Algebra and Discrete Mathematics
Number 2. (2003). pp. 87–92
(c) Journal "Algebra and Discrete Mathematics"

Principal quasi-ideals of cohomological dimension 1

RESEARCH ARTICLE

B. V. Novikov

ABSTRACT. We prove that a principal quasi-ideal of a noncommutative free semigroup has cohomological dimension 1 if and only if it is free.

In this note we continue to study semigroups of cohomological dimension 1 (c.d. 1). In [4] an analog of the Stallings—Swan theorem [1] was proved: a cancellative semigroup of c.d. 1 can be embedded into a free group. However, we have not complete description even for a free semigroup, because its subsemigroups can both have and not have c.d. 1.

In [4] following results about ideals of free semigroups were obtained:

- c.d. of every proper two-side ideal is greater than 1;

- c.d. of every left ideal equals 1 if and only if it is free;

- c.d. of every principal right ideal equals 1 if and only if it is free; this is not true for non-principal right ideals.

In [4] a problem was proposed: describe principal quasi-ideals of the free semigroup having c.d. 1. We solve this problem below. The answer is the same as for ideals: a principal quasi-ideal has c.d. 1 if and only if it is free. Nevertheless the proof of this assertion is carried out in different ways for two kinds of quasi-ideals.

In what follows we shall denote by S a semigroup with an adjoint identity; by F a free non-commutative semigroup; by |a| the length of a word $a \in F$; by $\langle a \rangle$ (resp. $\langle a \rangle_q$) the subsemigroup (resp. quasi-ideal) generated by element a.

We recall that a subset Q of a semigroup S is called a *quasi-ideal* [6] if $QS \cap SQ \subset Q$. A *principal quasi-ideal* generated by element $w \in S$ is a subset $\langle w \rangle_q = S^1 w \cap wS^1$. We need to separate the case when w is

²⁰⁰¹ Mathematics Subject Classification: 20M05, 20M50.

Key words and phrases: cohomology of semigroups, cohomological dimension, quasi-ideal, free semigroup.

not a power of any element different from w; such element w is called primitive.

The next properties of free semigroups will be used mostly without reference to them:

1) If ab = cd for some $a, b, c, d \in F$ and $|a| \le |c|$ then $c \in aF^1$.

2) A subsemigroup $S \subset F$ is not free if and only if $\alpha S \cap S \neq \emptyset \neq S \alpha \cap S$ for some $\alpha \in F \setminus S$ ([3], Prop. 5.2.2).

3) If uw = wv for some $u, v \in F$, $w \in F^1$ then there are $x, y \in F^1$ and an integer $k \ge 0$ such that u = xy, v = yx, $w = (xy)^k x$ ([3], Lemma 11.5.1).

In particular:

4) If uv = uv $(u, v \in F^1$ then $u = x^m$, $v = x^n$ for some $x \in F$ and integers m, n > 0.

First we shall study the structure of principal quasi-ideals.

Lemma 1. Let $x, w \in F$, $S = \langle w \rangle_q$. If $xS \cap S \neq \emptyset$ then $xS \subset S$; if $Sx \cap S \neq \emptyset$ then $Sx \subset S$.

Proof. Let $y \in xS \cap S \subset xwF^1 \cap wF^1$, i.e. y = xwf = wg for some $f,g \in F^1$. Then $|g| \geq |f|$ whence g = hf $(h \in F^1)$ and xw = wh. So

$$xS = xF^1w \cap xwF^1 = xF^1w \cap whF^1 \subset F^1w \cap wF^1 = S.$$

The second part of Lemma is proved analogously.

Theorem 1. A quasi-ideal $\langle w \rangle_q$ ($w \in F$) is free if and only if w is primitive.

Proof. 1) Let $w = x^n$, $n \ge 2$. Since |x| < |w|, $x \notin \langle w \rangle_q$. On another hand

$$xw \in x\langle w \rangle_q \cap \langle w \rangle_q, \qquad wx \in \langle w \rangle_q x \cap \langle w \rangle_q$$

i.e. $\langle w \rangle_q$ ($w \in F$) is not free.

2) Let w is primitive and $\langle w \rangle_q$ ($w \in F$) is not free. Then

$$x\langle w\rangle_q \cap \langle w\rangle_q \neq \emptyset \neq \langle w\rangle_q x \cap \langle w\rangle_q$$

for some $x \in F \setminus \langle w \rangle_q$. By Lemma 1 $x \langle w \rangle_q \cup \langle w \rangle_q x \subset \langle w \rangle_q$. In particular

$$xw \in wF^1, \qquad wx \in F^1w,\tag{1}$$

so if $|x| \ge |w|$ then $x \in \langle w \rangle_q$, what is impossible.

Therefore |x| < |w|. It follows from (1) that w = ux = xv for some $u, v \in F$. Then there are $a, b \in F^1$ and $k \ge 0$ such that u = ab, v = ba, $x = (ab)^k a$ whence $w = (ab)^{k+1} a$.

The inclusions (1) imply too that xw = wt for some $t \in F^1$. Substituting the values of x and w in this equation and cancelling, we obtain: $(ab)^{k+1}a = bat$. Then ab = ba because |ab| = |ba|. Therefore $a = c^p$, $b = c^q$ for some $c \in F$ and $p, q \ge 0$. Then $w = c^{(p+q)(k+1)+p}$. The primitivity of w implies (p+q)(k+1) + p = 0 whence p = q = 0 in contradiction with $w \in F$.

Now we express arbitrary principal quasi-ideals by means of the free ones.

Lemma 2. Let $a, b, w \in F$, w is primitive, $n \ge 2$ and $aw^n = w^n b$. Then either $a = b \in \langle w \rangle$ or $a = w^{n-1}x$, $b = yw^{n-1}$ for such $x, y \in F^1$ that xw = wy.

Proof uses induction on *n*. Suppose that |a| < |w|. Then $w = aw_1$ and $(aw_1)^n = w_1(aw_1)^{n-1}b$. Since $|aw_1| = |w_1a|$, the last equation implies $aw_1 = w_1a$. Hence $a = t^p$, $w_1 = t^q$ ($t \in F$, $p, q \ge 0$). But $a \ne 1$, so $w_1 = 1$ and w = a in contradiction with |a| < |w|.

Thus $|a| = |b| \ge |w|$ whence $a = wa_1$, $b = b_1w$, $a_1w^{n-1} = w^{n-1}b_1$. If $a_1 = 1$ then $b_1 = 1$ and a = b = w. Otherwise we get by induction either $a_1 = b_1 \in \langle w \rangle$ (and then $a = b \in \langle w \rangle$) or $a_1 = w^{n-2}x$, $b_1 = yw^{n-2}$ (and then $a = w^{n-1}x$, $b = yw^{n-1}$).

Corollary 1. Let w is primitive, $n \ge 2$. Then

$$\langle w^n \rangle_q = w^{n-1} \langle w \rangle_q w^{n-1} \cup \{ w^k \mid k \ge n \}. \quad \Box$$

Now we pass to studying of cohomological dimension.

Recall that the *n*th cohomology group of semigroup S with values in a left S-module A is defined as $H^n(S, A) = \operatorname{Ext}_{\mathbf{Z}S}^n(\mathbf{Z}, A)$; another definition of semigroup cohomology in terms of cochains see, e.g. in [2] or [5]. The *cohomological dimension* of S (c.d.(S)) is the smallest integer n such that $H^k(S, A) = 0$ for every S-module A and k > n.

The next assertion is a start point for the further consideration:

Lemma 3. ([5], Prop. 3.2) Let c.d.(S) = 1 and $\alpha S \cap S \neq \emptyset \neq S\alpha \cap S$ for some $\alpha \in F \setminus S$ (so S is not free). There exists $x \in \alpha S \cap S$ such that for every $u \in \alpha S \cap S$ one can choose $\lambda_1, \ldots, \lambda_n \in F^1$ satisfying the next conditions:

(i)
$$x\lambda_i \in \alpha S \cap S$$
 $(1 \le i \le n),$
(ii) $S^1 \cap \lambda_1 S^1 \ne \emptyset, \quad \lambda_i S^1 \cap \lambda_{i+1} S^1 \ne \emptyset$ $(1 \le i < n),$
(iii) $u = x\lambda_n.$

For quasi-ideals this lemma is modified as follows:

Lemma 4. Let a quasi-ideal $S = \langle w \rangle_q \subset F$ is not free and c.d.(S) = 1. Then for every $\lambda \in F^1$ from $w\lambda \in F^1w$ it follows $\lambda S \subset S$.

Proof. First note that in situation when $S = \langle w \rangle_q$, one can set n = 1 in Lemma 3. Indeed, $\lambda_1 S \subset S$ (see Lemma 1), so it follows from $\lambda_1 S \cap \lambda_2 S \neq \emptyset$ that $\lambda_2 S \cap S \neq \emptyset$, i.e. $\lambda_2 S \subset S$. Repeating this reasoning we get at last $\lambda_n S \subset S$. But then the sequence $\lambda_1, \ldots, \lambda_n$ can be replaced by the single element $\lambda = \lambda_n$ with the conditions (i) – (iii) be preserved (the condition (ii) turns into $\lambda S \subset S$).

Further, let $\alpha S \cap S \neq \emptyset \neq S\alpha \cap S$. Then an element x from Lemma 3 has the least length in $\alpha S \cap S = \alpha S = \alpha F^1 w \cap \alpha w F^1$ accordingly to (iii). Hence $x = \alpha w$. Now setting $u = \alpha t$ ($t \in S$), we can rewrite the conclusion of Lemma 3 in the form:

for every
$$t \in S$$
 there is $\lambda \in F^1$ such that
(a) $\lambda S \subset S$,
(b) $t = w\lambda$.
(2)

Evidently, here λ is defined uniquely by given t.

Now we can finish the proof of Lemma. Let $w\lambda \in F^1w$. Then $w\lambda \in F^1w \cap wF^1 = S$. Applying (2) to $t = w\lambda$, we obtain $\lambda S \subset S$.

Every principal quasi-ideal can be written in the form $S = \langle w^n \rangle_q$ where w is primitive and $n \geq 1$. If n = 1, S is free (Theorem 1) and hence c.d.(S) = 1 (see, e.g. [2]). Therefore we suppose further on that $n \geq 2$. We shall show that c.d.(S) > 1, but the proof depends on if the word w can be presented in the form aba or not.

Theorem 2. Let $S = \langle w^n \rangle_q \subset F$, $n \geq 2$, w is primitive and w = aba for some $a, b \in F$. Then c.d.(S) > 1.

Proof. Set $\lambda = baw^{n-1}$. Then

$$w^n \lambda = w^{n-1} a b a b a w^{n-1} = w^{n-1} a b w^n \in F^1 w^n$$

Show that $\lambda S \not\subset S$. Indeed, let $t \in S$ and $\lambda t \in S$. Then $\lambda t = w^n f$ for some $f \in F^1$, i.e. $baw^{n-1}t = abaw^{n-1}f$. From here ba = ab, so $a = c^p, b = c^q, w = c^{2p+q} \ (c \in F)$ in contradiction with primitivity of w.

Therefore the conclusion of Lemma 4 is not valid and c.d.(S) > 1.

Now consider the second kind of quasi-ideals.

Lemma 5. Let a primitive word w cannot be written in the form $w = aba, a, b \in F$. Then

$$\langle w \rangle_q = wF^1 w \cup \{w\}.$$

Proof. Let $t \in \langle w \rangle_q \setminus (wF^1w \cup \{w\})$. Then t = uw = wv and $u \neq 1 \neq v$ since $t \neq w$. Hence u = xy, v = yx, $w = (xy)^k x$ $(x, y \in F^1)$. Consider various values of k.

1) $\underline{k} = 0$. Then w = x and $t = uw = wyw \in wF^1w$, what is impossible.

2) $\underline{k=1}$. Then w = xyx and x = 1 because of primitivity. Hence $t = uw = w^2 \in wF^1w$; contradiction.

3) $\underline{k > 1}$. Then $w = x \cdot y(xy)^{k-1} \cdot x$. Again x = 1 and $w = y^k$ contrary to primitivity.

Remark. The converse is true too: if w = aba then $ababa \in \langle w \rangle_q \setminus (wF^1w \cup \{w\})$ whence $\langle w \rangle_q \neq wF^1w \cup \{w\}$.

Lemma 6. Let w is the same as in Lemma 5. Then the semigroup $T_n = \langle w^n \rangle_q \cup \langle w \rangle$ is free for all $n \ge 1$.

Proof is fulfilled by induction on n. For n = 1 the assertion follows from Theorem 1 since $T_1 = \langle w \rangle_q$.

Let T_n is free. Accordingly to Corollary 1

$$T_{n+1} = w^n \langle w \rangle_q w^n \cup \langle w \rangle = w(w^{n-1} \langle w \rangle_q w^{n-1} \cup \langle w \rangle) w \cup \{w, w^2\}$$

= $wT_n w \cup \{w, w^2\} = wT_n^1 w \cup \{w\}.$

Since T_n is free and $T_{n+1} \subset T_n$, this equality and Lemma 5 imply T_{n+1} be coinciding with the quasi-ideal generating by w in T_n . By Theorem 1 T_{n+1} is free.

Theorem 3. Let a primitive word w cannot be written in the form w = aba, $a, b \in F$. Then $c.d.\langle w^n \rangle_q > 1$ for $n \geq 2$.

Proof. We use the fact that every proper subsemigroup $S \subset F$ of finite defect (i. e. $|F \setminus S| < \infty$) has c.d. > 1 ([5], Example 3.5). It follows immediately from here that c.d. $\langle w^n \rangle_q > 1$ $(n \geq 2)$ since $1 \leq |T_n \setminus \langle w^n \rangle_q| < n$.

Joining Theorems 2 and 3 we obtain finally:

Theorem 4. A principal quasi-ideal of a free non-commutative semigroup has c.d. 1 if and only if it is free. \Box

References

- [1] K.S.Brown. "Cohomology of Groups". Springer-Verlag, 1982.
- [2] H. Cartan, S. Eilenberg. "Homological Algebra". Princeton, 1956.
- [3] G. Lallement. "Semigroups and Combinatorial Applications". Wiley & Sons, NY, 1979.

- B. V. Novikov. Semigroups of cohomological dimension one. J. Algebra 204(1998), no. 2, 386–393
- [5] B. V. Novikov. Ideals of free semigroups having cohomological dimension 1. Semigroup Forum, 65(2002), N2, 225–232.
- [6] O. Steinfeld. "Quasi-ideals in rings and semigroups". Akadémiai Kiado, Budapest, 1978.

CONTACT INFORMATION

B. V. Novikov

Saltovskoye shosse 258, apt. 20, 61178 Kharkov, Ukraine *E-Mail:* boris.v.novikov@univer. kharkov.ua

Received by the editors: 10.02.2003.