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Abstract. Let A = A0 ⊕ A1 ⊕ A2 be an alternative Z3-
graded algebra. The main result of the paper is the following: if A0

is solvable and the characteristic of the ground field not equal 2,3
and 5, then A is solvable.

1. Introduction

Let R be an algebra over a field F. Let G be a finite group of auto-
morphisms of R, and RG = {x ∈ R|φ(x) = x for all φ ∈ G} be a fixed
points subalgebra of R.

For Lie algebras there is a classical Higman result: if a Lie algebra L
has an automorphism φ of simple order p without fixed points (Lφ = 0),
then L is nilpotent [1]. Moreover, nil index h(p) in this case depends only
on the order p. The explicit estimate of the function h(p) was found in
the paper of Kreknin and Kostrikin [2]. At the same time Kreknin proved
that a Lie ring with a regular automorphism of an arbitrary finite order
is solvable [3]. It is also worth mentioning here a result of Makarenko [4]
who proved that if a Lie algebra L admits an automorphism of a prime
order p with a finite-dimensional fixed-point subalgebra of dimension t,
then L has a nilpotent ideal of nilpotency class bounded in terms of p
and of codimension bounded in terms of t and p.

If R is an associative algebra with a finite group of automorphisms G
then classical Bergman-Isaacs theorem says that if the subalgebra of fixed
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points RG is nilpotent and R has no |G|-torsion, then R is nilpotent [5].
Kharchenko proved that under the same conditions, if RG is a PI-ring,
then R is a PI-ring [6]. For Jordan algebras the analogue of Kharchenko’s
result was proved by Semenov [7].

The Bergman-Isaacs theorem was partially generalized by Martindale
and Montgomery to the case when G is a finite group of so called Jordan
automorphisms, that is a linear automorphisms that are automorphisms
of the adjoint Jordan algebra R(+) (note that in this case RG is not a
subalgebra in R, but a subalgebra in R(+)) [8].

Note, that in general for Jordan algebras Bergman-Isaacs theorem is
false - there is an example of a solvable non-nilpotent Jordan algebra J
with an automorphism of second order φ such that the ring of invariants
Jφ is nilpotent. However, Zhelyabin in [11] proved, that if a Jordan algebra
J over a field of characteristic not equal 2,3 admits an automorphism of
second order φ such that the algebra of invariants Jφ is solvable, then J
is solvable.

For alternative algebras in [12] it was proved that if A is an alternative
algebra over a field of characteristic not equal 2 with an automorphism
g of second order then the solvability of the algebra of fixed points Ag

implies the solvability of A. On the other hand, if the characteristic of
the ground field is zero and G is a finite group of automorphisms of an
alternative algebra A, then again the solvability of the algebra of fixed
points AG implies the solvability of A [7]. At the same time it is not
known if the similar result is true in positive characteristic.

In this work we study a special case of the problem for alternative
algebras: we consider a Z3-graded alternative algebra A = A0 ⊕ A1 ⊕ A2

and prove, that if the characteristic of the ground field not equal 2,3 and
5 and A0 is solvable, then A is solvable.

As a consequence we obtain the following result: if A is an alternative
algebra with an automorphism φ of order 2k3l, then under the same
conditions on the characteristic of the ground field, the solvability of the
subalgebra of fixed points Aφ implies the solvability of A.

2. Definitions and preliminary results

Let F be a field of characteristic not equal 2,3,5, A be an algebra
over F . If x, y, z ∈ A then (x, y, z) = (xy)z − x(yz) is the associator of
elements x, y, z, x ◦ y = xy + xy is a Jordan product of elements x and y
and [x, y] = xy − yx is a commutator of the elements x and y.
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Definition. An algebra A is called Z3-graduated if A is a direct sum of
subspaces Ai, i ∈ Z3 : A = A0 ⊕ A1 ⊕ A2 and AiAj ⊆ Ai+j .

If A is a Z3-graded algebra, then for every i ∈ Z3 and x ∈ A by xi

we will denote the projection of the element x to the subspace Ai and if
M ⊂ A then Mi = {xi| x ∈ M}. An ideal I of A is called homogeneous

if Ij ⊂ I, j = 0, 1, 2 . If I is a homogeneous ideal of A, then the
factor-algebra A/I is also a Z3-graded algebra.

If φ is an automorphism of the algebra A, then by Aφ we denote the
subalgebra of fixed points of φ, that is Ag = {x ∈ A| φ(x) = x}.

Define subsets Ai, A<i> and A(i) as:

A2 = A<2> = A(1) = AA, An =
n−1∑

i=1

AiAn−i, A<n> = A<n−1>A

A(1) = A2, A(i) = A(i−1)A(i−1).

Definition. An algebra A is called nilpotent if Ai = 0 for some i. An al-
gebra is called solvable, if A(i) = 0 for some i.

It is clear that A(i) ⊂ A2i

, so every nilpotent algebra is solvable. If
A is an associative algebra then the inverse is also true: every solvable
associative algebra is nilpotent. But in general, a solvable algebra is not
necessary nilpotent. An example of an alternative solvable non-nilpotent
algebra was constructed by Dorofeev [15](can also be found in [13]).

Definition. An algebra A is called alternative, if for all x, y ∈ A:

(x, x, y) = (y, x, x) = 0. (1)

Let A be an alternative algebra. We will need the following identities
on A (that are the linearizations of the well-known Moufang identities):

(x1, x2y, z) + (x2, x1y, z) = (x1, y, z)x2 + (x2, y, z)x1. (2)

(x1, yx2, z) + (x2, yx1, z) = x1(x2, y, z) + x2(x1, y, z). (3)

(x1 ◦ x2, y, z) = (x1, x2y + yx2, z) + (x2, x1y + yx1, z). (4)

(x1 ◦ x2, y, z) = (x1, y, z) ◦ x2 + (x2, y, z) ◦ x1. (5)

Also, in A the following equalities hold([13]):

2[(a, b, c), d] = ([a, b], c, d) + ([b, c], a, d) + ([c, a], b, d), (6)
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(dx, y, z) + (d, x, [y, z]) = d(x, y, z) + (d, y, z)x. (7)

Let D(A) be the associator ideal of A, that is an ideal generated by
all associators (x, y, z), x, y, z ∈ A. In [13] it was shown that

D(A) = (A, A, A) + (A, A, A)A = (A, A, A) + A(A, A, A), (8)

where (A, A, A) = {
∑
i

(xi, yi, zi)| xi, yi, zi ∈ A}.

Let J2(A)={
∑
i

αia
2
i |αi ∈F, a∈A} and J6(A)={

∑
i

αia
6
i |αi ∈F , a∈A}.

Suppose A is an alternative algebra, then if char(F ) 6= 2 then J2(A) is
an ideal of A and if char(F ) 6= 2, 3, 5 then J6(A) is also an ideal in A(see,
for example, [13]).

3. Properties of Z3-graded alternative algebras

In this section we will get some technical results that we will need.
Throughout this section A = A0 ⊕ A1 ⊕ A2 is an arbitrary alternative
Z3-graded algebra.

Lemma 1.

1)
(A2

0, A1, A2) ⊂ A2
0 (9)

2) For every x ∈ A1, y ∈ A2, a1, a2 ∈ A0:

(x(a1a2))y = x((a1a2)y)+a′, (y(a1a2))x = y((a1a2)x)+a′′ (10)

for some a′, a′′ ∈ A2
0.

3)
(A0A1)(A2

0A2) ⊂ A2
0, (A0A2)(A2

0A1) ⊂ A2
0 (11)

(A1A2
0)(A2A0) ⊂ A2

0, (A2A2
0)(A1A0) ⊂ A2

0. (12)

Proof. Let x ∈ A1, y ∈ A2 and a1, a2 ∈ A0. Then using (7) we get:

(a1a2, x, y) = −(a1, a2, [x, y]) + a1(a2, x, y) + (a1, x, y)a2 ⊂ A2
0.

And (9) is proved. It is easy to see that (10) follows from (9).
Let us prove (11) and (12). It is easy to see that they are similar and it

is enough to prove one of these inclusions. Using (7) and (9) we compute:

(A0A1)(A2
0A2) ⊂ A0(A1(A2

0A2)) + (A0, A1, A2
0A2)

⊂ A2
0 + (A0, A1, A2

0)A2 + A2
0(A0, A1, A2) + (A1, A2

0, A2)

⊂ A2
0 + ((A2

0)A1)A2 ⊂ A2
0.
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Remark. From (10) it is follows that A2
0 + (A1A2

0)A2 = A2
0 + A1(A2

0A2)
and A2

0 + (A2A2
0)A1 = A2

0 + A2(A2
0A1). This allows us to omit brackets

in such a sentences without ambiguity.

Lemma 2.

(D(A))1 ⊆ A0A1 + (A1, A2, A1) + (A2, A0, A2). (13)

(D(A))2 ⊆ A0A2 + (A2, A1, A2) + (A1, A0, A1). (14)

Proof. It is enough to prove one of these equations. Let us prove (13).
Using (8) we have:

(D(A))1 ⊆ (A1, A1, A1)A1 + (A0, A0, A0)A1 + (A2, A2, A2)A1

+ (A1, A0, A0)A0 + (A1, A2, A1)A0 + (A2, A2, A0)A0

+ (A1, A1, A0)A2 + (A2, A2, A1)A2 + (A0, A2, A0)A2

+ (A0, A0, A1) + (A1, A2, A1) + (A2, A0, A2).

Using (6) we get:

(A1, A0, A0)A0 ⊆ A0A1 + [A0, (A1, A0, A0)]

⊆ A0A1 + (A0, A1, A0) ⊆ A0A1.

Similarly, we obtain that

(A1, A2, A1)A0 + (A2, A2, A0)A0 ⊆ A0A1 + (A2, A0, A2).

By (2) we compute:

(A1, A1, A0)A2 ⊆ (A2, A1, A0)A1 + (A1, A0, A0) + (A1, A2, A1)

⊆ A0A1 + (A1, A2, A1),

(A2, A2, A1)A2 ⊆ A0A1 + (A2, A0, A2) + (A1, A2, A1).

And, finally, using (1) we obtain the following inclusion:

(A0, A2, A0)A2 ⊆ A0A1 + (A2, A0, A2).

Summing up the obtained inclusions we finally have that:

(D(A))1 ⊆ A0A1 + (A1, A2, A1) + (A2, A0, A2).

Lemma 3.
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1)

(A2
0A1, A0, A2) ⊂ A2

0, (A2
0A2, A0, A1) ⊂ A2

0. (15)

2)

((A1, A2, A1) + (A2, A0, A2))A2
0(A1 ◦ A1) ⊂ A2

0. (16)

((A2, A1, A2) + (A1, A0, A1))A2
0(A2 ◦ A2) ⊂ A2

0. (17)

3) For all n > 2:

(A1A<n>
0 )(A0A2) ⊂ A1(A<n+1>

0 )A2 + A2
0, (18)

(A2A<n>
0 )(A0A1) ⊂ A2(A<n+1>

0 )A1 + A2
0. (19)

Proof. It is easy to see that it is enough to prove only one inclusion in
every statement. We will prove the first inclusion in all cases.

By (7) we have:

(A2
0A1, A0, A2) ⊂ A2

0(A1, A0, A2) + (A2
0, A0, A2)A1 + (A2

0, A1, A2)

⊂ A2
0 + (A2

0A2)A1 ⊂ A2
0.

And (15) is proved.

Using (6), (9) and (15) we compute:

((A1, A2, A1) + (A2, A0, A2))A2
0(A1 ◦ A1)

⊂ A2
0 + [(A1, A2, A1) + (A2, A0, A2), A2

0(A1 ◦ A1)]

⊂ A2
0 + (A2

0(A1 ◦ A1), A0, A1) + (A2
0(A1 ◦ A1), A2, A2)

⊂ A2
0 + (A2

0(A1 ◦ A1), A2, A2).

Using (2) and (4) we have:

(A2
0(A1 ◦ A1), A2, A2) ⊂ (A1, A2

0, A2) + A2
0 + (A1 ◦ A1, A2

0, A2)A2

⊂ A2
0 + (A1, A2

0, A0)A2 ⊂ A2
0.

Thus, ((A1, A2, A1) + (A2, A0, A2))A2
0(A1 ◦ A1) ⊂ A2

0.

Let us prove (18). Using (9) and (15) we get:

(A1A<n>
0 )(A0A2) ⊂ ((A1A<n>

0 )A0)A2 + (A1A<n>
0 , A0, A2)

⊂ A2
0 + (A1A<n+1>

0 )A2 + (A1, A<n>
0 , A0)A2

⊂ A2
0 + A1(An+1

0 A2).
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Lemma 4.

1) Let char(F ) 6= 2. Then A is solvable if and only if J2(A) is solvable.

2) Let char(F ) 6= 2, 3, 5. Then A is solvable if and only if J6(A) is

solvable.

Proof. The proof is similar for both cases. Let us prove 2.
If A is solvable then clearly J6(A) is solvable.
Suppose J6(A) is solvable. Consider the factor algebra A = A/J6(A).

Then for every x in A: x6 = 0, that is A is a nil algebra of nil-index 6.
Since the characteristic of the ground field F not equal 2,3 or 5, then by
Zhevlakov’s theorem A is solvable ([14], the proof can also be found in
[13]). Thus, A is solvable.

Lemma 5. Let A be a Z3-graded alternative algebra over a field F of

characteristic not equal 2,3,5. Then we have the following inclusions:

1) (J2(A))1 ⊂ A0 ◦ A1 + A2 ◦ A2, (J2(A))2 ⊂ A0 ◦ A2 + A1 ◦ A1.

2) (J6(A))0 ⊂ A2
0 + A1A2

0A2 + A2A2
0A1.

Proof. The first assertion is obvious.
Let us prove 2. We will use the following notation: if u, v ∈ A then

u ≡ v means that u − v ∈ A2
0 + A1A2

0A2 + A2A2
0A1

Let x∈A1, y ∈A2, a∈A0. It is sufficient to prove that ((x+y+a)6)0 ≡0.
First we will proof the following inclusion:

x(y, x, a)x2 + x2(y, x, a)x ∈ A2
0 (20)

Indeed, using (5) and (2) we have

A2
0 ∋ 2(xy, x3, a) = (xy, x2, a) ◦ x + (xy, x, a) ◦ x2

= x(xy, x, a)x + (xy, x, a)x2 + (xy, x, a) ◦ x2

= x(y, x, a)x2 + 2(y, x, a)x3 + x2(y, x, a)x.

Thus, x(y, x, a)x2 + x2(y, x, a)x ∈ A2
0. Similarly, one can prove the follow-

ing inclusion:
y(x, y, a)y2 + y2(x, y, a)y ∈ A2

0. (21)

Consider p = (x + y + a)3. Then we have:

p0 = x3 + y3 + a3 + (x ◦ a)y + (y ◦ a)x + (x ◦ y)a,

p1 = x2y + (x ◦ y)x + y2a + (a ◦ y)y + a2x + (a ◦ x)a,

p2 = y2x + (y ◦ x)y + x2a + (a ◦ x)x + a2y + (a ◦ y)a.
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Since ((x + y + a)6)0 = p2
0 + p1 ◦ p2, then it is enough to proof that:

(x2y + (x ◦ y)x) ◦ (y2x + (y ◦ x)y) ≡ 0, (22)

(y2a + (a ◦ y)y) ◦ (y2x + (y ◦ x)y) ≡ 0, (23)

(a2x + (a ◦ x)a) ◦ (y2x + (y ◦ x)y) ≡ 0, (24)

(x2y + (x ◦ y)x) ◦ (x2a + (a ◦ x)x) ≡ 0, (25)

(y2a + (a ◦ y)y) ◦ (x2a + (a ◦ x)x) ≡ 0, (26)

(a2x + (a ◦ x)a) ◦ (x2a + (a ◦ x)x) ≡ 0, (27)

(x2y + (x ◦ y)x) ◦ (a2y + (a ◦ y)a) ≡ 0, (28)

(y2a + (a ◦ y)y) ◦ (a2y + (a ◦ y)a) ≡ 0, (29)

(a2x + (a ◦ x)a) ◦ (a2y + (a ◦ y)a) ≡ 0. (30)

The equivalences (22),(27) and (29) are obvious. Let us prove (23).
We have:

(y2a)(y2x) + (y2x)(y2a)

= (y2ay)(yx) − (y2a, y, yx) + ((y2x)y2)a − (y2x, y2, a)

≡ −(a, y, x)y3 − y(y2x, y, a) − (y2x, y, a)y ≡ y(y, x, a)y2,

(y2a)((y ◦ x)y) + (y ◦ x)y)(y2a)

= ((y2a)(y ◦ x)))y + (y2a, y ◦ x, y) + (y ◦ x)(y3a) + (y ◦ x, y, y2a)

≡ (y2(a(y ◦ x)))y + (y2, a, y ◦ x)y + (y2a, y ◦ x, y) + (y ◦ x, y, y2a)

≡ y(y, a, x)y2 + 2(y ◦ x, y, a)y2 = 3y(y, a, x)y2,

((a ◦ y)y)(y2x) + (y2x)((ay + ya)y)

= ((a ◦ y)y2)(yx) + ((a ◦ y)y, y, yx) + y((yx)(ay2)) + (y, yx, ay2)

+ (y2xy)(ay) − (y2x, y, ay)

≡ y((yx)a)y2 − y(yx, a, y2) + y2(y, x, a)y + ((y2xy)a)y

− (y2xy, a, y) − y(x, y, a)y2

≡ y2(y, x, a)y + y2((xy)a)y + (y2, xy, a)y−y(x, a, y)y2−y(x, y, a)y2

≡ y2(y, x, a)y,

((a ◦ y)y)((y ◦ x)y)) + ((y ◦ x)y))((a ◦ y)y)

= (ay2)((y ◦ x)y) + (yay)(yxy + xy2) + (y ◦ x)(y(a ◦ y)y)

+ (y ◦ x, y, (a ◦ y)y)
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≡ a(y2((y ◦ x)y)) + (a, y2, (y ◦ x)y) + (yay2)(xy) − (yay, y, xy)

+ ((yay)x)y2 − (yay, x, y2) + y2(x, y, a)y

≡ 3y2(x, y, a)y + y((ay)x)y2 + (y, ay, x)y2

≡ 3y2(x, y, a)y + y(a(yx))y2 + y(a, y, x)y2 + y(y, a, x)y2

≡ 3y2(x, y, a)y.

Summing up the obtained equations we have:

(y2a + (a ◦ y)y) ◦ (y2x + (y ◦ x)y)

≡ y(y, x, a)y2 + 3y(y, a, x)y2 + y2(y, x, a)y + 3y2(x, y, a)y ≡ 0.

That proves (23). Using similar arguments one can obtain (25).
Let us prove (24):

(a2x) ◦ (y2x + (y ◦ x)y)

≡ a2(xy2x + (y ◦ x)y) + (a2, x, y2x + (y ◦ x)y) ≡ 0,

((a ◦ x)a) ◦ (y2x + (y ◦ x)y)

= (xa2) ◦ (y2x + (y ◦ x)y) + (axa)(y2x + (y ◦ x)y)

+ (y2x + (y ◦ x)y)(axa)

≡ a((xa)(y2x + (y ◦ x)y)) + (a, xa, (y2x + (y ◦ x)y))

+ ((y2x + (y ◦ x)y)(ax))a − ((y2x + (y ◦ x)y), ax, a)

≡ a(a, x, (y2x + (y ◦ x)y)) − ((y2x + (y ◦ x)y), x, a)a ≡ 0.

Thus, (a2x) ◦ (y2x + (y ◦ x)y) + ((a ◦ x)a) ◦ (y2x + (y ◦ x)y) ≡ 0 and
(24) is proved. Similarly, one can prove (28).

Consider (26). We have:

(y2a) ◦ (x2a) = ((y2a)x2)a − (y2a, x2, a) + ((x2a)y2)a − (x2a, y2, a)

≡ −a(y2a, x2, a) − a(x2, y2, a) ≡ 0.

Similarly, (y2a) ◦ (ax2) + (ay2) ◦ (ax2) + (ay2) ◦ (x2a) ≡ 0. Further, we
compute:

(y2a)(xax)+(ay2)(xax) = y2(axax)+(y2, a, xax)+a(y2(xax))+(a, y2, xax)

≡ y(((y(ax))a)x)−y(y(ax), a, x)≡−y(y(ax), a, x).

Using (7) and (9) we get:

−y(y(ax), a, x) = (y(ax), a, y)x − (y(ax), a, yx) − ([y(ax), a], y, x)

≡ (y(ax), a, y)x = ((ax, a, y)y)x = (((x, a, y)a)y)x ≡ 0.
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Using similar computations one can prove that (xax)(y2a)+(xax)(ay2)≡0.
Finally,

(yay)(xax) + (xax)(yay)

= ((yay)x)(ax) − (yay, x, ax) + x((ax)(yay)) + (x, ax, yay)

≡ ((ya)(yx))(ax) + (ya, y, x)(ax) + x(((ax)y)(ay)) − x(ax, y, ay)

≡ (y(a(yx)))(ax) + (y, a, yx)(ax) + (ya, y, x)(ax) + x((((ax)y)a)y)

− x((ax)y, a, y) − x(ax, y, ay)

≡ ((y, a, x)y)(ax) + ((a, y, x)y)(ax) − x(y(ax, a, y))

− x(y(ax, y, a)) = 0.

And (26) is proved. The equality (30) can be proved in a similar
way.

4. The main part

Recall that if A is an algebra, then by D(A) we denote the ideal
generated by associators. Define subalgebras Ki and Ti as

K1 := J2(A), T1 := D(K1), Ki := J2(Ti−1), Ti := D(Ki).

It is easy to see that:

A ⊇ K1 ⊇ T1 ⊇ K2 ⊇ ... ⊇ Ki ⊇ Ti ⊇ ...

Lemma 6. If for some i > 1 Ti or Ki is solvable, then A is solvable.

Proof. By lemma 4 A is solvable if and only if J2(A) = K1 is solvable.
Since D(K1) is a homogeneous ideal, then K1/D(K1) - is an associative
Z3-graded algebra with a solvable even part. Thus, by Bergman-Isaacs
theorem K1/D(K1) is nilpotent and if D(K1) is solvable, then A is
solvable.

Similar arguments show that Ki and Ti are solvable if and only if Ti−1

is solvable.

Lemma 7. Let A be a Z3-graded algebra and A0 = 0. If char F 6= 2, 3,

then A is solvable.

Proof. Consider J3(A) = {
∑
i

x3
i |xi ∈ A}. Using similar arguments as in

lemma 4 we get, that A is solvable if and only if J3(A) is solvable. For all
x ∈ A1 and y ∈ A2 we have:

(x + y)3 = x3 + y3 + x2y + yx2 + xyx + y2x + xy2 + yxy.
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But x3 ∈ A0, y3 ∈ A0 and xy ∈ A0. Thus (x+y)3 = 0 and J3(A) = 0.

Theorem 1. Let A be a Z3-graded alternative algebra over a field F .

If A0 is solvable and char F 6= 2, 3, 5, then A is solvable.

Proof. Let A
(m)
0 = 0 and n = 2m. Consider Tn and define I = J6(Tn).

By lemmas 4 and 6 it is enough to prove that I is solvable. By lemma 5
we have I0 ⊂ A2

0 + (Tn)2(A2
0)(Tn)1 + (Tn)1(A2

0)(Tn)2.

Our aim now is to prove that

(Tn)1(A2
0)(Tn)2 ⊂ A2

0 + (Tn−1)1A<3>
0 (Tn−1)2. (31)

Indeed, since Tn ⊂ Kn = J2(Tn−1) then by lemma 5:

(Tn)2 ⊂ A0 ◦ (Tn−1)2 + (Tn−1)1 ◦ (Tn−1)1.

By (12) and (18) we have that

(Tn)1A2
0(A0 ◦ (Tn−1)2) ⊂ (Tn−1)1A<3>

0 (Tn−1)2 + A2
0.

Using inclusion (13) we get:

(Tn)1 = (D(Kn))1

⊆ A0(Kn)1 + ((Kn)1, (Kn)2, (Kn)1) + ((Kn)2, A0, (Kn)2).

And now it is left to use inclusions (11) and (16) to prove (31). Similar
reasons shows us that (Tn)2(A2

0)(Tn)1 ⊂ A2
0 + (Tn−1)2A<3>

0 (Tn−1)1 and
we may conclude that

I0 ⊂ A2
0 + (Tn−1)1A<3>

0 (Tn−1)2 + (Tn−1)2A<3>
0 (Tn−1)1.

Now we can continue to use similar arguments and get that

I0 ⊂ A2
0 + (Tn−2)1A<4>

0 (Tn−2)2 + (Tn−2)2A<4>
0 (Tn−2)1.

And finally, we will get that

I0 ⊂ A2
0 + A1A<n>

0 A2 + A2A<n>
0 A1. (32)

Let us prove that A1A<n>
0 A2 ⊂ A2

0. For this we will prove that for all
k > 2:

A1(Ak
0, A0, A0)A2 ⊂ A2

0. (33)
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Indeed, using (2) and (9) we have:

A1(Ak
0, A0, A0)A2 ⊂ A1((A2, A0, A0)Ak

0) + A1(Ak
0, A2, A0) ⊂ A2

0.

Moreover, from (18) and (33) we see that

A1(((...((A2
0, A0, A0)A0)A0)...A0)A2 ⊂ A2

0. (34)

Now we can use (34) to obtain the following inclusions:

A1A<n>
0 A2 ⊂ A1(((A2

0A2
0)A0)...A0)A2 + A2

0

⊂ A1(((A2
0A2

0)A2
0)...A2

0)A2 + A2
0

⊂ A1(((A
(2)
0 A

(2)
0 )...)A

(2)
0 )A2 + A2

0

⊂ ... ⊂ A1A
(m)
0 A2 + A2

0 = A2
0.

Similarly, A2A<n>
0 A1 ⊂ A2

0. Thus, I0 ⊂ A2
0 = A

(1)
0 .

Now we can start from the beginning with the ideal I and construct an
ideal I ′ such that I (and, thus, A) is solvable if and only if I ′ is solvable and

I ′

0 ⊂ I2
0 ⊂ A

(2)
0 . Repeating this construction, in the end we will construct

an sublagebra Ĩ such that A is solvable if and only if Ĩ is solvable and

Ĩ0 ⊂ A
(m)
0 = 0. But by lemma 7 Ĩ is solvable, so A is also solvable.

Corollary 1. Let A be an alternative algebra with an automorphism φ
of order 3. If char F 6= 2, 3, 5 and the subalgebra Aφ of fixed points with

respect to φ is solvable, then A is solvable.

Proof. If the ground field F is algebraically closed, then we can consider
subspaces Aξ = {x ∈ A| φ(x) = ξx} and Aξ2 = {x ∈ A| φ(x) = ξ2x},
where ξ is a primitive cube root of unity. It is easy to see that A =
Aξ ⊕ Aξ2 ⊕ Aφ and A is a Z3-graded algebra. Since Aφ is solvable, then
by theorem 1 A is solvable.

If F is not algebraically closed we can consider it’s algebraic closure F
and an algebra A = A ⊗F F . Then A is an alternative algebra over F and
A is solvable if and only if A is solvable. We can define an automorphisms
φ on A by putting: φ(a ⊗ α) = φ(a) ⊗ α for all a ∈ A, α ∈ F . Then φ is an

automorphism of order 3 and the subalgebra of fixed points A
φ

= Aφ ⊗ F
is solvable. Thus, A is solvable and, finally, A is solvable.

Corollary 2. Let A =
n−1∑
i=0

Ai be a Zn-graded alternative algebra, where

n = 2k3l and k + l > 1. If char F 6= 2, 3, 5 and the subalgebra A0 is

solvable, then A is solvable.
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Proof. If k = 0 then by corollary 1 A is solvable. Suppose k > 1. We will
use an induction on l. If l = 0 then the result follows from the paper of
Smirnov [12]. Let l > 1. Then we can consider subspaces Â0 =

∑
i

A3i,

Â1 =
∑
i

A1+3i, Â2 =
∑
i

A2+3i. Then A = Â0 ⊕Â1 ⊕Â2 - is a Z3-gradation

of A. By theorem 1 A is solvable if and only if Â0 is solvable. On the other
hand it is easy to see that Â0 is a Zn′-graded algebra, where n′ = 2k3l−1

and (Â0)0 = A0 is solvable. Now we may use the induction and get that
Â0 is solvable. Hence, A is solvable.

Corollary 3. Let A be an alternative algebra with an automorphism φ
of order 2k3l. If char F 6= 2, 3, 5 and the subalgebra Aφ of fixed points with

respect to φ is solvable, then A is solvable.
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