RESEARCH ARTICLE

Algebra and Discrete Mathematics Number 3. (2003). pp. 46 – 53 © Journal "Algebra and Discrete Mathematics"

On equivalence of some subcategories of modules in Morita contexts

A. I. Kashu

ABSTRACT. A Morita context $(R, _RV_S, _SW_R, S)$ defines the isomorphism $\mathcal{L}_0(R) \cong \mathcal{L}_0(S)$ of lattices of torsions $r \ge r_I$ of R-Mod and torsions $s \ge r_J$ of S-Mod, where I and J are the trace ideals of the given context. For every pair (r, s) of corresponding torsions the modifications of functors $T^W = W \otimes_{R^-}$ and $T^V = V \otimes_{S^-}$ are considered:

$$R\text{-}Mod \supseteq \mathcal{P}(r) \xrightarrow{\overline{T^W} = (1/s) \cdot T^W} \mathcal{P}(s) \subseteq S\text{-}Mod$$
$$\overline{T^V} = (1/r) \cdot T^V$$

where $\mathcal{P}(r)$ and $\mathcal{P}(s)$ are the classes of torsion free modules. It is proved that these functors define the equivalence

$$\mathcal{P}(r) \cap \mathcal{J}_I \approx \mathcal{P}(s) \cap \mathcal{J}_J$$

where $\mathcal{P}(r) = \{_R M \mid r(M) = 0\}$ and $\mathcal{J}_I = \{_R M \mid IM = M\}.$

Let $(R, _{R}V_{S}, _{S}W_{R}, S)$ be an arbitrary Morita context with the bimodule morphisms

 $(,): V \otimes_S W \longrightarrow R, \qquad [,]: W \otimes_R V \longrightarrow S,$

satisfying the conditions of associativity:

$$(v, w)v_1 = v[w, v_1],$$
 $[w, v]w_1 = w(v, w_1)$ (1)

for $v, v_1 \in V$ and $w, w_1 \in W$. We denote by I = (V, W) and J = [W, V] the *trace ideals* of this context, where I is ideal of R and J is ideal of S.

²⁰⁰⁰ Mathematics Subject Classification: 16S90, 16D90.

Key words and phrases: torsion (torsion theory), Morita context, torsion free module, accessible module, equivalence.

They define the torsions r_I in *R-Mod* and r_J in *S-Mod* such that the classes of torsion free modules are:

$$\mathcal{P}(r_I) = \{ {}_RM \mid I m = 0, m \in M \implies m = 0 \},$$

$$\mathcal{P}(r_J) = \{ {}_SN \mid J n = 0, n \in N \implies n = 0 \},$$

i.e. r_I and r_J are determined by the smallest Gabriel filters, containing I and J, respectively [7].

In the lattices $\mathcal{L}(R)$ and $\mathcal{L}(S)$ of all torsions of *R-Mod* and *S-Mod*, respectively, we distinguish the following sublattices:

$$\mathcal{L}_0(R) = \{ r \in \mathcal{L}(R) \mid r \ge r_t \},$$

$$\mathcal{L}_0(S) = \{ s \in \mathcal{L}(S) \mid s \ge r_J \}.$$
(2)

The following result is well known ([1], [4], [5], [7]).

Theorem 1. There exists a preserving order bijection between the torsions of R-Mod containing r_I and torsions of S-Mod containing r_J , i.e. $\mathcal{L}_0(R) \cong \mathcal{L}_0(S)$.

This bijection is obtained with the help of the functors:

$$R-Mod \quad \xleftarrow{H^V = Hom_R(V, -)}_{H^W = Hom_S(W, -)} \quad S-Mod, \tag{3}$$

acting by H^V and H^W to the injective cogenerators of torsions [4]. From the definitions it follows

Lemma 2. ([4], Lemma 4). If (r, s) is a pair of corresponding torsions in the sense of Theorem 1 (i.e. $H^V(r) = s$ and $H^W(s) = r$), then $H^V(\mathcal{P}(r)) \subseteq \mathcal{P}(s)$ and $H^W(\mathcal{P}(s)) \subseteq \mathcal{P}(r)$, where $\mathcal{P}(r)$ and P(s) are (\mathcal{P}) the classes of torsion free modules.

Now we consider the following functors accompanying the given Morita context:

$$R-Mod \xrightarrow{T^{W} = W \otimes_{R} -} S-Mod \qquad (4)$$

with the natural transformations

$$\eta: T^V T^W \longrightarrow 1_{R-Mod}, \qquad \rho: T^W T^V \longrightarrow 1_{S-Mod},$$

defined by the rules:

$$\eta_M(v \otimes w \otimes m) = (v, w)m, \qquad \rho_N(w \otimes v \otimes n) = [w, v]n, \qquad (5)$$

for $v \otimes w \otimes m \in T^V T^W(M)$, $M \in R$ -Mod and $w \otimes v \otimes n \in T^W T^V(N)$, $N \in S$ -Mod. By definitions it follows:

$$Im \eta_M = IM,$$
 $Im \rho_N = JN.$

It is easy to verify the following relations:

$$T^{W}(\eta_{M}) = \rho_{T^{W}(M)},$$

$$T^{V}(\rho_{N}) = \eta_{T^{V}(N)},$$
(6)
(7)

for every $M \in R$ -Mod and $N \in S$ -Mod (i.e. (T^W, T^V) and (η, ρ) define a wide Morita context in the sense of [3]).

For an arbitrary class of modules $\mathcal{K} \subseteq R$ -Mod we denote:

$$\begin{aligned} \mathcal{K}^{\uparrow} &= \{ X \in R\text{-}Mod \,|\, Hom_R(X,Y) = 0 \;\;\forall Y \in \mathcal{K} \}, \\ \mathcal{K}^{\downarrow} &= \{ Y \in R\text{-}Mod \,|\, Hom_R(X,Y) = 0 \;\;\forall X \in \mathcal{K} \}. \end{aligned}$$

If r is a torsion of R-Mod, $\mathcal{R}(r) = \{M \in R\text{-}Mod \mid r(M) = M\}$ and $\mathcal{P}(r) = \{M \in R\text{-}Mod \mid r(M) = 0\}$, then $\mathcal{R}(r) = \mathcal{P}(r)^{\uparrow}$ and $\mathcal{P}(r) = \mathcal{R}(r)^{\downarrow}$ ([5], [7], [8]).

The following statement is known ([6], lemma 3), but for convenience we give the proof.

Lemma 3. If (r, s) is a pair of corresponding torsions in the sense of Theorem 1, then $T^W(\mathcal{R}(r)) \subseteq \mathcal{R}(s)$ and $T^V(\mathcal{R}(s)) \subseteq \mathcal{R}(r)$.

Proof. Let ${}_{S}N \in \mathcal{R}(s) = \mathcal{P}(s)^{\uparrow}$, i.e. $Hom_{S}(N,Y) = 0$ for every $Y \in \mathcal{P}(s)$. If $M \in \mathcal{P}(r)$, then by Lemma 2 ${}_{S}H^{V}(M) = Hom_{R}(V,M) \in \mathcal{P}(s)$. Now from $N \in \mathcal{R}(s)$ it follows that $Hom_{S}(N, Hom_{R}(V,M)) = 0$. By adjunction

$$Hom_R(V \otimes_S N, M) \cong Hom_S(N, Hom_R(V, M)) = 0$$

for every $M \in \mathcal{P}(r)$, therefore $V \otimes_S N \in \mathcal{P}(r)^{\uparrow} = \mathcal{R}(r)$, i.e. $T^V(\mathcal{R}(s)) \subseteq \mathcal{R}(r)$. By symmetry the relation $T^W(\mathcal{R}(r)) \subseteq \mathcal{R}(s)(\mathcal{R})$ is true. \Box

In continuation we mention some facts about the classes of modules determined by trace ideals $I \lhd R$ and $J \lhd S$ in the categories *R*-*Mod* and *S*-*Mod*, respectively. The ideal $I \lhd R$ defines in *R*-*Mod* the following classes of modules:

$$\begin{aligned} \mathcal{A}(I) &= \{ M \in R\text{-}Mod \mid IM = 0 \}, \\ \mathcal{J}_I &= \{ M \in R\text{-}Mod \mid IM = M \}, \\ \mathcal{F}_I &= \{ M \in R\text{-}Mod \mid Im = 0, m \in M \Longrightarrow m = 0 \} = \mathcal{P}(r_I). \end{aligned}$$

The modules of \mathcal{J}_I are called *I*-accessible and

$$\mathcal{J}_I = \{ M \in R \text{-} Mod \mid Im \eta_M = M \}.$$

The following relations are known ([7], [8]):

$$\mathcal{J}_I = \mathcal{A}(I)^{\uparrow}, \qquad \qquad \mathcal{F}_I = \mathcal{A}(I)^{\downarrow}.$$
 (8)

Similarly we define the classes $\mathcal{A}(J)$, \mathcal{J}_J and \mathcal{F}_J in *S*-*Mod* with the relations $\mathcal{J}_J = \mathcal{A}(J)^{\uparrow}$ and $\mathcal{F}_J = \mathcal{A}(J)^{\downarrow}$, where $\mathcal{F}_J = \mathcal{P}(r_J)$.

Lemma 4. Let (r, s) be a pair of corresponding torsions (Theorem 1). Then $\mathcal{A}(I) \subseteq \mathcal{R}(r)$ and $\mathcal{A}(J) \subseteq \mathcal{R}(s)$.

Proof. From $r \ge r_I$ it follows $\mathcal{P}(r) \subseteq \mathcal{P}(r_I) = \mathcal{F}_I$ and by (8) we obtain

$$\mathcal{R}(r) = \mathcal{P}(r)^{\uparrow} \supseteq \mathcal{P}(r_I)^{\uparrow} = \mathcal{F}_I^{\uparrow} = \mathcal{A}(I)^{\downarrow\uparrow} \supseteq \mathcal{A}(I).$$

Similarly, $\mathcal{R}(s) \supseteq \mathcal{A}(J)$.

From now on we fix an arbitrary pair (r, s) of corresponding torsions, i.e. $r \ge r_I$, $s \ge r_J$, $s = H^V(r)$ and $r = H^W(s)$ (Theorem 1). We consider the following modifications of the functors T^W and T^V :

where (1/r)(M) = M/r(M), (1/s)(N) = N/s(N), $\bar{T}^W = (1/s) \cdot T^W$ and $\bar{T}^V = (1/r) \cdot T^V$. So, by definition:

$$\bar{T}^W(_RM) = (W \otimes_R M) / s(W \otimes_R M), \quad \bar{T}^V(_SN) = (V \otimes_S N) / r(V \otimes_S N)$$
(9)

for $M \in R$ -Mod and $N \in S$ -Mod. Denote by α and β the natural transformations:

$$\alpha: T^W \longrightarrow \bar{T}^W, \qquad \beta: T^V \longrightarrow \bar{T}^V,$$
$$\alpha_M: T^W(M) \longrightarrow T^W(M)/s(T^W(M))$$

and

where

$$\beta_N : T^V(N) \longrightarrow T^V(N)/r(T^V(N))$$

are the natural epimorphisms. Since the functors T^W and T^V are right exact, it is clear that the functors \overline{T}^W and \overline{T}^V preserve epimorphisms. By definitions of \overline{T}^W and \overline{T}^V it follows that $\overline{T}^W(M) \in \mathcal{P}(s)$ and $\overline{T}^V(N) \in$ $\mathcal{P}(r)$ for every $M \in R$ -Mod and $N \in S$ -Mod, therefore we can consider the restrictions of these functors on the subcategories $\mathcal{P}(r)$ and $\mathcal{P}(s)$:

$$\mathcal{P}(r) \xrightarrow{\bar{T}^W} \mathcal{P}(s). \tag{10}$$

In the situation (10) there exist the modifications of natural transformations η and ρ :

$$\bar{\eta}: \bar{T}^V \bar{T}^W \longrightarrow 1_{\mathcal{P}(r)}, \qquad \bar{\rho}: \bar{T}^W \bar{T}^V \longrightarrow 1_{\mathcal{P}(s)},$$

which are defined (see [3]) as follows. For every $M \in \mathcal{P}(r)$ applying T^V to the exact sequence

$$0 \to s(T^W(M)) \xrightarrow{i_M} T^W(M) \xrightarrow{\alpha_M} T^W(M)/s(T^W(M)) \to 0, (11)$$

we obtain the diagram:

$$T^{V}(s(T^{W}(M))) \xrightarrow{T^{V}(i_{M})} T^{V}T^{W}(M) \xrightarrow{T^{V}(\alpha_{M})} T^{V}\bar{T}^{W}(M) \xrightarrow{\beta_{\bar{T}}W(M)} \bar{T}^{V}\bar{T}^{W}(M) \to 0 \quad (12)$$

Since $s(T^W(M)) \in \mathcal{R}(s)$, by Lemma 3 $T^V(s(T^W(M))) \in \mathcal{R}(r)$, so from $M \in \mathcal{P}(r)$ it follows $Hom_R(T^V(s(T^W(M))), M) = 0$, therefore $\eta_M \cdot T^V(i_M) = 0$. Since $Im T^V(i_M) = Ker T^V(\alpha_M) \subseteq Ker \eta_M$ and $T^V(\alpha_M)$ is an epimorphism, there exists an unique morphism η'_M such that $\eta'_M \cdot T^V(\alpha_M) = \eta_M$. The following step: from $M \in \mathcal{P}(r)$ and $r(T^V \overline{T}^W(M)) \in \mathcal{R}(r)$ it follows $\eta'_M \cdot i = 0$ and there exists an unique morphism $\overline{\eta}_M$ such that $\overline{\eta}_M \cdot \beta_{\overline{T}^W(M)} = \eta'_M$. So, by definitions we have:

$$\eta_M = \overline{\eta}_M \cdot \beta_{\bar{T}^W(M)} \cdot T^V(\alpha_M).$$
(13)

In such a way it is obtained a natural transformations $\overline{\eta}$ ([3]) and symmetrically $\overline{\rho}$ is defined. From these definitions follows immediately **Lemma 5.** a) If the module $M \in \mathcal{P}(r)$ is I-accessible (i.e. η_M is epi), then $\bar{\eta}_M$ is an epimorphism.

b) If the module $N \in \mathcal{P}(s)$ is J-accessible, then $\bar{\rho}_N$ is an epimorphism. \Box

Now we consider in $\mathcal{P}(r)$ and $\mathcal{P}(s)$ the following subcategories of torsion free and accessible modules:

$$\mathcal{A} = \mathcal{P}(r) \cap \mathcal{J}_I \subseteq R\text{-}Mod, \qquad \mathcal{B} = \mathcal{P}(s) \cap \mathcal{J}_J \subseteq S\text{-}Mod.$$

Lemma 6. The functors \overline{T}^W and \overline{T}^V transfer subcategories \mathcal{A} and \mathcal{B} each one in another, i.e. $\overline{T}^W(\mathcal{A}) \subseteq \mathcal{B}$ and $\overline{T}^V(\mathcal{B}) \subseteq \mathcal{A}$.

Proof. Let $M \in \mathcal{A}$. Since $\overline{T}^W(M) \in \mathcal{P}(s)$, it is sufficient to check that $\overline{T}^W(M) \in \mathcal{J}_J$. For that we consider the following commutative diagram:

$$T^{W}T^{V}T^{W}(M) \xrightarrow{\rho_{T}W(M)} T^{W}(M)$$

$$\downarrow T^{W}T^{V}(\alpha_{M}) \xrightarrow{\rho_{\overline{T}}W(M)} \overline{T^{W}}(M)$$

$$\downarrow \alpha_{M} \quad (14)$$

$$T^{W}T^{V}\overline{T}^{W}(M) \xrightarrow{\rho_{\overline{T}}W(M)} \overline{T^{W}}(M)$$

Since $M \in \mathcal{J}_I$, η_M is epi, therefore $T^W(\eta_M)$ is epi. From (6) $\rho_{T^W(M)} = T^W(\eta_M)$, so $\rho_{T^W(M)}$ is epi, therefore $\alpha_M \cdot \rho_{T^W(M)}$ also is epi. Now diagram (14) shows that $\rho_{\bar{T}^W(M)}$ is epimorphism, i.e. $\bar{T}^W(M) \in \mathcal{J}_J$. This proves that $\bar{T}^W(\mathcal{A}) \subseteq \mathcal{B}$. By symmetry $\bar{T}^V(\mathcal{B}) \subseteq \mathcal{A}$.

Another proof of Lemma 6 follows from the remark that

$$T^{W}(\mathcal{J}_{I}) \subseteq \mathcal{J}_{J}, \qquad T^{V}(\mathcal{J}_{J}) \subseteq \mathcal{J}_{I}.$$
 (15)

Indeed, if $M \in \mathcal{J}_I$ then:

$$J(W \otimes_R M) = [W, V]W \otimes_R M = W(V, W) \otimes_R M =$$
$$= W \otimes_R (V, W)M = W \otimes_R IM = W \otimes_R M,$$

i.e. $T^W(M) \in \mathcal{J}_J$, and similarly for the second relation. Now from (15) for every $M \in \mathcal{J}_I$ we obtain:

$$J \cdot \bar{T}^{W}(M) = J \cdot [(W \otimes_{R} M)/s(W \otimes_{R} M)] =$$

$$= [J(W \otimes_{R} M) + s(W \otimes_{R} M)]/s(W \otimes_{R} M) \stackrel{(15)}{=}$$

$$= [W \otimes_{R} M + s(W \otimes_{R} M)]/s(W \otimes_{R} M) =$$

$$= (W \otimes_{R} M)/s(W \otimes_{R} M) = \bar{T}^{W}(M),$$

therefore $\bar{T}^W(M) \in \mathcal{J}_J$.

Lemma 6 permits to obtain by restriction the functors:

$$\mathcal{A} \xrightarrow{\overline{T}^W} \mathcal{B}$$

(16)

with the natural transformations $\bar{\eta}$ and $\bar{\rho}$.

Lemma 7. a) For every $M \in \mathcal{P}(r)$, $I \cdot Ker \bar{\eta}_M = 0$, *i.e.* $Ker \bar{\eta}_M \in \mathcal{A}(I) \subseteq \mathcal{R}(r)$.

b) For every $N \in \mathcal{P}(s)$, $J \cdot Ker \bar{\rho}_N = 0$, *i.e.* $Ker \bar{\rho}_N \in \mathcal{A}(J) \subseteq \mathcal{R}(s)$.

Proof. From definition of $\bar{\eta}_M$ (see (12), (13)) it is clear that $\bar{\eta}_M$ acts as follows:

$$\bar{\eta}_M \overline{(v \otimes (w \otimes m + s(W \otimes_R M)))} = \eta_M (v \otimes w \otimes m) = (v, w)m,$$

where $\overline{(v \otimes (w \otimes m + s(W \otimes_R M)))} = \beta_{\overline{T}^W(M)} T^V(\alpha_M) (v \otimes w \otimes m).$ If $\overline{(v \otimes (w \otimes m + s(W \otimes_R M)))} \in Ker \overline{\eta}_M,$

If $(v \otimes (w \otimes m + s(W \otimes_R M)) \in K er \eta_M$, then $\eta_M(v \otimes w \otimes m) = (v, m)m = 0$ and for every $(v', w') \in I$ we obtain:

$$(v', w')\overline{(v \otimes (w \otimes m + s(W \otimes_R M)))} =$$

$$= \overline{(v', w')v \otimes (w \otimes m + s(W \otimes_R M))} =$$

$$= \overline{v'[w', v] \otimes (w \otimes m + s(W \otimes_R M))} =$$

$$= \overline{v' \otimes ([w', v]w \otimes m + s(W \otimes_R M))} =$$

$$= \overline{v' \otimes (w'(v, w) \otimes m + s(W \otimes_R M))} =$$

$$= \overline{v' \otimes (w' \otimes (v, w)m + s(W \otimes_R M))} = 0,$$

because (v, w)m = 0. From this we can conclude that $I \cdot Ker \bar{\eta}_M = 0$ and by Lemma 4 $Ker \bar{\eta}_M \in \mathcal{A}(I) \subseteq \mathcal{R}(r)$. The statement (b) follows from symmetry.

Lemma 8. a) $Ker \bar{\eta}_M = 0$ for every $M \in \mathcal{P}(r)$. b) $Ker \bar{\rho}_N = 0$ for every $N \in \mathcal{P}(s)$.

Proof. Since $Ker \,\bar{\eta}_M \subseteq \bar{T}^V \bar{T}^W(M) \in \mathcal{P}(s)$, we have $Ker \,\bar{\eta}_M \in \mathcal{P}(r)$. By Lemma 7 $Ker \,\bar{\eta}_M \in \mathcal{R}(r)$, therefore $Ker \,\bar{\eta}_M \in \mathcal{R}(r) \cap \mathcal{P}(r) = \{0\}$. Similarly $Ker \,\bar{\rho}_N = 0$ for $N \in \mathcal{P}(s)$.

Theorem 9. For every pair (r, s) of corresponding torsions (in the sense of Theorem 1) the functors \overline{T}^W and \overline{T}^V (see (10)) with natural transformations $\overline{\eta}$ and $\overline{\rho}$ define an equivalence between the subcategories of torsion free and accessible modules $\mathcal{A} = \mathcal{P}(r) \cap \mathcal{J}_I \subseteq R$ -Mod and $\mathcal{B} = \mathcal{P}(s) \cap \mathcal{J}_J \subseteq S$ -Mod. Proof. If $M \in \mathcal{A}$, then by Lemma 5 a) $\bar{\eta}_M$ is epi. Moreover, from $M \in \mathcal{P}(r)$ by Lemma 8 a) we conclude that $\bar{\eta}_M$ is mono, so $\bar{\eta}_M$ is an ismorphism. Symmetrically, for every $N \in \mathcal{B}$ we obtain that $\bar{\rho}_N$ is an isomorphism. Therefore the functors \bar{T}^W and \bar{T}^V with the natural transformations $\bar{\eta}$ and $\bar{\rho}$ establish the equivalence $\mathcal{A} \approx \mathcal{B}$.

The more general situation of wide Morita contexts is studied in [3]. The equivalence of Theorem 9 can be proved by [3, Theorem 2.6], using the preceding lemmas. We exposed the direct proof of this result.

For the particular case of the smallest pair (r_I, r_J) of corresponding torsions we have

Corollary 10. ([2], [3]). The subcategories of torsion free and accessible modules $\mathcal{P}(r_I) \cap \mathcal{J}_I$ and $\mathcal{P}(r_J) \cap \mathcal{J}_J$ are equivalent.

References

- Müller B. J., The quotient category of a Morita context. J. Algebra, 28 (1974), pp. 389-407.
- [2] Nicholson W. K., Watters J. F., Morita context functors. Math. Proc. Camb. Phil. Soc., 103 (1988), pp. 399-408.
- [3] Iglesias F. C., Torrecillas J. G., Wide Morita contexts. Commun. Algebra, 23, No. 2, 1995, pp. 601-622.
- [4] Kashu A.I., Morita contexts and torsions of modules. Matem. Zametki, 28, No 4, 1980, pp. 491-499 (in Russian).
- [5] Golan J. S., Torsion theories. Longman Sci. Techn., New York, 1986.
- [6] Kashu A. I., Torsion theories and subcategories of divisible modules. "Bulet. A.S.R. Moldova. Matematica", No. 2 (15), 1994, pp. 86-89.
- [7] Kashu A.I., Radicals and torsions in modules. Kishinev, Stiinta, 1983 (in Russian).
- [8] Kashu A.I., Functors and torsions in categories of modules. Acad. of Sciences of Mold., Inst. of Mathem., Kishinev, 1997 (in Russian).

CONTACT INFORMATION

A. I. Kashu

Str. Academiei, 5, Inst. of Mathematics and Computer Science, MD-2028 Chisinau, Rep. of Moldova *E-Mail:* kashuai@math.md

Received by the editors: 04.06.2003 and final form in 27.10.2003.