On equivalence of some subcategories of modules in Morita contexts

A. I. Kashu

Abstract. A Morita context $\left(R,{ }_{R} V_{S},{ }_{S} W_{R}, S\right)$ defines the isomorphism $\mathcal{L}_{0}(R) \cong \mathcal{L}_{0}(S)$ of lattices of torsions $r \geq r_{I}$ of R-Mod and torsions $s \geq r_{J}$ of S-Mod, where I and J are the trace ideals of the given context. For every pair (r, s) of corresponding torsions the modifications of functors $T^{W}=W \otimes_{R^{-}}$and $T^{V}=V \otimes_{S^{-}}$are considered:

$$
R-\operatorname{Mod} \supseteq \mathcal{P}(r) \underset{\bar{T}^{V}=(1 / r) \cdot T^{V}}{\stackrel{\bar{T}^{W}=(1 / s) \cdot T^{W}}{\rightleftarrows}} \mathcal{P}(s) \subseteq S \text {-Mod },
$$

where $\mathcal{P}(r)$ and $\mathcal{P}(s)$ are the classes of torsion free modules. It is proved that these functors define the equivalence

$$
\mathcal{P}(r) \cap \mathcal{J}_{I} \approx \mathcal{P}(s) \cap \mathcal{J}_{J},
$$

where $\mathcal{P}(r)=\left\{{ }_{R} M \mid r(M)=0\right\}$ and $\mathcal{J}_{I}=\left\{{ }_{R} M \mid I M=M\right\}$.
Let $\left(R,{ }_{R} V_{S},{ }_{S} W_{R}, S\right)$ be an arbitrary Morita context with the bimodule morphisms

$$
(,): V \otimes_{S} W \longrightarrow R, \quad[,]: W \otimes_{R} V \longrightarrow S,
$$

satisfying the conditions of associativity:

$$
\begin{equation*}
(v, w) v_{1}=v\left[w, v_{1}\right], \quad[w, v] w_{1}=w\left(v, w_{1}\right) \tag{1}
\end{equation*}
$$

for $v, v_{1} \in V$ and $w, w_{1} \in W$. We denote by $I=(V, W)$ and $J=[W, V]$ the trace ideals of this context, where I is ideal of R and J is ideal of S.

2000 Mathematics Subject Classification: 16S90, 16D90.
Key words and phrases: torsion (torsion theory), Morita context, torsion free module, accessible module, equivalence.

They define the torsions r_{I} in $R-\operatorname{Mod}$ and r_{J} in S - Mod such that the classes of torsion free modules are:

$$
\begin{aligned}
\mathcal{P}\left(r_{I}\right) & =\left\{{ }_{R} M \mid I m=0, m \in M \Longrightarrow m=0\right\} \\
\mathcal{P}\left(r_{J}\right) & \left.={ }_{S} N \mid J n=0, n \in N \Longrightarrow n=0\right\}
\end{aligned}
$$

i.e. r_{I} and r_{J} are determined by the smallest Gabriel filters, containing I and J, respectively [7].

In the lattices $\mathcal{L}(R)$ and $\mathcal{L}(S)$ of all torsions of R - $M o d$ and S-Mod, respectively, we distinguish the following sublattices:

$$
\begin{align*}
\mathcal{L}_{0}(R) & =\left\{r \in \mathcal{L}(R) \mid r \geq r_{I}\right\} \tag{2}\\
\mathcal{L}_{0}(S) & =\left\{s \in \mathcal{L}(S) \mid s \geq r_{J}\right\}
\end{align*}
$$

The following result is well known ([1], [4], [5], [7]).
Theorem 1. There exists a preserving order bijection between the torsions of R-Mod containing r_{I} and torsions of $S-M o d$ containing r_{J}, i.e. $\mathcal{L}_{0}(R) \cong \mathcal{L}_{0}(S)$.

This bijection is obtained with the help of the functors:

$$
\begin{equation*}
R-M o d \underset{H^{W}=\operatorname{Hom}_{S}(W,-)}{\stackrel{H^{V}=\operatorname{Hom}_{R}(V,-)}{\rightleftarrows}} \text { S-Mod, } \tag{3}
\end{equation*}
$$

acting by H^{V} and H^{W} to the injective cogeneratots of torsions [4]. From the definitions it follows

Lemma 2. ([4], Lemma 4). If (r, s) is a pair of corresponding torsions in the sense of Theorem 1 (i.e. $H^{V}(r)=s$ and $H^{W}(s)=r$), then $H^{V}(\mathcal{P}(r)) \subseteq \mathcal{P}(s)$ and $H^{W}(\mathcal{P}(s)) \subseteq \mathcal{P}(r)$, where $\mathcal{P}(r)$ and $P(s)$ are (\mathcal{P}) the classes of torsion free modules.

Now we consider the following functors accompanying the given Morita context:
with the natural transformations

$$
\eta: T^{V} T^{W} \longrightarrow 1_{R-M o d}, \quad \rho: T^{W} T^{V} \longrightarrow 1_{S-M o d}
$$

defined by the rules:

$$
\begin{equation*}
\eta_{M}(v \otimes w \otimes m)=(v, w) m, \quad \rho_{N}(w \otimes v \otimes n)=[w, v] n \tag{5}
\end{equation*}
$$

for $v \otimes w \otimes m \in T^{V} T^{W}(M), M \in R-M o d$ and $w \otimes v \otimes n \in T^{W} T^{V}(N)$, $N \in S$-Mod. By definitions it follows:

$$
\operatorname{Im} \eta_{M}=I M, \quad \operatorname{Im} \rho_{N}=J N
$$

It is easy to verify the following relations:

$$
\begin{gather*}
T^{W}\left(\eta_{M}\right)=\rho_{T_{(M)}^{W}} \tag{6}\\
T^{V}\left(\rho_{N}\right)=\eta_{T^{V}(N)} \tag{7}
\end{gather*}
$$

for every $M \in R-M o d$ and $N \in S$ - Mod (i.e. $\left(T^{W}, T^{V}\right)$ and (η, ρ) define a wide Morita context in the sense of [3]).

For an arbitrary class of modules $\mathcal{K} \subseteq R$-Mod we denote:

$$
\begin{aligned}
\mathcal{K}^{\uparrow} & =\left\{X \in R-M o d \mid \operatorname{Hom}_{R}(X, Y)=0 \forall Y \in \mathcal{K}\right\} \\
\mathcal{K}^{\downarrow} & =\left\{Y \in R-M o d \mid \operatorname{Hom}_{R}(X, Y)=0 \forall X \in \mathcal{K}\right\}
\end{aligned}
$$

If r is a torsion of R-Mod, $\mathcal{R}(r)=\{M \in R$ - $\operatorname{Mod} \mid r(M)=M\}$ and $\mathcal{P}(r)=\{M \in R$ - Mod $\mid r(M)=0\}$, then $\mathcal{R}(r)=\mathcal{P}(r)^{\uparrow}$ and $\mathcal{P}(r)=\mathcal{R}(r)^{\downarrow}$ ([5], [7], [8]).

The following statement is known ([6], lemma 3), but for convenience we give the proof.

Lemma 3. If (r, s) is a pair of corresponding torsions in the sense of Theorem 1, then $T^{W}(\mathcal{R}(r)) \subseteq \mathcal{R}(s)$ and $T^{V}(\mathcal{R}(s)) \subseteq \mathcal{R}(r)$.

Proof. Let ${ }_{S} N \in \mathcal{R}(s)=\mathcal{P}(s)^{\uparrow}$, i.e. $\operatorname{Hom}_{S}(N, Y)=0$ for every $Y \in$ $\mathcal{P}(s)$. If $M \in \mathcal{P}(r)$, then by Lemma $2_{S} H^{V}(M)=\operatorname{Hom}_{R}(V, M) \in \mathcal{P}(s)$. Now from $N \in \mathcal{R}(s)$ it follows that $\operatorname{Hom}_{S}\left(N, \operatorname{Hom}_{R}(V, M)\right)=0$. By adjunction

$$
\operatorname{Hom}_{R}\left(V \otimes_{S} N, M\right) \cong \operatorname{Hom}_{S}\left(N, \operatorname{Hom}_{R}(V, M)\right)=0
$$

for every $M \in \mathcal{P}(r)$, therefore $V \otimes_{S} N \in \mathcal{P}(r)^{\uparrow}=\mathcal{R}(r)$, i.e. $T^{V}(\mathcal{R}(s)) \subseteq$ $\mathcal{R}(r)$. By symmetry the relation $T^{W}(R(r)) \subseteq R(s)(\mathcal{R})$ is true.

In continuation we mention some facts about the classes of modules determined by trace ideals $I \triangleleft R$ and $J \triangleleft S$ in the categories R - $M o d$ and S-Mod, respectively. The ideal $I \triangleleft R$ defines in R - $M o d$ the following classes of modules:

$$
\begin{aligned}
\mathcal{A}(I) & =\{M \in R-M o d \mid I M=0\} \\
\mathcal{J}_{I} & =\{M \in R-M o d \mid I M=M\} \\
\mathcal{F}_{I} & =\{M \in R-M o d \mid I m=0, m \in M \Longrightarrow m=0\}=\mathcal{P}\left(r_{I}\right)
\end{aligned}
$$

The modules of \mathcal{J}_{I} are called I-accessible and

$$
\mathcal{J}_{I}=\left\{M \in R-\text { Mod } \mid \operatorname{Im} \eta_{M}=M\right\}
$$

The following relations are known ([7], [8]):

$$
\begin{equation*}
\mathcal{J}_{I}=\mathcal{A}(I)^{\uparrow}, \quad \mathcal{F}_{I}=\mathcal{A}(I)^{\downarrow} \tag{8}
\end{equation*}
$$

Similarly we define the classes $\mathcal{A}(J), \mathcal{J}_{J}$ and \mathcal{F}_{J} in S-Mod with the relations $\mathcal{J}_{J}=\mathcal{A}(J)^{\uparrow}$ and $\mathcal{F}_{J}=\mathcal{A}(J)^{\downarrow}$, where $\mathcal{F}_{J}=\mathcal{P}\left(r_{J}\right)$.

Lemma 4. Let (r, s) be a pair of corresponding torsions (Theorem 1). Then $\mathcal{A}(I) \subseteq \mathcal{R}(r)$ and $\mathcal{A}(J) \subseteq \mathcal{R}(s)$.

Proof. From $r \geq r_{I}$ it follows $\mathcal{P}(r) \subseteq \mathcal{P}\left(r_{I}\right)=\mathcal{F}_{I}$ and by (8) we obtain

$$
\mathcal{R}(r)=\mathcal{P}(r)^{\uparrow} \supseteq \mathcal{P}\left(r_{I}\right)^{\uparrow}=\mathcal{F}_{I}^{\uparrow}=\mathcal{A}(I)^{\downarrow \uparrow} \supseteq \mathcal{A}(I)
$$

Similarly, $\mathcal{R}(s) \supseteq \mathcal{A}(J)$.
From now on we fix an arbitrary pair (r, s) of corresponding torsions, i.e. $r \geq r_{I}, s \geq r_{J}, s=H^{V}(r)$ and $r=H^{W}(s)$ (Theorem 1). We consider the following modifications of the functors T^{W} and T^{V} :

where $(1 / r)(M)=M / r(M),(1 / s)(N)=N / s(N), \bar{T}^{W}=(1 / s) \cdot T^{W}$ and $\bar{T}^{V}=(1 / r) \cdot T^{V}$. So, by definition:

$$
\begin{equation*}
\bar{T}^{W}\left({ }_{R} M\right)=\left(W \otimes_{R} M\right) / s\left(W \otimes_{R} M\right), \quad \bar{T}^{V}\left({ }_{S} N\right)=\left(V \otimes_{S} N\right) / r\left(V \otimes_{S} N\right) \tag{9}
\end{equation*}
$$

for $M \in R$-Mod and $N \in S$-Mod. Denote by α and β the natural transformations:

$$
\alpha: T^{W} \longrightarrow \bar{T}^{W}, \quad \beta: T^{V} \longrightarrow \bar{T}^{V}
$$

where

$$
\alpha_{M}: T^{W}(M) \longrightarrow T^{W}(M) / s\left(T^{W}(M)\right)
$$

and

$$
\beta_{N}: T^{V}(N) \longrightarrow T^{V}(N) / r\left(T^{V}(N)\right)
$$

are the natural epimorphisms. Since the functors T^{W} and T^{V} are right exact, it is clear that the functors \bar{T}^{W} and \bar{T}^{V} preserve epimorphisms. By definitions of \bar{T}^{W} and \bar{T}^{V} it follows that $\bar{T}^{W}(M) \in \mathcal{P}(s)$ and $\bar{T}^{V}(N) \in$ $\mathcal{P}(r)$ for every $M \in R$ - Mod and $N \in S$ - Mod, therefore we can consider the restrictions of these functors on the subcategories $\mathcal{P}(r)$ and $\mathcal{P}(s)$:

$$
\begin{equation*}
\mathcal{P}(r) \underset{\bar{T}^{V}}{\stackrel{\bar{T}^{W}}{\rightleftarrows}} \mathcal{P}(s) \tag{10}
\end{equation*}
$$

In the situation (10) there exist the modifications of natural transformations η and ρ :

$$
\bar{\eta}: \bar{T}^{V} \bar{T}^{W} \longrightarrow 1_{\mathcal{P}(r)}, \quad \bar{\rho}: \bar{T}^{W} \bar{T}^{V} \longrightarrow 1_{\mathcal{P}(s)}
$$

which are defined (see [3]) as follows. For every $M \in \mathcal{P}(r)$ applying T^{V} to the exacte sequence

$$
\begin{equation*}
0 \rightarrow s\left(T^{W}(M)\right) \underset{\subseteq}{\xrightarrow{i_{M}}} T^{W}(M) \quad \underset{n a t}{\alpha_{M}} \quad T^{W}(M) / s\left(T^{W}(M)\right) \rightarrow 0 \tag{11}
\end{equation*}
$$

we obtain the diagram:

Since $s\left(T^{W}(M)\right) \in \mathcal{R}(s)$, by Lemma $3 T^{V}\left(s\left(T^{W}(M)\right)\right) \in \mathcal{R}(r)$, so from $M \in \mathcal{P}(r)$ it follows $\operatorname{Hom}_{R}\left(T^{V}\left(s\left(T^{W}(M)\right)\right), M\right)=0$, therefore $\eta_{M} \cdot T^{V}\left(i_{M}\right)=0$. Since $\operatorname{Im} T^{V}\left(i_{M}\right)=\operatorname{Ker} T^{V}\left(\alpha_{M}\right) \subseteq \operatorname{Ker} \eta_{M}$ and $T^{V}\left(\alpha_{M}\right)$ is an epimorphism, there exists an unique morphism η_{M}^{\prime} such that $\eta_{M}^{\prime} \cdot T^{V}\left(\alpha_{M}\right)=\eta_{M}$. The following step: from $M \in \mathcal{P}(r)$ and $r\left(T^{V} \bar{T}^{W}(M)\right) \in \mathcal{R}(r)$ it follows $\eta_{M}^{\prime} \cdot i=0$ and there exists an unique morphism $\bar{\eta}_{M}$ such that $\bar{\eta}_{M} \cdot \beta_{\bar{T} W_{(M)}}=\eta_{M}^{\prime}$. So, by definitions we have:

$$
\begin{equation*}
\eta_{M}=\bar{\eta}_{M} \cdot \beta_{\bar{T} W_{(M)}} \cdot T^{V}\left(\alpha_{M}\right) \tag{13}
\end{equation*}
$$

In such a way it is obtained a natural transformations $\bar{\eta}$ ([3]) and symmetrically $\bar{\rho}$ is defined. From these definitions follows immediately

Lemma 5. a) If the module $M \in \mathcal{P}(r)$ is I-accessible (i.e. η_{M} is epi), then $\bar{\eta}_{M}$ is an epimorphism.
b) If the module $N \in \mathcal{P}(s)$ is J-accessible, then $\bar{\rho}_{N}$ is an epimorphism.

Now we consider in $\mathcal{P}(r)$ and $\mathcal{P}(s)$ the following subcategories of torsion free and accessible modules:

$$
\mathcal{A}=\mathcal{P}(r) \cap \mathcal{J}_{I} \subseteq R \text {-Mod }, \quad \mathcal{B}=\mathcal{P}(s) \cap \mathcal{J}_{J} \subseteq S \text {-Mod }
$$

Lemma 6. The functors \bar{T}^{W} and \bar{T}^{V} transfer subcategories \mathcal{A} and \mathcal{B} each one in another, i.e. $\bar{T}^{W}(\mathcal{A}) \subseteq \mathcal{B}$ and $\bar{T}^{V}(\mathcal{B}) \subseteq \mathcal{A}$.

Proof. Let $M \in \mathcal{A}$. Since $\bar{T}^{W}(M) \in \mathcal{P}(s)$, it is sufficient to check that $\bar{T}^{W}(M) \in \mathcal{J}_{J}$. For that we consider the following commutative diagram:

Since $M \in \mathcal{J}_{I}, \eta_{M}$ is epi, therefore $T^{W}\left(\eta_{M}\right)$ is epi. From (6) $\rho_{T^{W}(M)}=$ $T^{W}\left(\eta_{M}\right)$, so $\rho_{T^{W}(M)}$ is epi, therefore $\alpha_{M} \cdot \rho_{T^{W}(M)}$ also is epi. Now diagram (14) shows that $\rho_{\bar{T}^{W}(M)}$ is epimorphism, i.e. $\bar{T}^{W}(M) \in \mathcal{J}_{J}$. This proves that $\bar{T}^{W}(\mathcal{A}) \subseteq \mathcal{B}$. By symmetry $\bar{T}^{V}(\mathcal{B}) \subseteq \mathcal{A}$.

Another proof of Lemma 6 follows from the remark that

$$
\begin{equation*}
T^{W}\left(\mathcal{J}_{I}\right) \subseteq \mathcal{J}_{J}, \quad T^{V}\left(\mathcal{J}_{J}\right) \subseteq \mathcal{J}_{I} \tag{15}
\end{equation*}
$$

Indeed, if $M \in \mathcal{J}_{I}$ then:

$$
\begin{aligned}
& J\left(W \otimes_{R} M\right)=[W, V] W \otimes_{R} M=W(V, W) \otimes_{R} M= \\
& \quad=W \otimes_{R}(V, W) M=W \otimes_{R} I M=W \otimes_{R} M
\end{aligned}
$$

i.e. $T^{W}(M) \in \mathcal{J}_{J}$, and similarly for the second relation.

Now from (15) for every $M \in \mathcal{J}_{I}$ we obtain:

$$
\begin{aligned}
& J \cdot \bar{T}^{W}(M)= J \cdot\left[\left(W \otimes_{R} M\right) / s\left(W \otimes_{R} M\right)\right]= \\
&= {\left[J\left(W \otimes_{R} M\right)+s\left(W \otimes_{R} M\right)\right] / s\left(W \otimes_{R} M\right) \stackrel{(15)}{=} } \\
&=\left[W \otimes_{R} M+s\left(W \otimes_{R} M\right)\right] / s\left(W \otimes_{R} M\right)= \\
&=\left(W \otimes_{R} M\right) / s\left(W \otimes_{R} M\right)=\bar{T}^{W}(M)
\end{aligned}
$$

therefore $\bar{T}^{W}(M) \in \mathcal{J}_{J}$.
Lemma 6 permits to obtain by restriction the functors:
with the natural transformations $\bar{\eta}$ and $\bar{\rho}$.
Lemma 7. a) For every $M \in \mathcal{P}(r), I \cdot \operatorname{Ker} \bar{\eta}_{M}=0$, i.e. $\operatorname{Ker} \bar{\eta}_{M} \in$ $\mathcal{A}(I) \subseteq \mathcal{R}(r)$.
b) For every $N \in \mathcal{P}(s)$, $J \cdot \operatorname{Ker} \bar{\rho}_{N}=0$, i.e. $\operatorname{Ker} \bar{\rho}_{N} \in \mathcal{A}(J) \subseteq \mathcal{R}(s)$.

Proof. From definition of $\bar{\eta}_{M}$ (see (12), (13)) it is clear that $\bar{\eta}_{M}$ acts as follows:

$$
\bar{\eta}_{M} \overline{\left(v \otimes\left(w \otimes m+s\left(W \otimes_{R} M\right)\right)\right.}=\eta_{M}(v \otimes w \otimes m)=(v, w) m
$$

where $\overline{\left(v \otimes\left(w \otimes m+s\left(W \otimes_{R} M\right)\right)\right.}=\beta_{\bar{T} W_{(M)}} T^{V}\left(\alpha_{M}\right)(v \otimes w \otimes m)$.
If $\overline{\left(v \otimes\left(w \otimes m+s\left(W \otimes_{R} M\right)\right)\right.} \in \operatorname{Ker} \bar{\eta}_{M}$,
then $\eta_{M}(v \otimes w \otimes m)=(v, m) m=0$ and for every $\left(v^{\prime}, w^{\prime}\right) \in I$ we obtain:

$$
\begin{aligned}
\left(v^{\prime}, w^{\prime}\right) \overline{(v \otimes(w} \otimes & \left.\otimes m+s\left(W \otimes_{R} M\right)\right) \\
& =\overline{\left(v^{\prime}, w^{\prime}\right) v \otimes\left(w \otimes m+s\left(W \otimes_{R} M\right)\right)}= \\
& =\overline{v^{\prime}\left[w^{\prime}, v\right] \otimes\left(w \otimes m+s\left(W \otimes_{R} M\right)\right)}= \\
& =\overline{v^{\prime} \otimes\left(\left[w^{\prime}, v\right] w \otimes m+s\left(W \otimes_{R} M\right)\right)}= \\
= & \overline{v^{\prime} \otimes\left(w^{\prime}(v, w) \otimes m+s\left(W \otimes_{R} M\right)\right)}= \\
& \quad=\overline{v^{\prime} \otimes\left(w^{\prime} \otimes(v, w) m+s\left(W \otimes_{R} M\right)\right)}=0
\end{aligned}
$$

because $(v, w) m=0$. From this we can conclude that $I \cdot \operatorname{Ker} \bar{\eta}_{M}=0$ and by Lemma $4 \operatorname{Ker} \bar{\eta}_{M} \in \mathcal{A}(I) \subseteq \mathcal{R}(r)$. The statement (b) follows from symmetry.

Lemma 8. a) $\operatorname{Ker} \bar{\eta}_{M}=0$ for every $M \in \mathcal{P}(r)$. b) $\operatorname{Ker} \bar{\rho}_{N}=0$ for every $N \in \mathcal{P}(s)$.
Proof. Since $\operatorname{Ker} \bar{\eta}_{M} \subseteq \bar{T}^{V} \bar{T}^{W}(M) \in \mathcal{P}(s)$, we have $\operatorname{Ker} \bar{\eta}_{M} \in \mathcal{P}(r)$. By Lemma 7 Ker $\bar{\eta}_{M} \in \mathcal{R}(r)$, therefore $\operatorname{Ker} \bar{\eta}_{M} \in \mathcal{R}(r) \cap \mathcal{P}(r)=\{0\}$. Similarly $\operatorname{Ker} \bar{\rho}_{N}=0$ for $N \in \mathcal{P}(s)$.

Theorem 9. For every pair (r, s) of corresponding torsions (in the sense of Theorem 1) the functors \bar{T}^{W} and \bar{T}^{V} (see (10)) with natural transformations $\bar{\eta}$ and $\bar{\rho}$ define an equivalence between the subcategories of torsion free and accessible modules $\mathcal{A}=\mathcal{P}(r) \cap \mathcal{J}_{I} \subseteq R$-Mod and $\mathcal{B}=$ $\mathcal{P}(s) \cap \mathcal{J}_{J} \subseteq S$-Mod.

Proof. If $M \in \mathcal{A}$, then by Lemma 5 a) $\bar{\eta}_{M}$ is epi. Moreover, from $M \in$ $\mathcal{P}(r)$ by Lemma 8 a) we conclude that $\bar{\eta}_{M}$ is mono, so $\bar{\eta}_{M}$ is an ismorphism. Symmetrically, for every $N \in \mathcal{B}$ we obtain that $\bar{\rho}_{N}$ is an isomorphism. Therefore the functors \bar{T}^{W} and \bar{T}^{V} with the natural transformations $\bar{\eta}$ and $\bar{\rho}$ establish the equivalence $\mathcal{A} \approx \mathcal{B}$.

The more general situation of wide Morita contexts is studied in [3]. The equivalence of Theorem 9 can be proved by [3, Theorem 2.6], using the preceding lemmas. We exposed the direct proof of this result.

For the particular case of the smallest pair $\left(r_{I}, r_{J}\right)$ of corresponding torsions we have

Corollary 10. ([2], [3]). The subcategories of torsion free and accessible modules $\mathcal{P}\left(r_{I}\right) \cap \mathcal{J}_{I}$ and $\mathcal{P}\left(r_{J}\right) \cap \mathcal{J}_{J}$ are equivalent.

References

[1] Müller B. J., The quotient category of a Morita context. J. Algebra, 28 (1974), pp. 389-407.
[2] Nicholson W. K., Watters J. F., Morita context functors. Math. Proc. Camb. Phil. Soc., 103 (1988), pp. 399-408.
[3] Iglesias F. C., Torrecillas J. G., Wide Morita contexts. Commun. Algebra, 23, No. 2, 1995, pp. 601-622.
[4] Kashu A.I., Morita contexts and torsions of modules. Matem. Zametki, 28, No 4, 1980, pp. 491-499 (in Russian).
[5] Golan J. S., Torsion theories. Longman Sci. Techn., New York, 1986.
[6] Kashu A. I., Torsion theories and subcategories of divisible modules. "Bulet. A.S.R. Moldova. Matematica", No. 2 (15), 1994, pp. 86-89.
[7] Kashu A.I., Radicals and torsions in modules. Kishinev, Stiinta, 1983 (in Russian).
[8] Kashu A.I., Functors and torsions in categories of modules. Acad. of Sciences of Mold., Inst. of Mathem., Kishinev, 1997 (in Russian).

Contact information

A. I. Kashu

Received by the editors: 04.06.2003 and final form in 27.10.2003.

Str. Academiei, 5, Inst. of Mathematics and Computer Science, MD-2028 Chisinau, Rep. of Moldova E-Mail: kashuai@math.md

