g, h ∈ G and x, y ∈ Ae. Using Lemma 2.3-(ii) we obtain

(xg)(yh) = (xg)
((
y(g−1

L g)
)
h
)

= (xg)
((

(yg−1
L )g

)
h
)

= φ(g−1, g, h)(xg)
(
(yg−1

L )(gh)
)
=
φ(g−1, g, h)

φ(g, g−1, gh)

(
(xg)(yg−1

L )
)
(gh)
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=
φ(g−1, g, h)

φ(g, g−1, gh)φ(g−1, g, g−1)

(
(xg)(yg−1

R )
)
(gh)

= xσ(g)(y)(gh) = xσ(g)(y)α(g, h)gh

proving (4.6). To prove the converse, we need only to verify that the
multiplication given by (4.6) is quasiassociative. In fact, let g, h, k ∈ G

and x, y, z ∈ B. As σ(g) ∈ Aut(B) we have

(xg)
(
(yh)(zk)

)
= (xg)

(
yσ(h)(z)α(h, k)hk

)

= xσ(g)
(
yσ(h)(z)α(h, k)

)
α(g, hk)ghk

= xσ(g)(y)σ(g)(σ(h)(z))σ(g)(α(h, k))α(g, hk)ghk

(4.1)
= xσ(g)(y)α(g, h)σ(gh)(z)α(g, h)−1σ(g)(α(h, k))α(g, hk)ghk

(4.2)
=

1

φ(g, h, k)
xσ(g)(y)α(g, h)σ(gh)(z)α(g, h)−1α(g, h)α(gh, k)ghk

=
1

φ(g, h, k)
xσ(g)(y)α(g, h)σ(gh)(z)α(gh, k)ghk.

On the other hand,

(
(xg)(yh)

)
(zk) =

(
xσ(g)(y)α(g, h)gh

)
(zk)

= xσ(g)(y)α(g, h)σ(gh)(z)α(gh, k)ghk

therefore, (
(xg)(yh)

)
(zk) = φ(g, h, k)(xg)

(
(yh)(zk)

)

completing the proof.

5. Equivalence on (G, φ)-crossed products
and on quasicrossed systems

In this section we present two equivalence relations, one for quasicros-
sed systems and another for (G,φ)-crossed products.

Definition 5.1. We say that two quasicrossed systems (G,B, φ, σ, α)
and (G,B, φ, σ′, α′) over an associative algebra B for a fixed cocycle
φ : G×G×G −→ K

× are equivalent if there exists a map u : G → U(B)
with u(e) = 1 such that

σ′(g) = iu(g) ◦ σ(g) (5.1)
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α′(g, h) = u(g)σ(g)(u(h))α(g, h)u(gh)−1, (5.2)

for any g, h ∈ G, where iy(x) = yxy−1 for x ∈ B and y ∈ U(B).

We define an equivalence relation in the class of quasicrossed systems
over an associative algebra B for a fixed cocycle φ : G × G × G −→
K

×. Assume that a (G,φ)-quasiassociative algebra A is a (G,φ)-crossed
product of G over Ae. Due to Proposition 4.9, any choice of an unit g of A
in Ag, for any g ∈ G, with e = 1, determines a corresponding quasicrossed
system (G,Ae, φ, σ, α) for G over Ae, with σ and α given by

σ(g)(x) = gxg−1
R and α(g, h) = (g h)(gh)−1

R

for any x ∈ Ae and g, h ∈ G. Now, let {g̃ : g ∈ G} be another set
of units and (G,Ae, φ, σ

′, α′) be the corresponding quasicrossed system.
Because g̃ ∈ Ag, we infer from Proposition 4.9-(i) that there is a map
u : G → U(Ae) with u(e) = 1 such that

g̃ = u(g)g for all g ∈ G.

We note that u(g) is indeed an unit of Ae with inverse u(g)−1 = gg̃−1
R .

Lemma 5.2. In the previous conditions we have that the quasicrossed
systems (G,Ae, φ, σ, α) and (G,Ae, φ, σ

′, α′) are equivalent over the asso-
ciative algebra Ae.

Proof. For g ∈ G and x ∈ Ae we have

σ′(g)(x) = g̃xg̃−1
R = u(g)gx(u(g)g)−1

R = u(g)gxg−1
R u(g)−1

= u(g)(gxg−1
R )u(g)−1 = u(g)σ(g)(x)u(g)−1 = iu(g)(σ(g)(x))

proving (5.1).
For g, h ∈ G, using Lemma 2.3-(ii),(iii) we have

u(gh)gh = g̃h = α′(g, h)−1g̃h̃

= α′(g, h)−1u(g)gu(h)h = α′(g, h)−1(u(g)g)(u(h)(g−1
L g)h)

=
1

φ(g−1, g, g−1)
α′(g, h)−1(u(g)g)(u(h)(g−1

R g)h)

=
φ(g−1, g, h)

φ(g−1, g, g−1)
α′(g, h)−1(u(g)g)(u(h)g−1

R (gh))

=
φ(g−1, g, h)

φ(g−1, g, g−1)φ(g, g−1, gh)
α′(g, h)−1u(g)

(
gu(h)g−1

R

)
(gh)
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= α′(g, h)−1u(g)σ(g)(u(h))(gh)

= α′(g, h)−1u(g)σ(g)(u(h))α(g, h)gh

therefore

α′(g, h) = u(g)σ(g)(u(h))α(g, h)u(gh)−1

proving (5.2). Consequently, (G,Ae, φ, σ, α) and (G,Ae, φ, σ
′, α′) are equi-

valent as desired.

Thus any given (G,φ)-quasiassociative algebra A which is a (G,φ)-crossed
product of G over Ae defines a unique equivalence class of corresponding
quasicrossed systems for G over Ae. We emphasize the independence of
the choice of the sets of units used to define the quasicrossed systems.

Definition 5.3. Assume that A,A′ are two (G,φ)-crossed products of
G over Ae. We say that A and A′ are equivalent if there is a graded
isomorphism of algebras f : A → A′ which is also an isomorphism
of Ae-modules. The latter means that f is an isomorphism such that
f(Ag) = A′

g for all g ∈ G and f(x) = x for any x ∈ Ae.

Theorem 5.4. Two (G,φ)-crossed products of G over Ae are equivalent
if and only if they determine the same equivalence class of quasicrossed
systems for G over Ae.

Proof. Consider A and A′ two (G,φ)-crossed products of G over Ae.
Let (G,Ae, φ, σ, α) and (G,Ae, φ, σ

′, α′) be the representatives of the
corresponding equivalence classes of quasicrossed systems for G over Ae
and take the sets of units {g : g ∈ G} and {g̃ : g ∈ G} in A and A′,
respectively, which give rise to the above quasicrossed systems.

First assume that A′ and A are equivalent via f : A′ → A. Because
f(g̃) ∈ Ag for all g ∈ G, there is a map u : G → U(Ae) with u(e) = 1
such that f(g̃) = u(g)g for any g ∈ G. We observe that for given g ∈ G,

1 = f(1) = f(g̃g̃−1
R ) = f(g̃)f(g̃−1

R ) = u(g)gf(g̃−1
R ),

so u(g) is an unit in Ae with inverse

u(g)−1 = gf(g̃−1
R ).

Consider in A and A′ the product defined, respectively, by

(xg)(yh) = xσ(g)(y)α(g, h)gh and (xg̃)(yh̃) = xσ′(g)(y)α′(g, h)g̃h
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for any x, y ∈ Ae and g, h ∈ G. Given x ∈ Ae and g ∈ G we have g̃(xẽ) =
σ′(g)(x)α′(g, e)g̃e = σ′(g)(x)g̃. Since f is a morphism of algebras we have

f(g̃(xẽ)) = f(g̃)f(xẽ) = f(g̃)(xf(ẽ)) = (u(g)g)(xu(e)e) = (u(g)g)(xe)

= u(g)σ(g)(x)α(g, e)ge = u(g)σ(g)(x)g

and
f(σ′(g)(x)g̃) = σ′(g)(x)f(g̃) = σ′(g)(x)u(g)g

therefore σ′(g)(x) = u(g)σ(g)(x)u(g)−1 proving (5.1). Now for g, h ∈ G we
have g̃h̃ = σ′(g)(1)α′(g, h)g̃h = α′(g, h)g̃h. Again, since f is a morphism
of algebras,

f(g̃h̃) = f(g̃)f(h̃) = (u(g)g)(u(h)h) = u(g)σ(g)(u(h))α(g, h)gh

and
f(α′(g, h)g̃h) = α′(g, h)f(g̃h) = α′(g, h)u(gh)gh

therefore α′(g, h) = u(g)σ(g)(u(h))α(g, h)u(gh)−1 getting (5.2). Thus
(G,Ae, σ, α) and (G,Ae, σ

′, α′) are equivalent.
Conversely, suppose that there is a map u : G → U(Ae) with u(e) = 1

such that (5.1) and (5.2) are satisfied. Using again the product in A and
A′, it is easily seen that the Ae-linear extension of the map f(g̃) = u(g)g
for any g ∈ G, also denoted by f , provides an equivalence of A′ and A.
In fact, f is an algebra morphism, because for g, h ∈ G we have

f(g̃h̃) = f(α′(g, h)g̃h) = α′(g, h)f(g̃h) = α′(g, h)u(gh)gh

and
f(g̃)f(h̃) = (u(g)g)(u(h)h) = u(g)σ(g)(u(h))α(g, h)gh

that are equal by (5.2). It also satisfies f(A′
g) = Ag. Indeed, for xg ∈ Ag,

by Proposition 4.9-(i) we may write xg = xg for a certain x ∈ Ae. Then

f(xu(g)−1g̃) = xu(g)−1f(g̃) = xu(g)−1u(g)g = xg = xg,

with xu(g)−1g̃ ∈ A′
g. Finally, for any x ∈ Ae we have f(x) = f(xẽ) =

xf(ẽ) = x, completing the proof.

Definition 5.5. Consider the trivial automorphism system σ : G →
Aut(K), where we take the field K as the associative algebra B on the
natural way. A quasicrossed mapping δ : G×G → K

× (see Definition 4.7)
is called a coboundary if there is a function u : G → K

× such that

δ(g, h) = u(g)σ(g)(u(h))u(gh)−1,

for any g, h ∈ G.
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Proposition 5.6. The quasicrossed systems (G,K, φ, σ, α) and
(G,K, φ, σ, α′) over the associative algebra K for a fixed cocy-
cle φ : G × G × G −→ K

× and the trivial automorphism system
σ : G → Aut(K) are equivalent if and only if α′ = δα for a certain
coboundary δ.

Proof. Apply Theorem 5.4 with the field K playing the role of the associ-
ative algebra B on the natural way. On this context, condition (5.1) is
trivial and as K is commutative we can rewrite (5.2) as α = δα′ where δ
is a coboundary quasicrossed mapping.

6. Cayley (Clifford) (G, φ)-crossed products

Let A be a finite-dimensional (not necessarily associative) algebra
with identity element 1 and an anti-involution ς : A −→ A, meaning
that ς is an antiautomorphism (ς(ab) = ς(b)ς(a) for all a, b ∈ A) with
ς2 = id. Moreover, the involution ς is strong, that is, it satisfies the
property a+ ς(a), aς(a) ∈ K1, for all a ∈ A. The Cayley-Dickson process
(that requires the involution ς to be strong) says that we can obtain a new
algebra A = A⊕ vA of twice the dimension (the elements are denoted by
a, va, for a ∈ A) with multiplication defined by

(a+ vb)(c+ vd) := (ac+ ǫdς(b)) + v(ς(a)d+ cb),

and with a new involution ς given by

ς(a+ vb) = ς(a) − vb,

for any a, b, c, d ∈ A. The symbol v is a notation device to label the second
copy of A in A and ǫ is a fixed nonzero element of K.

Proposition 6.1. If A is a (G,φ)-crossed product over the group G then
the algebra A = A⊕ vA resulting from the Cayley-Dickson process is a
(G,φ)-crossed product over the group G = G× Z2.

Proof. First, we note that if A =
⊕

g∈GAg is a G-graded algebra, it is easy

to see that A = A⊕ vA is a G-graded algebra, with G = G×Z2 (we may
write A =

⊕
g∈GA(g,0) ⊕

⊕
g∈GA(g,1), with A(g,0) = Ag and A(g,1) = vAg).

Now assume that A =
⊕

g∈GAg is a (G,φ)-crossed product. For any
g ∈ G there exists an unit g in Ag, so trivially we have an unit in A(g,0).
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Moreover, vg is an unit in A(g,1) with v
ς(g−1

R )

ǫ
its left inverse and right

inverse, as

(v
ς(g−1

R )

ǫ
)(vg) = ǫgς(

ς(g−1
R )

ǫ
) = ǫg

1

ǫ
ς2(g−1

R ) = gς2(g−1
R ) = gg−1

R = 1,

(vg)(v
ς(g−1

R )

ǫ
) = ǫ

ς(g−1
R )

ǫ
ς(g) = ς(g−1

R )ς(g) = ς(gg−1
R ) = ς(1) = 1

completing the proof.

In [4], it was proved that after applying the Cayley-Dickson process to
an algebra KFG we obtain another algebra KFG related to the first one
which properties are predictable.

Proposition 6.2. [4] Let G be a finite abelian group, F a cochain on it
(KFG is a (G,φ)-quasiassociative algebra). For any s : G −→ K

× with
s(e) = 1 we define G = G× Z2 and on it the cochain F and function s,

F (x, y) = F (x, y), F (x, vy) = s(x)F (x, y),

F (vx, y) = F (y, x), F (vx, vy) = ǫs(x)F (y, x),

s(x) = s(x), s(vx) = −1 for all x, y ∈ G.

Here x ≡ (x, 0) and vx ≡ (x, 1) denote elements of G, where Z2 = {0, 1}
with operation 1+1 = 0. If ς(x) = s(x)x is a strong involution, then KFG

is the algebra obtained from Cayley-Dickson process applied to KFG.

7. Simple (G, φ)-crossed products

The aim of this section is to study simple (G,φ)-crossed products. We
recall the notion of simple (G,φ)-quasiassociative algebra.

Definition 7.1. A (G,φ)-quasiassociative algebra A is simple if A2 6= {0}
and it has no proper graded ideals, or equivalently, if the ideal generated
by each nonzero homogeneous element is the whole quasialgebra.

To study simple (G,φ)-crossed products we introduce the definition of
representation of a (G,φ)-quasiassociative algebra. In the following de-
finition of modules, A =

⊕
g∈GAg is a (G,φ)-quasiassociative algebra

with structure given by φ and V =
⊕

k∈G Vk is a graded vector space
over the same group G. We denote by µ the product defined in A.
First we emphasize that the quasiassociative law in A is performed by
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µ ◦ (µ ⊗ id) = µ ◦ (id ⊗ µ) ◦ ΦA,A,A and it can be represented by the
following commutative diagram

A⊗A⊗A
ΦA,A,A

//

µ⊗id

��

A⊗A⊗A
id⊗µ

// A⊗A

µ

��

A⊗A µ
// A

Definition 7.2. Consider a degree-preserving map ϕ : A⊗ V −→ V and
denote xg.vk := ϕ(xg, vk). We say that V is a left graded module over A
(or a left A-graded-module) if

(xgxh).vk = φ(g, h, k)xg.(xh.vk) and 1.vk = vk

for any homogeneous elements xg ∈ Ag, xh ∈ Ah, vk ∈ Vk.

The condition of left graded module is a natural generalization of the
quasiassociativity of the product on A, as we can see by the following
commutative diagram

A⊗A⊗ V
ΦA,A,V

//

µ⊗id

��

A⊗A⊗ V
id⊗ϕ

// A⊗ V

ϕ

��

A⊗ V ϕ
// V

Definition 7.3. Consider a degree-preserving map ψ : V ⊗A −→ V and
denote vk.xg := ψ(vk, xg). If for homogeneous elements xg ∈ Ag, xh ∈
Ah, vk ∈ Vk,

(vk.xg).xh = φ(k, g, h)vk.(xgxh) and vk.1 = vk,

then V is called a right graded module over A (or a right A-graded-module).

Similarly, the condition of right graded module is represented in the
following commutative diagram

V ⊗A⊗A
ΦV,A,A

//

ψ⊗id

��

V ⊗A⊗A
id⊗µ

// V ⊗A

ψ

��

V ⊗A
ψ

// V
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Definition 7.4. If V is a left and right graded module of A and if for
homogeneous elements xg ∈ Ag, xh ∈ Ah, vk ∈ Vk,

(xg.vk).xh = φ(g, k, h)xg.(vk.xh),

then V is called a graded bimodule over A (or an A-graded-bimodule).

Moreover, the condition of graded bimodule is represented by the
following commutative diagram

A⊗ V ⊗A
ΦA,V,A

//

ϕ⊗id

��

A⊗ V ⊗A
id⊗ψ

// A⊗ V

ϕ

��

V ⊗A
ψ

// V

Now we present some examples of graded modules over (G,φ)-quasi-
associative algebras.

Example 7.5. Consider the antiassociative quasialgebra A := M̃at1,1(K)
of the square matrices over the field K graded by the group Z2 such that
A0̄ := 〈E11, E22〉 and A1̄ := 〈E12, E21〉 satisfying the multiplication

(
a1 v1

w1 b1

)
·

(
a2 v2

w2 b2

)
=

(
a1a2 + v1w2 a1v2 + v1b2

w1a2 + b1w2 −w1v2 + b1b2

)
.

Consider A acting on the vector space M := 〈m,n〉 endowed with the
grading by the group Z2 with M0̄ := 〈m〉 and M1̄ := 〈n〉 as follows:

mE11 = nE21 = m, mE12 = nE22 = n,

mE22 = mE21 = nE11 = nE12 = 0;

and on the other side,

E22m = E21n = m, −E12m = E11n = n,

E11m = E21m = E22n = E12n = 0.

We check easily that M is both a right A-graded-module and a left A-
graded-module, although the two structures are not compatible, that is,
M is not a graded bimodule over A (just note that (E21n)E12 = n and
E21(nE12) = 0).
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Example 7.6. We consider a commutative (G,φ)-quasiassociative al-
gebra KFG endowed with the strong involution σ(x) = s(x)x, where
s : G −→ K

× with s(e) = 1. Applying Proposition 4.5 in [4], we know
that the quasialgebra obtained from KFG by the Cayley-Dickson doubling
process can be defined by the same cocycle graded by G being the degree
of the element vx equal to the degree of x, for x ∈ G. Then the subspace
vKFG constitutes an example of a graded bimodule over KFG.

Definition 7.7. Let V be an A-graded-bimodule, a graded submodule
W ⊂ V is a submodule (meaning AW ⊂ W ) such thatW = ⊕g∈G(W∩Vg).
We say that a A-graded-bimodule V is simple if it contains no proper
graded submodules.

Example 7.8. A (G,φ)-quasiassociative algebra A is an A-graded-bi-
module acting on itself by the product map. Also, each one Ag is an
Ae-graded-bimodule and a graded submodule of A, for any g ∈ G.

Definition 7.9. Consider two A-graded-bimodules V and V ′. An A-linear
f : V → V ′ is said to be a graded morphism of degree g if f(Vh) ⊂ V ′

hg,
for all h ∈ G.

Now we recall the definition of radical of a (G,φ)-quasiassociative algebra.

Definition 7.10. Let A be a (G,φ)-quasiassociative algebra. The radical
of A is defined by

rad(A) = ∩{ann M : M simple graded left A-module},

where ann M is the annihilator of M in A.

The radical of a (G,φ)-quasiassociative algebra A is a graded ideal of A.
So rad(A) = {0} if A is simple.

Theorem 7.11. Let A be a simple (G,φ)-crossed product such that it
is an unital G-graded algebra with artinian null part Ae. Then Ae is a
semisimple associative algebra.

Proof. It is similar to the proof of Theorem 4.3 in [8]. Let J(Ae) denote
the Jacobson radical of the associative algebra Ae. Given a simple graded
A-module M =

⊕
g∈GMg, each Mg is a simple Ae-module. Thus if

a0 ∈ J(Ae) then a0Mg = 0, ∀g ∈ G. Therefore J(Ae) ⊆ rad(A) = {0} and
Ae is semisimple.
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In case G = Z2, the classification of quasialgebras that have semisimple
artinian associative null part was done in [3], so we have the following
result.

Theorem 7.12. Any simple (Z2, φ)-crossed product A of Z2 over artinian
A0̄ is isomorphic to one of the following algebras:

(i) Matn(∆), for some n and some division antiassociative quasialge-
bra ∆;

(ii) M̃atn,m(D), for some natural numbers n and m and some division
algebra D.

Moreover, the natural numbers n and m are uniquely determined by A
and so are (up to isomorphism) the division antiassociative quasialgebra
∆ and the division algebra D.
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