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On equivalence of some subcategories of modules

in Morita contexts

A. I. Kashu

Abstract. A Morita context (R, RVS , SWR, S) defines the
isomorphism L0(R) ∼= L0(S) of lattices of torsions r ≥ rI of R-Mod
and torsions s ≥ rJ of S-Mod, where I and J are the trace ideals
of the given context. For every pair (r, s) of corresponding torsions
the modifications of functors TW = W⊗R- and TV = V ⊗S- are
considered:

R-Mod ⊇ P(r)
T̄W = (1/s) · T

W

−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−
T̄V = (1/r) · T

V
P(s) ⊆ S-Mod,

where P(r) and P(s) are the classes of torsion free modules. It is
proved that these functors define the equivalence

P(r) ∩ JI ≈ P(s) ∩ JJ ,

where P(r) = {RM | r(M) = 0} and JI = {RM | IM = M}.

Let (R, RVS , SWR, S) be an arbitrary Morita context with the bimod-
ule morphisms

(, ) : V ⊗S W −→ R, [, ] : W ⊗R V −→ S,

satisfying the conditions of associativity:

(v, w)v1 = v[w, v1], [w, v]w1 = w(v, w1) (1)

for v, v1 ∈ V and w, w1 ∈ W . We denote by I = (V, W ) and J = [W, V ]
the trace ideals of this context, where I is ideal of R and J is ideal of S.
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They define the torsions rI in R-Mod and rJ in S-Mod such that the
classes of torsion free modules are:

P(rI) = {RM | I m = 0, m ∈ M =⇒ m = 0},

P(rJ) = {SN | J n = 0, n ∈ N =⇒ n = 0},

i.e. rI and rJ are determined by the smallest Gabriel filters, containing
I and J , respectively [7].

In the lattices L(R) and L(S) of all torsions of R-Mod and S-Mod,
respectively, we distinguish the following sublattices:

L0(R) = {r ∈ L(R) | r ≥ rI}, (2)

L0(S) = {s ∈ L(S) | s ≥ rJ}.

The following result is well known ([1], [4], [5], [7]).

Theorem 1. There exists a preserving order bijection between the tor-
sions of R-Mod containing rI and torsions of S-Mod containing rJ , i.e.
L0(R) ∼= L0(S).

This bijection is obtained with the help of the functors:

R-Mod
HV = HomR(V,−)

−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−
HW = HomS(W,−)

S-Mod, (3)

acting by HV and HW to the injective cogeneratots of torsions [4]. From
the definitions it follows

Lemma 2. ([4], Lemma 4). If (r, s) is a pair of corresponding torsions
in the sense of Theorem 1 (i.e. HV (r) = s and HW (s) = r), then
HV (P(r)) ⊆ P(s) and HW (P(s)) ⊆ P(r), where P(r) and P (s) are (P)
the classes of torsion free modules.

Now we consider the following functors accompanying the given Mori-
ta context:

R-Mod
TW = W⊗R−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
T V = V ⊗S−

S-Mod (4)

with the natural transformations

η : T V TW −→ 1R−Mod, ρ : TW T V −→ 1S−Mod,

defined by the rules:

ηM(v ⊗ w ⊗ m) = (v, w)m, ρN(w ⊗ v ⊗ n) = [w, v]n, (5)
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for v ⊗ w ⊗ m ∈ T V TW (M), M ∈ R-Mod and w ⊗ v ⊗ n ∈ TW T V (N),
N ∈ S-Mod. By definitions it follows:

ImηM = IM, ImρN = JN.

It is easy to verify the following relations:

TW (ηM) = ρ
TW (M), (6)

T V (ρN) = η
TV (N), (7)

for every M ∈ R-Mod and N ∈ S-Mod (i.e. (TW , T V ) and (η, ρ) define
a wide Morita context in the sense of [3]).

For an arbitrary class of modules K ⊆ R-Mod we denote:

K↑ = {X ∈ R-Mod |HomR(X, Y ) = 0 ∀Y ∈ K},

K↓ = {Y ∈ R-Mod |HomR(X, Y ) = 0 ∀X ∈ K}.

If r is a torsion of R-Mod, R(r) = {M ∈ R-Mod | r(M) = M} and
P(r) = {M ∈ R-Mod | r(M) = 0}, then R(r) = P(r)↑ and P(r) = R(r)↓

([5], [7], [8]).
The following statement is known ([6], lemma 3), but for convenience

we give the proof.

Lemma 3. If (r, s) is a pair of corresponding torsions in the sense of
Theorem 1, then TW (R(r)) ⊆ R(s) and T V (R(s)) ⊆ R(r).

Proof. Let SN ∈ R(s) = P(s)↑, i.e. HomS(N, Y ) = 0 for every Y ∈
P(s). If M ∈ P(r), then by Lemma 2 SHV (M) = HomR(V, M) ∈ P(s).
Now from N ∈ R(s) it follows that HomS(N, HomR(V, M)) = 0. By
adjunction

HomR(V ⊗S N, M) ∼= HomS(N, HomR(V, M)) = 0

for every M ∈ P(r), therefore V ⊗S N ∈ P(r)↑ = R(r), i.e. T V (R(s)) ⊆
R(r). By symmetry the relation TW (R(r)) ⊆ R(s)(R) is true.

In continuation we mention some facts about the classes of modules
determined by trace ideals I C R and J C S in the categories R-Mod and
S-Mod, respectively. The ideal I C R defines in R-Mod the following
classes of modules:

A(I) = {M ∈ R-Mod | IM = 0},

JI = {M ∈ R-Mod | IM = M},

FI = {M ∈ R-Mod | I m = 0, m ∈ M =⇒ m = 0} = P(rI).
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The modules of JI are called I-accessible and

JI = {M ∈ R-Mod | ImηM = M}.

The following relations are known ([7], [8]):

JI = A(I)↑, FI = A(I)↓. (8)

Similarly we define the classes A(J), JJ and FJ in S-Mod with the re-
lations JJ = A(J)↑ and FJ = A(J)↓, where FJ = P(rJ).

Lemma 4. Let (r, s) be a pair of corresponding torsions (Theorem 1).
Then A(I) ⊆ R(r) and A(J) ⊆ R(s).

Proof. From r ≥ rI it follows P(r) ⊆ P(rI) = FI and by (8) we obtain

R(r) = P(r)↑ ⊇ P(rI)
↑ = F↑

I
= A(I)↓↑ ⊇ A(I).

Similarly, R(s) ⊇ A(J).

From now on we fix an arbitrary pair (r, s) of corresponding torsions,
i.e. r ≥ rI , s ≥ rJ , s = HV (r) and r = HW (s) (Theorem 1). We
consider the following modifications of the functors TW and T V :

-¾

¾ -

??

1/r 1/s

S-Mod
T W

T V

T̄ W

T̄ V

R-Mod

R-Mod S-Mod,

where (1/r)(M) = M/r(M), (1/s)(N) = N/s(N), T̄W = (1/s) · TW

and T̄ V = (1/r) · T V . So, by definition:

T̄W (RM) = (W ⊗R M)/s(W ⊗R M), T̄V (SN) = (V ⊗S N)/r(V ⊗S N) (9)

for M ∈ R-Mod and N ∈ S-Mod. Denote by α and β the natural
transformations:

α : TW −→ T̄W , β : T V −→ T̄ V ,

where
αM : TW (M) −→ TW (M)/s(TW (M))

and
βN : T V (N) −→ T V (N)/r(T V (N))
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are the natural epimorphisms. Since the functors TW and T V are right
exact, it is clear that the functors T̄W and T̄ V preserve epimorphisms. By
definitions of T̄W and T̄ V it follows that T̄W (M) ∈ P(s) and T̄ V (N) ∈
P(r) for every M ∈ R-Mod and N ∈ S-Mod, therefore we can consider
the restrictions of these functors on the subcategories P(r) and P(s):

P(r)
T̄W

−−−−−−−−−→←−−−−−−−−
T̄ V

P(s). (10)

In the situation (10) there exist the modifications of natural transfor-
mations η and ρ:

η̄ : T̄ V T̄W −→ 1P(r), ρ̄ : T̄W T̄ V −→ 1P(s),

which are defined (see [3]) as follows. For every M ∈ P(r) applying T V

to the exacte sequence

0 → s(TW (M)) iM−→
⊆

TW (M)
αM−−−→
nat

TW (M)/s(TW (M)) → 0, (11)

we obtain the diagram:

?
M

r(T V T̄ W (M))

⋂
|i

η′
M

@
@

@
@

@@R

η
M

ηM

?

ª

T V (s(T W (M)))
T V (iM )

−−−−−−→T V T W (M)
T V (αM )

−−−−−−→T V T̄ W (M)
β

T̄
W (M)

−−−−−−→ T̄ V T̄ W (M) → 0 (12)

Since s(TW (M)) ∈ R(s), by Lemma 3 T V (s(TW (M))) ∈ R(r), so
from M ∈ P(r) it follows HomR(T V (s(TW (M))), M) = 0, therefore
ηM · T V (iM) = 0. Since ImT V (iM) = Ker T V (αM) ⊆ Ker ηM and
T V (αM) is an epimorphism, there exists an unique morphism η′

M
such

that η′
M

· T V (αM) = ηM . The following step: from M ∈ P(r) and
r(T V T̄W (M)) ∈ R(r) it follows η′

M
· i = 0 and there exists an unique

morphism η̄M such that η̄M · β
T̄W (M) = η′

M
. So, by definitions we have:

ηM = ηM · β
T̄W (M) · T

V (αM). (13)

In such a way it is obtained a natural transformations η ([3]) and
symmetrically ρ̄ is defined. From these definitions follows immediately
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Lemma 5. a) If the module M ∈ P(r) is I-accessible (i.e. ηM is epi),
then η̄M is an epimorphism.
b) If the module N ∈ P(s) is J-accessible, then ρ̄N is an epimorphism.

Now we consider in P(r) and P(s) the following subcategories of
torsion free and accessible modules:

A = P(r) ∩ JI ⊆ R-Mod, B = P(s) ∩ JJ ⊆ S-Mod.

Lemma 6. The functors T̄W and T̄ V transfer subcategories A and B
each one in another, i.e. T̄W (A) ⊆ B and T̄ V (B) ⊆ A.

Proof. Let M ∈ A. Since T̄W (M) ∈ P(s), it is sufficient to check that
T̄W (M) ∈ JJ . For that we consider the following commutative diagram:

-

TW T V (αM) αM

TW (M)
ρ

TW (M)

ρ
T̄W (M)

TW T V TW (M)

TW T V T̄W (M) T̄W (M)-
? ?

(14)

Since M ∈ JI , ηM is epi, therefore TW (ηM) is epi. From (6) ρ
T W (M) =

TW (ηM), so ρ
T W (M) is epi, therefore αM ·ρ

T W (M) also is epi. Now diagram

(14) shows that ρ
T̄ W (M) is epimorphism, i.e. T̄W (M) ∈ JJ . This proves

that T̄W (A) ⊆ B. By symmetry T̄ V (B) ⊆ A.

Another proof of Lemma 6 follows from the remark that

TW (JI) ⊆ JJ , T V (JJ) ⊆ JI . (15)

Indeed, if M ∈ JI then:

J(W ⊗R M) = [W, V ]W ⊗R M = W (V, W ) ⊗R M =

= W ⊗R (V, W )M = W ⊗R IM = W ⊗R M,

i.e. TW (M) ∈ JJ , and similarly for the second relation.
Now from (15) for every M ∈ JI we obtain:

J · T̄W (M) = J · [(W ⊗R M)/s(W ⊗R M)] =

= [J(W ⊗R M) + s(W ⊗R M)]/s(W ⊗R M)
(15)
=

= [W ⊗R M + s(W ⊗R M)]/s(W ⊗R M) =

= (W ⊗R M)/s(W ⊗R M) = T̄W (M),
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therefore T̄W (M) ∈ JJ .
Lemma 6 permits to obtain by restriction the functors:

A
T̄W

−−−−−−−−−→←−−−−−−−−
T̄ V

B (16)

with the natural transformations η̄ and ρ̄.

Lemma 7. a) For every M ∈ P(r), I · Ker η̄M = 0, i.e. Ker η̄M ∈
A(I) ⊆ R(r).

b) For every N ∈ P(s), J · Ker ρ̄N = 0, i.e. Ker ρ̄N ∈ A(J) ⊆ R(s).

Proof. From definition of η̄M (see (12), (13)) it is clear that η̄M acts as
follows:

η̄M(v ⊗ (w ⊗ m + s(W ⊗R M)) = ηM(v ⊗ w ⊗ m) = (v, w)m,

where (v ⊗ (w ⊗ m + s(W ⊗R M)) = β
T̄W (M)T

V (αM)(v ⊗ w ⊗ m).

If (v ⊗ (w ⊗ m + s(W ⊗R M)) ∈ Ker η̄M ,
then ηM(v ⊗ w ⊗ m) = (v, m)m = 0 and for every (v′, w′) ∈ I we obtain:

(v′, w′)(v ⊗ (w ⊗ m + s(W ⊗R M)) =

= (v′, w′)v ⊗ (w ⊗ m + s(W ⊗R M)) =

= v′[w′, v] ⊗ (w ⊗ m + s(W ⊗R M)) =

= v′ ⊗ ([w′, v]w ⊗ m + s(W ⊗R M)) =

= v′ ⊗ (w′(v, w) ⊗ m + s(W ⊗R M)) =

= v′ ⊗ (w′ ⊗ (v, w)m + s(W ⊗R M)) = 0,

because (v, w)m = 0. From this we can conclude that I ·Ker η̄M = 0 and
by Lemma 4 Ker η̄M ∈ A(I) ⊆ R(r). The statement (b) follows from
symmetry.

Lemma 8. a) Ker η̄M = 0 for every M ∈ P(r). b) Ker ρ̄N = 0 for every
N ∈ P(s).

Proof. Since Ker η̄M ⊆ T̄ V T̄W (M) ∈ P(s), we have Ker η̄M ∈ P(r).
By Lemma 7 Ker η̄M ∈ R(r), therefore Ker η̄M ∈ R(r) ∩ P(r) = {0}.
Similarly Ker ρ̄N = 0 for N ∈ P(s).

Theorem 9. For every pair (r, s) of corresponding torsions (in the sense
of Theorem 1) the functors T̄W and T̄ V (see (10)) with natural trans-
formations η̄ and ρ̄ define an equivalence between the subcategories of
torsion free and accessible modules A = P(r) ∩ JI ⊆ R-Mod and B =
P(s) ∩ JJ ⊆ S-Mod.
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Proof. If M ∈ A, then by Lemma 5 a) η̄M is epi. Moreover, from M ∈
P(r) by Lemma 8 a) we conclude that η̄M is mono, so η̄M is an ismorphism.
Symmetrically, for every N ∈ B we obtain that ρ̄N is an isomorphism.
Therefore the functors T̄W and T̄ V with the natural transformations η̄
and ρ̄ establish the equivalence A ≈ B.

The more general situation of wide Morita contexts is studied in [3].
The equivalence of Theorem 9 can be proved by [3, Theorem 2.6], using
the preceding lemmas. We exposed the direct proof of this result.

For the particular case of the smallest pair (rI , rJ) of corresponding
torsions we have

Corollary 10. ([2], [3]). The subcategories of torsion free and accessible
modules P(rI) ∩ JI and P(rJ) ∩ JJ are equivalent.
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