Green's relations on the deformed transformation semigroups

G. Y. Tsyaputa

Communicated by V. M. Usenko

Abstract. Green's relations on the deformed finite inverse symmetric semigroup $\mathcal{I} \mathcal{S}_{n}$ and the deformed finite symmetric semigroup \mathcal{T}_{n} are described.

1. Introduction

Let X and Y be nonempty sets, S a set of maps from X to Y. Let $\alpha: Y \rightarrow$ X be a fixed map. We define the multiplication of the elements from S by $\phi \circ \psi=\phi \alpha \psi$ (the compositions of the maps is from left to right). The action defined above is associative. E.S.Ljapin ([3], p. 393) formulated the problem of investigation of the properties of this semigroup depending on the restrictions to set S and map α.

Magill [4] studied this problem in the case of topological spaces and continuous maps. Under the assumption that α be onto he described the automorphisms of such semigroups and determined their isomorphism criterion.

Later Sullivan [5] proved, if $|Y| \leq|X|$ then Ljapin's semigroup is embedding into transformation semigroup on the set $X \cup\{a\}, a \notin X$.

An important case is when $X=Y, T_{X}$ is a transformation semigroup on the set $X, \alpha \in T_{X}$. Symons [6] stated the isomorphism criterion for such semigroups and investigated the properties of their automorphisms.

The latter problem may be generalized to arbitrary semigroup S : for a fixed $a \in S$ the action $*_{a}$ is defined by $x *_{a} y=x a y$. The obtained

Key words and phrases: Green's relations, symmetric semigroup, inverse symmetric semigroup, deformed multiplication.
semigroup is denoted by $\left(S, *_{a}\right)$ and action $*_{a}$ is called the multiplication deformed by element a (or just the deformed multiplication).

In [7] pairwise nonisomorphic semigroups received from finite symmetric semigroup \mathcal{T}_{n} and finite inverse symmetric semigroup $\mathcal{I} \mathcal{S}_{n}$ are classified. In particular there holds

Theorem 1.1. Semigroups $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ and $\left(\mathcal{I} \mathcal{S}_{n}, *_{b}\right)$ are isomorphic if and only if $\operatorname{rank}(a)=\operatorname{rank}(b)$.

In this article Green's relations on $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ and $\left(\mathcal{I}_{n}, *_{a}\right)$ are described.

Recall that \mathcal{L}-relation is defined by $a \mathcal{L} b \Longleftrightarrow S^{1} a=S^{1} b$. Similarly \mathcal{R}-relation is defined by $a \mathcal{R} b \Longleftrightarrow a S^{1}=b S^{1}$, and $a \mathcal{J} b \Longleftrightarrow S^{1} a S^{1}=$ $S^{1} b S^{1}$. The following Green's relations are derivative: $\mathcal{H}=\mathcal{L} \cap \mathcal{R}, \mathcal{D}=$ $\mathcal{L} \vee \mathcal{R}$.

Since on finite semigroups $\mathcal{D}=\mathcal{J}[2$, prop. 2.3], \mathcal{J} - relation is not considered further below. Denote $L_{a}\left(R_{a}, H_{a}, D_{a}\right)$ the class of the corresponding relation containing a.
Remark 1.1. It is obvious, the elements a, b belong to the same \mathcal{L}-class (resp. \mathcal{R}-class) if and only if there exist such u, v from S, that $a=u b$ and $b=v a$ (resp. $a=b u$ and $b=a v$).

Semigroup (S, \circ) with operation $a \circ b=b \cdot a$ for any a, b from S is called dual to semigroup ($S, \cdot \cdot$). If semigroups (S, \cdot) and (S, \circ) are isomorphic than (S, \cdot) is called self-dual.

We follow terminology and notation as in [1].

2. Green's relation on $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$.

Let $x \in \mathcal{I} \mathcal{S}_{n}$. Denote x^{-1} an inverse element to x. If x is represented as a partial permutation

$$
x=\left(\begin{array}{cccccc}
i_{1} & \ldots & i_{k} & i_{k+1} & \ldots & i_{n} \\
j_{1} & \ldots & j_{k} & \varnothing & \ldots & \varnothing
\end{array}\right)
$$

then $x^{-1}=\left(\begin{array}{cccccc}j_{1} & \ldots & j_{k} & j_{k+1} & \ldots & j_{n} \\ i_{1} & \ldots & i_{k} & \varnothing & \ldots & \varnothing\end{array}\right)$. For a partial transformation $x \in \mathcal{I} \mathcal{S}_{n}$ denote by $\operatorname{dom}(x)$ the domain of x, and $\operatorname{ran}(x)$ the range of x. The value $|\operatorname{ran}(x)|$ is called the rank of x and is denoted by $\operatorname{rank}(x)$.

Theorem 2.1. Semigroup $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ is self-dual.
Proof. Denote $\left(\mathcal{I} \mathcal{S}_{n}, \circ_{a}\right)$ the semigroup which is dual to $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$. We show that $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ and $\left(\mathcal{I} \mathcal{S}_{n}, \circ_{a}\right)$ are isomorphic to the semigroup $\left(\mathcal{I} \mathcal{S}_{n}, *_{a^{-1}}\right)$.

Semigroups $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ and $\left(\mathcal{I} \mathcal{S}_{n}, *_{a^{-1}}\right)$ are isomorphic by the theorem 1.1. On the other hand, one can easily check the map

$$
f:\left(\mathcal{I} \mathcal{S}_{n}, *_{a^{-1}}\right) \Rightarrow\left(\mathcal{I} \mathcal{S}_{n}, \circ_{a}\right), x \mapsto x^{-1}
$$

is an isomorphism.
Proposition 2.1. For any x, y from $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ such element u from $\left(\mathcal{I S}_{n}, *_{a}\right)$ that $x=y *_{a} u$, exists if and only if the following two conditions hold:

$$
\begin{equation*}
\operatorname{dom}(x) \subseteq \operatorname{dom}(y) ; \quad(1) \quad \operatorname{ran}(y) \subseteq \operatorname{dom}(a) \tag{1}
\end{equation*}
$$

Proof. Let $x=y *_{a} u$ for u from $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$. Then it is clear that $\operatorname{rank}(x) \leq$ $\operatorname{rank}(a)$. If $i \in \operatorname{dom}(x)$ then $x(i)=y *_{a} u(i)=u(a(y(i)))$, so $i \in \operatorname{dom}(y)$. If $y(i) \notin \operatorname{dom}(a)$ then i does not belong to the domain of x, so $\operatorname{ran}(y) \subseteq$ $\operatorname{dom}(a)$.

Conversely, let conditions (1)-(2) hold. Consider a partial permutation, u, defined only on the elements from $\operatorname{ran}(a)$, moreover, $u(i)=$ $x\left(y^{-1}\left(a^{-1}(i)\right)\right)=a^{-1} y^{-1} x(i), \quad i \in \operatorname{ran}(a)$. It is obvious that $y *_{a} u=$ $y a u=x$.

Theorem 2.2. Let $x \in\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$.

1) If $\operatorname{ran}(x) \subseteq \operatorname{dom}(a)$ then

$$
R_{x}=\{y \mid \operatorname{dom}(y)=\operatorname{dom}(x), \operatorname{ran}(y) \subseteq \operatorname{dom}(a)\}
$$

otherwise $R_{x}=\{x\}$.
2) If $\operatorname{dom}(x) \subseteq \operatorname{ran}(a)$ then

$$
L_{x}=\{y \mid \operatorname{ran}(y)=\operatorname{ran}(x), \operatorname{dom}(y) \subseteq \operatorname{ran}(a)\}
$$

otherwise $L_{x}=\{x\}$.
3) If $\operatorname{ran}(x) \subseteq \operatorname{dom}(a)$ and $\operatorname{dom}(x) \subseteq \operatorname{ran}(a)$ then

$$
H_{x}=\{y \mid \operatorname{dom}(y)=\operatorname{dom}(x), \operatorname{ran}(y)=\operatorname{ran}(x)\}
$$

otherwise $H_{x}=\{x\}$.
4) If $\operatorname{ran}(x) \subseteq \operatorname{dom}(a)$ and $\operatorname{dom}(x) \nsubseteq \operatorname{ran}(a)$ then $D_{x}=R_{x}$;
if $\operatorname{ran}(x) \nsubseteq \operatorname{dom}(a)$ and $\operatorname{dom}(x) \subseteq \operatorname{ran}(a)$ then $D_{x}=L_{x}$;
if $\operatorname{ran}(x) \subseteq \operatorname{dom}(a)$ and $\operatorname{dom}(x) \subseteq \operatorname{ran}(a)$ then

$$
D_{x}=\{y \mid \operatorname{dom} y \subseteq \operatorname{ran}(a), \operatorname{ran}(y) \subseteq \operatorname{dom}(a)\}
$$

otherwise $D_{x}=\{x\}$.

In particular if $\operatorname{rank}(a) \leq 1$ then all Green's relations classes on semigroup $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ are one element.

Proof. 1) By remark 1.1 for x and y from semigroup ($\left.\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ belong to the same \mathcal{R}-class there should exist such u and v from $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ that

$$
\begin{align*}
& x=y *_{a} u, \tag{3}\\
& y=x *_{a} v . \tag{4}
\end{align*}
$$

By Lemma 2.1 equality (3) holds if and only if

$$
\begin{equation*}
\operatorname{dom}(x) \subseteq \operatorname{dom}(y) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{ran}(y) \subseteq \operatorname{dom}(a) \tag{6}
\end{equation*}
$$

and (4) holds if and only if

$$
\begin{equation*}
\operatorname{dom}(y) \subseteq \operatorname{dom}(x) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{ran}(x) \subseteq \operatorname{dom}(a) \tag{8}
\end{equation*}
$$

Condition (8) implies if $\operatorname{ran}(x) \nsubseteq \operatorname{dom}(a)$ then $R_{x}=\{x\}$. Let $\operatorname{ran}(x) \subseteq \operatorname{dom}(a)$. Following conditions (5) and (7), one gets for all $y \in R_{x}$ there holds an equality $\operatorname{dom}(x)=\operatorname{dom}(y)$. Finally condition (6) implies $\operatorname{ran}(y) \subseteq \operatorname{dom}(a)$. Besides conditions (5)-(8) are sufficient so statement $1)$ is proved.

Obviously, if $\operatorname{rank}(a) \leq 1$ then $\left|R_{x}\right|=1$.
2) By Theorem $2.1 L_{x}-$ class description is obtained from $R_{x}-$ class description by the interchanges of domains and ranges.
3) Statement about $H_{x}-$ class follows from 1) and 2) statements of the theorem and \mathcal{H} - relation definition.
4) $x \mathcal{D} y$ if and only if there exists such z from $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ that $x \mathcal{L} z$ and $z \mathcal{R} y$. Consider the possible cases.
a) $\left|L_{x}\right|=1$ and $\left|R_{x}\right|>1$. As mentioned above, this case holds if and only if $\operatorname{ran}(x) \subseteq \operatorname{dom}(a)$ and $\operatorname{dom}(x) \nsubseteq \operatorname{ran}(a)$; then $D_{x}=R_{x}$.
b) $\left|L_{x}\right|>1$ and $\left|R_{x}\right|=1$. Then $\operatorname{ran}(x) \nsubseteq \operatorname{dom}(a)$ and $\operatorname{dom}(x) \subseteq$ $\operatorname{ran}(a)$, hence $D_{x}=L_{x}$;
c) $\left|L_{x}\right|>1$ and $\left|R_{x}\right|>1$. In this case $\operatorname{ran}(x) \subseteq \operatorname{dom}(a)$ and $\operatorname{dom}(x) \subseteq$ $\operatorname{ran}(a)$; so $y \mathcal{D} x$ if and only if $\operatorname{ran}(y) \subseteq \operatorname{dom}(a)$ and $\operatorname{dom}(y) \subseteq \operatorname{ran}(a)$.
d) Now if $\left|L_{x}\right|=1$ and $\left|R_{x}\right|=1$ then it is obvious that $D_{x}=\{x\}$.

Proposition 2.2. Let $p=\operatorname{rank}(a), p>1$. Then in semigroup $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$
the number of one element \mathcal{R}-classes (\mathcal{L}-classes) equals

$$
\sum_{k=0}^{n} \sum_{m=1}^{k}\binom{n-p}{m}\binom{p}{k-m}\binom{n}{k} k!
$$

The number of multi-element \mathcal{R}-classes (\mathcal{L}-classes) equals $\sum_{k=1}^{p}\binom{n}{k}$. The cardinality of a multi-element class is

$$
[p]_{k}=p(p-1) \cdots(p-k+1), \text { where } 1 \leq k \leq p
$$

moreover the number of \mathcal{R}-classes (\mathcal{L}-classes) of the cardinality $[p]_{k}$ equals $\binom{n}{k}$.

Proof. By Theorem 2.1 semigroup $\left(\mathcal{I} \mathcal{S}_{n}, *_{a}\right)$ is self-dual so the number and the cardinalities of \mathcal{R}-classes as well as of \mathcal{L}-classes are the same. Hence it is enough to calculate the number and the cardinalities of \mathcal{R}-classes.

Let $\operatorname{rank}(x)=k$.
The proof of the statement 1) of the Theorem 2.2 implies R_{x} - class is one element provided $\operatorname{ran}(x) \nsubseteq \operatorname{dom}(a)$. For all such x, $\operatorname{dom}(x)$ can be chosen arbitrary. Denote by m the number of such points $i \in \operatorname{dom}(x)$ that $x(i) \notin \operatorname{dom}(a)$. Then $1 \leq m \leq k$. For a fixed m set $\operatorname{ran}(x) \backslash \operatorname{dom}(a)$ can be chosen in $\binom{n-p}{m}$ ways. Similarly, set $\operatorname{ran}(x) \cap \operatorname{dom}(a)$ can be chosen in $\binom{p}{k-m}$ different ways. Hereby $\operatorname{ran}(x)$ can be defined in $\sum_{m=1}^{k}\binom{n-p}{m}\binom{p}{k-m}$ ways. Then the number of one element \mathcal{R} - classes equals

$$
\sum_{k=0}^{n} \sum_{m=1}^{k}\binom{n-p}{m}\binom{p}{k-m}\binom{n}{k} k!
$$

where $\binom{n}{k}$ is the number of ways to chose $\operatorname{dom}(x), k$! is the number of different x when $\operatorname{dom}(x)$ and $\operatorname{ran}(x)$ are defined.

By Theorem 2.2 each multi-element \mathcal{R}-class is defined by the domain of its representative x, moreover, $\left|R_{x}\right|>1$ if and only if $\operatorname{ran}(x) \subseteq \operatorname{dom}(a)$. Thus for a fixed k the number of multi-element \mathcal{R}-classes is $\binom{n}{k}$ and $1 \leq k \leq p$. It is clear the total number of multi-element classes is equal to $\sum_{k=1}^{p}\binom{n}{k}$.

Now count the cardinality of class R_{x}. By Theorem 2.2.1) $y \in R_{x}$ if and only if $\operatorname{dom}(y)=\operatorname{dom}(x)$ and $\operatorname{ran}(y) \subseteq \operatorname{dom}(a)$. So $\operatorname{ran}(y)$ can be chosen in $\binom{p}{k}$ ways. Then one defines the map from $\operatorname{dom}(x)$ to $\operatorname{ran}(y)$ in k ! ways. Hence $\left|R_{x}\right|=\binom{p}{k} k!=[p]_{k}$.

3. Green's relation on $\left(\mathcal{T}_{n}, *_{a}\right)$.

Let \mathcal{T}_{n} be full symmetric semigroup of all transformations of the set $\{1,2, \ldots, n\}$. For any $x \in \mathcal{T}_{n}$ denote by $\operatorname{ran}(x)$ the range of transformation x. The value $|\operatorname{ran}(x)|$ is called the range of x and is denoted by $\operatorname{rank}(x)$.

Denote by ρ_{x} the partition of the set $\{1,2, \ldots, n\}$ induced by transformation x, that is i and j belong to the same block of the partition ρ_{x} provided $x(i)=x(j)$. By $x^{-1}(i)$ denote the full pre-image of the point $i \in \operatorname{ran}(x)$.

Theorem 3.1. Let $n>1$ and $x \in\left(\mathcal{T}_{n}, *_{a}\right)$

1) If $\operatorname{rank}(x) \leq \operatorname{rank}(a)$ and for every block M of the partition ρ_{a}, $|\operatorname{ran}(x) \cap M| \leq 1$ then

$$
\begin{array}{r}
R_{x}=\left\{y \mid \rho_{y}=\rho_{x} \text { and for every block } M\right. \\
\text { of the partition } \left.\rho_{a},|\operatorname{ran}(y) \cap M| \leq 1\right\}
\end{array}
$$

and $\left|R_{x}\right|>1$. Otherwise $R_{x}=\{x\}$.
2) If $\operatorname{rank}(a)>1, \operatorname{rank}(x) \leq \operatorname{rank}(a)$ and for every block B_{x} of the partition $\rho_{x}, B_{x} \cap \operatorname{ran}(a) \neq \varnothing$ then

$$
\begin{array}{r}
L_{x}=\left\{y \mid \operatorname{ran}(y)=\operatorname{ran}(x) \text { and for every block } B_{y}\right. \\
\text { of the partition } \left.\rho_{y}, B_{y} \cap \operatorname{ran}(a) \neq \varnothing\right\} .
\end{array}
$$

Otherwise $L_{x}=\{x\}$.
If $\operatorname{rank}(a)=1$ then all \mathcal{L}-classes are one element.
3) If $\operatorname{rank}(x) \leq \operatorname{rank}(a)$, for every block M of the partition ρ_{a}, $|\operatorname{ran}(x) \cap M| \leq 1$ and for every block B_{x} of the partition $\rho_{x}, B_{x} \cap$ $\operatorname{ran}(a) \neq \varnothing$ then

$$
\begin{array}{r}
H_{x}=\left\{y \mid \rho_{y}=\rho_{x}, \operatorname{ran}(y)=\operatorname{ran}(x), \text { for every block } M\right. \\
\text { of the partition } \rho_{a},|\operatorname{ran}(y) \cap M| \leq 1 \\
\text { and for every block } B_{y} \text { of the partition } \rho_{y}, \\
\left.B_{y} \cap \operatorname{ran}(a) \neq \varnothing\right\} .
\end{array}
$$

Otherwise $H_{x}=\{x\}$.
4) If $\operatorname{rank}(x) \leq \operatorname{rank}(a)$, for every block M of the partition ρ_{a}, $|\operatorname{ran}(x) \cap M| \leq 1$ and either there exists block B_{x} of the partition ρ_{x}, such that $B_{x} \cap \operatorname{ran}(a)=\varnothing$ or $\operatorname{rank}(a)=1$ then $D_{x}=R_{x}$;
if $\operatorname{rank}(x) \leq \operatorname{rank}(a)$, for every block M of the partition ρ_{a}, $|\operatorname{ran}(x) \cap M|>1$ and for every block B_{x} of the partition ρ_{x}, $B_{x} \cap \operatorname{ran}(a) \neq \varnothing$ then $D_{x}=L_{x} ;$
if $\operatorname{rank}(x) \leq \operatorname{rank}(a)$, for every block M of the partition ρ_{a}, $|\operatorname{ran}(x) \cap M| \leq 1$ and for every block B_{x} of the partition ρ_{x}, $B_{x} \cap \operatorname{ran}(a) \neq \varnothing$ then
$D_{x}=\left\{y \mid\right.$ for every block B_{y} of the partition $\rho_{y}, B_{y} \cap \operatorname{ran}(a) \neq \varnothing$, and for every block M of the partition $\left.\rho_{a},|\operatorname{ran}(y) \cap M| \leq 1\right\}$;
in all other cases $D_{x}=\{x\}$.
Proof. 1) Let different elements x and y from semigroup $\left(\mathcal{T}_{n}, *_{a}\right)$ belong to the same \mathcal{R} - class. By Remark 1.1 this holds if and only if there exist such u and v from $\left(\mathcal{T}_{n}, *_{a}\right)$ that:

$$
\begin{align*}
& x=y *_{a} u, \tag{9}\\
& y=x *_{a} v \tag{10}
\end{align*}
$$

Since there holds $\operatorname{rank}(x a) \leq \operatorname{rank}(a)$ for any transformation $x \in \mathcal{T}_{n}$ the condition (9) implies $\operatorname{rank}(x)=\operatorname{rank}(y a u) \leq \operatorname{rank}(y)$. Analogously, from (10) one gets $\operatorname{rank}(y)=\operatorname{rank}(x a v) \leq \operatorname{rank}(x)$. Hence for all $y \in R_{x}$ there holds an equality, $\operatorname{rank}(x)=\operatorname{rank}(y), \operatorname{moreover} \operatorname{rank}(x) \leq \operatorname{rank}(a)$. This means the points from $\operatorname{ran}(x)$ belong to different blocks of the partition ρ_{a}, that is for every block M of the partition $\rho_{a},|\operatorname{ran}(x) \cap M| \leq 1$. So $R_{x} \subseteq P$, where P is a set from the right hand side of (9). Now assume that $\operatorname{rank}(x) \leq \operatorname{rank}(a)$ and for every block M of the partition ρ_{a} there holds inequality $|\operatorname{ran}(x) \cap M| \leq 1$. Consider $y \in P$ and $u \in \mathcal{T}_{n}$ which is defined on every point $(y a)(i)$ as $x(i)$ and is defined arbitrary on other points. Analogously, choose $v \in \mathcal{T}_{n}$ which is defined on every point $(x a)(i)$ as $y(i)$. Then the equalities (9) and (10) hold. Hereby $y \in R_{x}$, and the reverse statement is proved. In this case $\left|R_{x}\right|>1$.

If at least one of the conditions on x fails the above yields $\left|R_{x}\right|=1$.
2) Let $\operatorname{rank}(a)>1$ and different elements, x and y, from $\left(\mathcal{T}_{n}, *_{a}\right)$ belong to the same \mathcal{L} - class. By Remark 1.1 this holds if and only if there exist such u and v from $\left(\mathcal{T}_{n}, *_{a}\right)$ that

$$
\begin{align*}
& x=u *_{a} y \tag{11}\\
& y=v *_{a} x \tag{12}
\end{align*}
$$

Hence $\operatorname{rank}(x)=\operatorname{rank}(y)$. Since $\operatorname{rank}(x) \leq \operatorname{rank}(a)$ equalities (11) and (12) immediately imply $\operatorname{ran}(x)=\operatorname{ran}(y)$. The last means $\operatorname{rank}(a x)=\operatorname{rank}(x)$
that is for every block B_{x} of the partition $\rho_{x}, B_{x} \cap \operatorname{ran}(a) \neq \varnothing$. Then for all $y \in L_{x}$ one gets that for every block B_{y} of the partition $\rho_{y}, B_{y} \cap \operatorname{ran}(a) \neq$ \varnothing. Thus there is an inclusion $L_{x} \subseteq Q$ where Q is a set from the right hand side of (10). Conversely, let for x there hold $\operatorname{rank}(x) \leq \operatorname{rank}(a)$, for every block B_{x} of the partition $\rho_{x}, B_{x} \cap \operatorname{ran}(a) \neq \varnothing$, and let $y \in Q$. Then the statement that for every block B_{y} of the partition $\rho_{y}, B_{y} \cap \operatorname{ran}(a) \neq \varnothing$ implies $\operatorname{ran}(a y)=\operatorname{ran}(y)$. From $\operatorname{ran}(y)=\operatorname{ran}(x)$ one gets $\operatorname{ran}(a y)=\operatorname{ran}(x)$. So there exist transformations u and v, satisfying the following conditions: for any $i \in N \quad u(i) \in(a y)^{-1}(x(i))$ and respectively for any $i \in N$ $v(i) \in(a x)^{-1}(y(i))$.

The straightforward check shows that u and v satisfy equalities (11) and (12). If the conditions of the statement 2) of the theorem fail then $L_{x}=\{x\}$.

Let $\operatorname{rank}(a)=1$. Assume that $L_{x}-$ class contains $y \neq x$. Then (11) and (12) imply $\operatorname{rank}(x)=\operatorname{rank}(y)=1$ and $\operatorname{ran}(x)=\operatorname{ran}(y)$. The last contradicts our assumption. Hence for all $x\left|L_{x}\right|=1$.
3) Statement about $H_{x}-$ class follows from 1) and 2) statements of the theorem and \mathcal{H} - relation definition.
4) As it is known, $x \mathcal{D} y$ if and only if there exist $z \in\left(\mathcal{T}_{n}, *_{a}\right)$ such that $x \mathcal{L} z$ and $z \mathcal{R} y$. Consider possible cases.
a) $\left|L_{x}\right|=1$ and $\left|R_{x}\right|>1$. By statements 1) and 2) this means that $\operatorname{rank}(x) \leq \operatorname{rank}(a)$, for every block M of the partition $\rho_{a}, \mid \operatorname{ran}(x) \cap$ $M \mid \leq 1$ and either there exists block B_{x} of the partition ρ_{x}, such that $B_{x} \cap \operatorname{ran}(a)=\varnothing$ or $\operatorname{rank}(a)=1$. Then $D_{x}=R_{x}$.
b) $\left|L_{x}\right|>1$ and $\left|R_{x}\right|=1$. In this case $\operatorname{rank}(a)>1, \operatorname{rank}(x) \leq \operatorname{rank}(a)$, for every block M of the partition $\rho_{a},|\operatorname{ran}(x) \cap M|>1$ and for every block B_{x} of the partition $\rho_{x}, B_{x} \cap \operatorname{ran}(a) \neq \varnothing$. Then $D_{x}=L_{x}$;
c) $\left|L_{x}\right|>1$ i $\left|R_{x}\right|>1$. Then $\operatorname{rank}(a)>1, \operatorname{rank}(x) \leq \operatorname{rank}(a)$, for every block M of the partition $\rho_{a},|\operatorname{ran}(x) \cap M| \leq 1$ and for every block B_{x} of the partition $\rho_{x}, B_{x} \cap \operatorname{ran}(a) \neq \varnothing$. In this case $y \mathcal{D} x$ if and only if for every block B_{y} of the partition $\rho_{y}, B_{y} \cap \operatorname{ran}(a) \neq \varnothing$ and for every block M of the partition $\rho_{a},|\operatorname{ran}(y) \cap M| \leq 1$.
d) If $\left|L_{x}\right|=1$ and $\left|R_{x}\right|=1$ then obviously $D_{x}=\{x\}$.

Let $S(n, k)$ be Stirling's number of the second type, that is the number of (unordered) decompositions of an n-element set into k subsets.

Proposition 3.1. Let $\mathcal{T}=\left(\mathcal{T}_{n}, *_{a}\right), n>1$ and $p=\operatorname{rank}(a)$.

1. If $p=1$ then all \mathcal{L}-classes in \mathcal{T} are one element. The number of one element \mathcal{L}-classes is equal to n^{n}.

Let $p>1$. Then in \mathcal{T} the number of one element \mathcal{L} - classes equals

$$
n^{n}-\sum_{m=1}^{p}\binom{n}{m} S(p, m) \sum_{j=1}^{m} S(n-p, j)\binom{m}{j} j!
$$

the number of multi-element \mathcal{L} - classes equals $\sum_{m=1}^{p}\binom{n}{m}$ moreover there are $\binom{n}{m}$ multi-element \mathcal{L} - classes of the cardinality

$$
S(p, m) \sum_{j=1}^{m} S(n-p, j)\binom{m}{j} j!, 1 \leq m \leq p
$$

2. Let $\left\{a_{1}, \ldots, a_{p}\right\}$ be the range of transformation $a \in \mathcal{T}$. Denote $n\left(a_{i}\right)=\left|a^{-1}\left(a_{i}\right)\right|, 1 \leq i \leq p$. The number of one element $\mathcal{R}-$ classes is equal to

$$
n^{n}-\sum_{m=1}^{p} S(n, m) \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq p} n\left(a_{i_{1}}\right) \cdots n\left(a_{i_{m}}\right) m!
$$

the number of multi-element \mathcal{R} - classes is equal to $\sum_{m=1}^{p} S(n, m)$, moreover, there are $S(n, m)$ multi-element \mathcal{R} - classes of the cardinality

$$
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq p} n\left(a_{i_{1}}\right) \cdots n\left(a_{i_{m}}\right) m!
$$

Proof. 1. The case when $p \leq 1$ is considered in the proof of statement 2) of Theorem 3.1.

Let $p>1$. Denote $\operatorname{rank}(x)=m$. By statement 2) of the Theorem 3.1 the multi-element \mathcal{L}-class in semigroup \mathcal{T} is uniquely defined by the range of its representative, x, moreover $\operatorname{rank}(x) \leq \operatorname{rank}(a)$, that is $1 \leq m \leq p$. So the number of multi-element L-classes equals $\sum_{m=1}^{p}\binom{n}{m}$. Calculate the cardinality of this class if m is fixed. By Theorem $3.1 y \in L_{x}$ provided $\operatorname{ran}(y)=\operatorname{ran}(x)$ and for every block B_{y} of the partition ρ_{y}, $B_{y} \cap \operatorname{ran} a \neq \varnothing$. Hereby in every block of the partition ρ_{y} there is at least one point from $\operatorname{ran}(a)$. The number of distributions of the points from $\operatorname{ran}(a)$ into the blocks of the partition ρ_{y}, equals $S(p, m)$. Transformation y maps other $n-p$ points of set $\{1,2, \ldots, n\}$ in $\sum_{j=1}^{m} S(n-p, j)\binom{m}{j} j$! ways,
where $\binom{m}{j}$ is the number of ways to choose blocks in which $n-p$ points are distributed in $S(n-p, j)$ ways. Moreover each time in j ! ways the chosen blocks can be shuffled. Hence the total number of transformations in a single multi-element \mathcal{L}-class equals

$$
S(p, m) \sum_{j=1}^{m} S(n-p, j)\binom{m}{j} j!.
$$

Remaining elements from \mathcal{T} form the set of one element \mathcal{L}-classes. Their number is equal to

$$
n^{n}-\sum_{m=1}^{p}\binom{n}{m} S(p, m) \sum_{j=1}^{m} S(n-p, j)\binom{m}{j} j!
$$

2. By statement 1) of Theorem 3.1 each multi-element \mathcal{R}-class is defined by the partition ρ of the set $\{1,2, \ldots, n\}$ such that the number of partition blocks is less or equal to $\operatorname{rank}(a)$. For every $1 \leq m \leq p$ there are $S(n, m)$ decompositions of the set $\{1,2, \ldots, n\}$ into m unordered blocks.

Calculate the number of elements in \mathcal{R}-class defined by the partition into blocks $X_{1}, X_{2}, \ldots, X_{m}$. By statement 1) of Theorem 3.1 this number depends solely on the number of blocks in the partition, moreover for every $1 \leq i \leq p \quad a^{-1}\left(a_{i}\right)$ contains the range of at most one of these blocks. Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}$ be such elements from $\operatorname{ran}(a)$ that $a^{-1}\left(a_{i_{j}}\right)$ contains the range of a certain block. Then there are m ! different ways to map the blocks $X_{1}, X_{2}, \ldots, X_{m}$ to sets $a^{-1}\left(a_{i_{1}}\right), \ldots, a^{-1}\left(a_{i_{m}}\right)$. Then the total number of the ways to map $X_{1}, X_{2}, \ldots, X_{m}$ to $a^{-1}\left(a_{i_{1}}\right), \ldots, a^{-1}\left(a_{i_{m}}\right)$ is equal to $n\left(a_{i_{1}}\right) \cdots n\left(a_{i_{m}}\right) m$!. Hence for a fixed m the cardinality of a multi-element \mathcal{R}-class is equal to

$$
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq p} n\left(a_{i_{1}}\right) \cdots n\left(a_{i_{m}}\right) m!.
$$

The total number of elements in all multi-element \mathcal{R}-classes equals

$$
\sum_{m=1}^{p} S(n, m) \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq p} n\left(a_{i_{1}}\right) \cdots n\left(a_{i_{m}}\right) m!
$$

Now it is clear that the number of one element \mathcal{R}-classes is equal to

$$
n^{n}-\sum_{m=1}^{p} S(n, m) \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq p} n\left(a_{i_{1}}\right) \cdots n\left(a_{i_{m}}\right) m!
$$

References

[1] Artamonov V.A, Salij V.N., Skornyakov L.A. and others, General Algebra, Moscow, Nauka, 1991, vol. 1 (Russian).
[2] Gerard Lallement, Semigroups and combinatorial applications, A. Wlley - Interscience Publication, 1979.
[3] Ljapin Y.S., Semigroups, Moscow, Fizmatgiz, 1960 (Russian).
[4] Magill Kenneth D., Semigroup structures for families of functions. II. Continuous functions. // J. Austral. Math. Soc. 7 (1967), 95-107.
[5] Sullivan R.P., Generalized partial transformation semigroups. // J. Austral. Math. Soc. 19 (1975), part 4, 470-473
[6] Symons J.S.V., On a generalization of the transformation semigroup. // J. Austral. Math. Soc. 19 (1975), 47-61
[7] Tsyaputa G.Y., Transformation semigroups with the deformed multiplication. // Visnyk Kyiv Univ., 4 (2003).

Contact information

G. Y. Tsyaputa Kyiv National Taras Shevchenko University, Faculty of Mechanics and Mathematics, Volodymyrska, 64, Kyiv, Ukraine 01033 E-Mail: gtsyaputa@univ.kiev.ua

Received by the editors: 03.11.2003
and final form in 30.01.2004.

