Principal quasi-ideals of cohomological dimension 1

B. V. Novikov

Abstract. We prove that a principal quasi-ideal of a noncommutative free semigroup has cohomological dimension 1 if and only if it is free.

In this note we continue to study semigroups of cohomological dimension 1 (c.d. 1). In [4] an analog of the Stallings-Swan theorem [1] was proved: a cancellative semigroup of c.d. 1 can be embedded into a free group. However, we have not complete description even for a free semigroup, because its subsemigroups can both have and not have c.d.1.

In [4] following results about ideals of free semigroups were obtained:

- c.d. of every proper two-side ideal is greater than 1;
- c.d. of every left ideal equals 1 if and only if it is free;
- c.d. of every principal right ideal equals 1 if and only if it is free; this is not true for non-principal right ideals.

In [4] a problem was proposed: describe principal quasi-ideals of the free semigroup having c.d. 1. We solve this problem below. The answer is the same as for ideals: a principal quasi-ideal has c.d. 1 if and only if it is free. Nevertheless the proof of this assertion is carried out in different ways for two kinds of quasi-ideals.

In what follows we shall denote by S a semigroup with an adjoined identity; by F a free non-commutative semigroup; by $|a|$ the length of a word $a \in F$; by $\langle a\rangle$ (resp. $\left.\langle a\rangle_{q}\right)$ the subsemigroup (resp. quasi-ideal) generated by element a.

We recall that a subset Q of a semigroup S is called a quasi-ideal [6] if $Q S \cap S Q \subset Q$. A principal quasi-ideal generated by element $w \in S$ is a subset $\langle w\rangle_{q}=S^{1} w \cap w S^{1}$. We need to separate the case when w is

[^0]not a power of any element different from w; such element w is called primitive.

The next properties of free semigroups will be used mostly without reference to them:

1) If $a b=c d$ for some $a, b, c, d \in F$ and $|a| \leq|c|$ then $c \in a F^{1}$.
2) A subsemigroup $S \subset F$ is not free if and only if $\alpha S \cap S \neq \emptyset \neq S \alpha \cap S$ for some $\alpha \in F \backslash S$ ([3], Prop.5.2.2).
3) If $u w=w v$ for some $u, v \in F, w \in F^{1}$ then there are $x, y \in F^{1}$ and an integer $k \geq 0$ such that $u=x y, v=y x, w=(x y)^{k} x$ ([3], Lemma 11.5.1).

In particular:
4) If $u v=u v\left(u, v \in F^{1}\right.$ then $u=x^{m}, v=x^{n}$ for some $x \in F$ and integers $m, n \geq 0$.

First we shall study the structure of principal quasi-ideals.
Lemma 1. Let $x, w \in F, S=\langle w\rangle_{q}$. If $x S \cap S \neq \emptyset$ then $x S \subset S$; if $S x \cap S \neq \emptyset$ then $S x \subset S$.

Proof. Let $y \in x S \cap S \subset x w F^{1} \cap w F^{1}$, i. e. $y=x w f=w g$ for some $f, g \in F^{1}$. Then $|g| \geq|f|$ whence $g=h f\left(h \in F^{1}\right)$ and $x w=w h$. So

$$
x S=x F^{1} w \cap x w F^{1}=x F^{1} w \cap w h F^{1} \subset F^{1} w \cap w F^{1}=S .
$$

The second part of Lemma is proved analogously.
Theorem 1. A quasi-ideal $\langle w\rangle_{q}(w \in F)$ is free if and only if w is primitive.

Proof. 1) Let $w=x^{n}, n \geq 2$. Since $|x|<|w|, x \notin\langle w\rangle_{q}$. On another hand

$$
x w \in x\langle w\rangle_{q} \cap\langle w\rangle_{q}, \quad w x \in\langle w\rangle_{q} x \cap\langle w\rangle_{q},
$$

i. e. $\langle w\rangle_{q}(w \in F)$ is not free.
2) Let w is primitive and $\langle w\rangle_{q}(w \in F)$ is not free. Then

$$
x\langle w\rangle_{q} \cap\langle w\rangle_{q} \neq \emptyset \neq\langle w\rangle_{q} x \cap\langle w\rangle_{q}
$$

for some $x \in F \backslash\langle w\rangle_{q}$. By Lemma $1 x\langle w\rangle_{q} \cup\langle w\rangle_{q} x \subset\langle w\rangle_{q}$. In particular

$$
\begin{equation*}
x w \in w F^{1}, \quad w x \in F^{1} w \tag{1}
\end{equation*}
$$

so if $|x| \geq|w|$ then $x \in\langle w\rangle_{q}$, what is impossible.
Therefore $|x|<|w|$. It follows from (1) that $w=u x=x v$ for some $u, v \in F$. Then there are $a, b \in F^{1}$ and $k \geq 0$ such that $u=a b, v=b a$, $x=(a b)^{k} a$ whence $w=(a b)^{k+1} a$.

The inclusions (1) imply too that $x w=w t$ for some $t \in F^{1}$. Substituting the values of x and w in this equation and cancelling, we obtain: $(a b)^{k+1} a=b a t$. Then $a b=b a$ because $|a b|=|b a|$. Therefore $a=c^{p}$, $b=c^{q}$ for some $c \in F$ and $p, q \geq 0$. Then $w=c^{(p+q)(k+1)+p}$. The primitivity of w implies $(p+q)(k+1)+p=0$ whence $p=q=0$ in contradiction with $w \in F$.

Now we express arbitrary principal quasi-ideals by means of the free ones.

Lemma 2. Let $a, b, w \in F, w$ is primitive, $n \geq 2$ and $a w^{n}=w^{n} b$. Then either $a=b \in\langle w\rangle$ or $a=w^{n-1} x, b=y w^{n-1}$ for such $x, y \in F^{1}$ that $x w=w y$.

Proof uses induction on n. Suppose that $|a|<|w|$. Then $w=$ $a w_{1}$ and $\left(a w_{1}\right)^{n}=w_{1}\left(a w_{1}\right)^{n-1} b$. Since $\left|a w_{1}\right|=\left|w_{1} a\right|$, the last equation implies $a w_{1}=w_{1} a$. Hence $a=t^{p}, w_{1}=t^{q}(t \in F, p, q \geq 0)$. But $a \neq 1$, so $w_{1}=1$ and $w=a$ in contradiction with $|a|<|w|$.

Thus $|a|=|b| \geq|w|$ whence $a=w a_{1}, b=b_{1} w, a_{1} w^{n-1}=w^{n-1} b_{1}$. If $a_{1}=1$ then $b_{1}=1$ and $a=b=w$. Otherwise we get by induction either $a_{1}=b_{1} \in\langle w\rangle$ (and then $a=b \in\langle w\rangle$) or $a_{1}=w^{n-2} x, b_{1}=y w^{n-2}$ (and then $\left.a=w^{n-1} x, b=y w^{n-1}\right)$.

Corollary 1. Let w is primitive, $n \geq 2$. Then

$$
\left\langle w^{n}\right\rangle_{q}=w^{n-1}\langle w\rangle_{q} w^{n-1} \cup\left\{w^{k} \mid k \geq n\right\}
$$

Now we pass to studying of cohomological dimension.
Recall that the nth cohomology group of semigroup S with values in a left S-module A is defined as $H^{n}(S, A)=\operatorname{Ext}_{\mathbf{Z} S}^{n}(\mathbf{Z}, A)$; another definition of semigroup cohomology in terms of cochains see, e. g. in [2] or [5]. The cohomological dimension of S (c.d.(S)) is the smallest integer n such that $H^{k}(S, A)=0$ for every S-module A and $k>n$.

The next assertion is a start point for the further consideration:
Lemma 3. ([5], Prop. 3.2) Let c.d. $(S)=1$ and $\alpha S \cap S \neq \emptyset \neq S \alpha \cap S$ for some $\alpha \in F \backslash S$ (so S is not free). There exists $x \in \alpha S \cap S$ such that for every $u \in \alpha S \cap S$ one can choose $\lambda_{1}, \ldots, \lambda_{n} \in F^{1}$ satisfying the next conditions:
(i) $x \lambda_{i} \in \alpha S \cap S \quad(1 \leq i \leq n)$,
(ii) $S^{1} \cap \lambda_{1} S^{1} \neq \emptyset, \quad \lambda_{i} S^{1} \cap \lambda_{i+1} S^{1} \neq \emptyset \quad(1 \leq i<n)$,
(iii) $u=x \lambda_{n}$.

For quasi-ideals this lemma is modified as follows:

Lemma 4. Let a quasi-ideal $S=\langle w\rangle_{q} \subset F$ is not free and c.d. $(S)=1$. Then for every $\lambda \in F^{1}$ from $w \lambda \in F^{1} w$ it follows $\lambda S \subset S$.

Proof. First note that in situation when $S=\langle w\rangle_{q}$, one can set $n=1$ in Lemma 3. Indeed, $\lambda_{1} S \subset S$ (see Lemma 1), so it follows from $\lambda_{1} S \cap \lambda_{2} S \neq$ \emptyset that $\lambda_{2} S \cap S \neq \emptyset$, i. e. $\lambda_{2} S \subset S$. Repeating this reasoning we get at last $\lambda_{n} S \subset S$. But then the sequence $\lambda_{1}, \ldots, \lambda_{n}$ can be replaced by the single element $\lambda=\lambda_{n}$ with the conditions (i) - (iii) be preserved (the condition (ii) turns into $\lambda S \subset S$).

Further, let $\alpha S \cap S \neq \emptyset \neq S \alpha \cap S$. Then an element x from Lemma 3 has the least length in $\alpha S \cap S=\alpha S=\alpha F^{1} w \cap \alpha w F^{1}$ accordingly to (iii). Hence $x=\alpha w$. Now setting $u=\alpha t(t \in S)$, we can rewrite the conclusion of Lemma 3 in the form:
for every $t \in S$ there is $\lambda \in F^{1}$ such that
(a) $\lambda S \subset S$,
(b) $t=w \lambda$.

Evidently, here λ is defined uniquely by given t.
Now we can finish the proof of Lemma. Let $w \lambda \in F^{1} w$. Then $w \lambda \in$ $F^{1} w \cap w F^{1}=S$. Applying (2) to $t=w \lambda$, we obtain $\lambda S \subset S$.

Every principal quasi-ideal can be written in the form $S=\left\langle w^{n}\right\rangle_{q}$ where w is primitive and $n \geq 1$. If $n=1, S$ is free (Theorem 1) and hence c.d. $(S)=1$ (see, e.g. [2]). Therefore we suppose further on that $n \geq 2$. We shall show that c.d. $(S)>1$, but the proof depends on if the word w can be presented in the form $a b a$ or not.

Theorem 2. Let $S=\left\langle w^{n}\right\rangle_{q} \subset F, n \geq 2$, w is primitive and $w=a b a$ for some $a, b \in F$. Then c.d. $(S)>1$.
Proof. Set $\lambda=b a w^{n-1}$. Then

$$
w^{n} \lambda=w^{n-1} a b a b a w^{n-1}=w^{n-1} a b w^{n} \in F^{1} w^{n}
$$

Show that $\lambda S \not \subset S$. Indeed, let $t \in S$ and $\lambda t \in S$. Then $\lambda t=w^{n} f$ for some $f \in F^{1}$, i. e. $b a w^{n-1} t=a b a w^{n-1} f$. From here $b a=a b$, so $a=c^{p}, b=c^{q}, w=c^{2 p+q}(c \in F)$ in contradiction with primitivity of w.

Therefore the conclusion of Lemma 4 is not valid and c.d. $(S)>1$.
Now consider the second kind of quasi-ideals.
Lemma 5. Let a primitive word w cannot be written in the form $w=$ $a b a, a, b \in F$. Then

$$
\langle w\rangle_{q}=w F^{1} w \cup\{w\}
$$

Proof. Let $t \in\langle w\rangle_{q} \backslash\left(w F^{1} w \cup\{w\}\right)$. Then $t=u w=w v$ and $u \neq 1 \neq v$ since $t \neq w$. Hence $u=x y, v=y x, w=(x y)^{k} x\left(x, y \in F^{1}\right)$. Consider various values of k.

1) $\underline{k=0}$. Then $w=x$ and $t=u w=w y w \in w F^{1} w$, what is impossible.
2) $k=1$. Then $w=x y x$ and $x=1$ because of primitivity. Hence $t=u w=w^{2} \in w F^{1} w$; contradiction.
3) $\underline{k>1}$. Then $w=x \cdot y(x y)^{k-1} \cdot x$. Again $x=1$ and $w=y^{k}$ contrary to primitivity.

Remark. The converse is true too: if $w=a b a$ then $\left.a b a b a \in\langle w\rangle_{q}\right\rangle$ $\left(w F^{1} w \cup\{w\}\right)$ whence $\langle w\rangle_{q} \neq w F^{1} w \cup\{w\}$.

Lemma 6. Let w is the same as in Lemma 5. Then the semigroup $T_{n}=\left\langle w^{n}\right\rangle_{q} \cup\langle w\rangle$ is free for all $n \geq 1$.

Proof is fulfilled by induction on n. For $n=1$ the assertion follows from Theorem 1 since $T_{1}=\langle w\rangle_{q}$.

Let T_{n} is free. Accordingly to Corollary 1

$$
\begin{aligned}
T_{n+1} & =w^{n}\langle w\rangle_{q} w^{n} \cup\langle w\rangle=w\left(w^{n-1}\langle w\rangle_{q} w^{n-1} \cup\langle w\rangle\right) w \cup\left\{w, w^{2}\right\} \\
& =w T_{n} w \cup\left\{w, w^{2}\right\}=w T_{n}^{1} w \cup\{w\}
\end{aligned}
$$

Since T_{n} is free and $T_{n+1} \subset T_{n}$, this equality and Lemma 5 imply T_{n+1} be coinciding with the quasi-ideal generating by w in T_{n}. By Theorem 1 T_{n+1} is free.

Theorem 3. Let a primitive word w cannot be written in the form $w=$ $a b a, a, b \in F$. Then c.d. $\left\langle w^{n}\right\rangle_{q}>1$ for $n \geq 2$.

Proof. We use the fact that every proper subsemigroup $S \subset F$ of finite defect (i. e. $|F \backslash S|<\infty$) has c.d. >1 ([5], Example 3.5). It follows immediately from here that c.d. $\left\langle w^{n}\right\rangle_{q}>1(n \geq 2)$ since $1 \leq\left|T_{n} \backslash\left\langle w^{n}\right\rangle_{q}\right|<$ n.

Joining Theorems 2 and 3 we obtain finally:
Theorem 4. A principal quasi-ideal of a free non-commutative semigroup has c.d. 1 if and only if it is free.

References

[1] K.S. Brown. "Cohomology of Groups". Springer-Verlag, 1982.
[2] H. Cartan, S. Eilenberg. "Homological Algebra". Princeton, 1956.
[3] G. Lallement. "Semigroups and Combinatorial Applications". Wiley \& Sons, NY, 1979.
[4] B. V. Novikov. Semigroups of cohomological dimension one. J. Algebra 204(1998), no. 2, 386-393
[5] B. V. Novikov. Ideals of free semigroups having cohomological dimension 1. Semigroup Forum, 65(2002), N2, 225-232.
[6] O. Steinfeld. "Quasi-ideals in rings and semigroups". Akadémiai Kiado, Budapest, 1978.

Contact information

B. V. Novikov Saltovskoye shosse 258, apt. 20, 61178

Kharkov, Ukraine
E-Mail: boris.v.novikov@univer.
kharkov.ua

Received by the editors: 10.02 .2003 .

[^0]: 2001 Mathematics Subject Classification: 20M05, $20 M 50$.
 Key words and phrases: cohomology of semigroups, cohomological dimension, quasi-ideal, free semigroup.

