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GN SUBHARMONIC EXTENSION AND THE EXTENSION
IN THE HARDY-CRLICZ CLASSES

PO CYBrAPMOHIYHE IIPONOB2KEHHS TA
POXOB2KEHH B KJIACAX XAPOI-OPJIMYA

The paper contains a generalization of certain previous results on subharmonic extension of functions
and on extension of functions in the Hardy - Orlicz classes. We give unified proofs of these results,

CraTTsa MICTHTh y3araJbHEHHA NEAKHX MOIEpeHiX pesy/bTaTiB Ipo cyOrapMoHiYHE NPONOBIKERHA
dyHKLiH Ta Mpo npopoexends B Knacax Xapai-Opnava: [JaioTecs yHidikopani HoBefieHHA peayiib-
Taris.

1. Introduction.

1.1. Fix an integer n= 2.

By definition, a set E C IR” ispolar (in R"), if forany a « R" there exists a
subharmonic function v # —oo in a connected neighborhood U of a with v (x) =
=—c forall xe ENU.

1.2. In section 2, we consider the p09s1b111ty to give further generalizations or re-
finements to the fundamental classical result due to Brelot stating that closed polar sets
are removable for subharmonic functions which are bounded above [2]. Our results,
Theorems 2.6 and 2.8, generalize previous results due to Hayman and Kennedy, Le-
long, Kuran, Brelot, Tamrazov, and Doob. Theorem 2.8 was proved in a different way
in our preprint [3, Theorem 1].

In section 3, we consider the extension in the Hardy-Orlicz classes h,, and H,. In
Theorem 3.2 below we show ihat polar sets (not necessarily closed) are removable in
the Hardy-Orlicz classes hy,. As corollaries, we get results due to Singman, Parreau,

~and Jarvi. :

Conway, Dudziak, and Straube stated that a closed set is isometrically removable
for the Hardy classes H P if and only if the set is polar. In section 4, we generalize
this result, in a certain sense, for the Hardy-Orlicz classes Hy.

We thank Jaakko Hyvénen for the discussion.

- 1.3. We write B (a, r) for the open ball in IR” with center a and radius r, and
S (a,r):=0B (a,r). Let 0,4, be the Lebesgue measure in S (@, r). We often write ©
instead of ©,, when a and r are clear from the context. We also write ©,:=
= G(S (0, 1)).

. Subharmonic extention.

2.1. Following [4, 5], lét us consider the class 9, of all sets X € IR” which
satisfy the condition :

For each point a € X, there exists a sequence ri> 0, j=1,2,...,with Ty=> 0 as

j— oo, and Ga.g(S (@,7)NX)=0 forall j=1,2,...

If pc R" isopen and E C IR” is of Lebesgue measure zero, then, clearly,
D\Ee D,.
Let Ge O, andlet u: G— [ —os, o) be an upper semicontinuous function.
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1130 J. RITHENTAUS, P. M. TAMRAZOV

Then we respectively say that u is:
(Def 1) P-subharmonic and belongs to the class P (G) if for each a € G and all
sufficiently small r >0 with o,,(S (a,r)\G) =0, we hgve

4@ < —ox [y, 40) dOO); M)

(Def 2)- Q-subharmonic and belongs to the class Q(G) if for each a € G there
exists a sequenée ri> 0,j=1,2,..., such that rp=> 0 as j — oo, and for
all r=r;, j=12,..., both 6,, (S (a,r)\G) =0 and (1) hold;

(Def 3) A-subharmonic and belongs to the class A (G) if for each a € G with
u(a)> —oo there exists a sequence r;>0, j=1,2,...,such that r;— 0
as j— oo, G”}_(S (@, r;)\G) = 0 for j=1,2, ..., and

1

; 1 : ;
1 g —T - > 0. 2
o S 7| o s u(y) dGg,, (y) —u(a) | 20 @

Note that it follows from the upper serﬁicontinuity of the function u:G —
— [— oo, o) and from the condition ©,,(S (a,7)\G) =0 that the mean value

Llu,a, ?‘) L= O'; u()’) doa,r (y)

; r“"l S(a,r)
is defined either as a real number or as — eo.
Obviously, P (G) € Q(G) € A (G). Each of these classes is a positive cone (con-
taining the function identically equal to zero) which is invariant under the operation of
adding any function from P (G) to its elements. In particular, P (G) is a semigroup
with respect to addition.

The class A (G) on {9, was introduced and used in [4, p. 6] and [5, p.23]. In [6,
p. 10] and [7, p. 631], the class P (G) was introduced for those G € {9, which satisfy
the following additional condition: For every a € G and all sufficiently small » > 0,
we have G, (S (a,)\G) =0.

If D R” isopen, then D € &, and each of the classes A (D), P (D), and
Q(D) coincides with the class of all functions subharmonic in D (in the classical

sense). This is well-known and follows immediately from the Blaschke-Privalov The-
orem [8, p. 20] and from the (classical) definition of subhaxmonicity. Note that if y is

subharmonic in D, then u may be identically.— e on any component of D.

If u is subharmonic in an open set D and G € O, is its subset, then ulG e
e P (G).

2.2. Let D beanopensetin IR™ andlet E C D be closed in D and polar. A
classical result of Brelot [2] states that if u is subharmonic in D\E and, moreover,
locally bounded above in D, i. e., each point @ € D has a neighborhood U, such that
u is bounded abovein U\ E, then u has a subharmonic extention u* to D. This

extension u*:D — [ —eo, o) is given by

u* := lim su u(y).
(I) y—x, yeD\E ()’)

Different generalizations and refinements of this result can be found in the works of
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ON SUBHARMONIC EXTENSION AND THE EXTENSION IN HARDY-ORLICZ CLASSES 1131

Hayman and Kennedy, Lelong, Kuran, Brelot, Armitage, Tamrazov, Doob, and Riih-
entaus and Tamrazov. References and details are given below.

In Hayman’s and Kennedy’s formulation [9, Theorem 5. 18] of cited Brelot’s result
the exceptional set E need not be closed in D but is supposed to be contained in a
countable union of closed polar sets, and the subharmonicity of u is replaced by the
condition u € Q(D\E). _

In Tamrazov’s [6, Theorem A], [7, Theorem 1], [4, Theorem 1], [5, Theorem 1] and
Doob’s [10, Theorem, p. 60] generalizations, the exceptional set E was supposed to be
just polar (without closeness or any other additional assumptions), and the subharmon-
icity of u was replaced by the condition u € P (D\E) in [6], [7], [10] and by the
conditior u € A (D\E) in [4], [S], respectively.

On the other hand, supposing that E is closed in D,. Lelong [11, Proposition 7],
[12, Theorem 3], Kuran [13, Theorem 1 and Proposition 2], and Brelot [14, Theorem
2] generalized the cited Brelot’s result by replacing the condition that u 1is locally
bounded above in D by certain milder conditions.

Tamrazov [6, Theorem ], [7, Theorem 3], [4, Theorem 1], [5, Theorem 1] relaxed
the local upper boundedness condition of u as well as its previous generalizations, and
under certain weaker assumptions established the results for any polar set E. He also
obtained [4], [5] the results for more general functions u defined in D\ E in terms of
Blaschke-Privalov’s inequality, i. e., for u € A (D\E).

A generalization of Tamrazov’s result was given in our preprint [3, Theorem 1]
where the proof was based partly on the previous Tamrazov’s technique and partly on
certain considerations based on [15, Theorem 2]. Below, the result of [3, Theorem 1]
is formulated as Theorem 2.8.

2.3. Lemma [15, Theorem 2]. Let D be an open subset of R " Assume that,
for any A from some index set A, the function vy is subharmonic inD. If, for
some p >0, thereis a function u € Lf, (D) suchthat vy < u for each A e A,
then v*, the upper semicontinuous regularization of the function v =sup; vy, is
subharmonic in D. Moreover, the set ' '

{xeD:v@)<v*®)} ' ®3)
is j)olar. -

In view of [15, Theorem 2] it remains to show that the set (3) is polar. But this fol-
lows froin the fact that by [15, proof of Theorem 2] the family of functions v,, A e

e A, is indeed locally bounded above and from (1, Theorem 1 d), p. 26].
The next lemma is a very particular case of the results in [4, Theorem 1], [5,
Theorem 1]. We shall prove it in a different way.

2.4. Lemma. Let D be an open subset of R" and E C D be polar. Suppose
that ue A (D\E). If uis locally bounded above in D, then u has a subharmo-
nic extension u* to D.

Proof. Since the problem is local, we may suppose that D is a bounded domain,

‘We may also suppose that u $ —oo. By [1, Theorem 1 a); p. 24], there exists @ # —oo
subharmonic in D such that ® <0 and ® (x) = —oo forall x € E.
For each k£ e N, we define ug: D — [ —oo, ) by

_ Ju(x)+wo(x)/ k, forxeD\E;
U(x) o= {-— o0 for xeE.

‘We show that u, is subharmonic. By using the facts that ® is upper semicontin-
uous, ® (x) = —oo for x € E, and u is locally bounded above in D, we can see that
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u, is upper semicontinuous in D.
Suppose that for some @ € D we have u(a)>— . Then clearly, a € D\E,
u(a)>—-co and m(a)>—-oo. Since u, isupper semicontinuousin D and ® is sub-

harmonic in D, the mean values L{u, a, r) are defined as real numbers or as — oo, at
least for small r > 0. In fact, for small r >0,

L, a,r) = Lug, a,r)— %L(m, a,r. ()]

Since  is subharmonicin D\E, there is a sequence ;> 0, j =1, 2, ..., such that
10 as j >, 0,, (S (a,r)\(D\E)) =0 for j=1,2,..., and

lim sup —I[L(u, a,r;)—u(a]=0. ®)

j—)

By using (4), we get

lim 1 Sup —}2- [Luy, a,7) = (@)] = h’m ! sup {—li-[l(u., a,r)—u(a)]+
2 —[Lw, a, -0 (@]} = hm sup [L(u ar)—u(@]=

2 lim sup iz[.ﬁ(u a,r;)—u(@]=20.
J—hee }'j 1
where the last inequality follows from (3).

Since this is true for any a € D with u,(a) > — o, it follows from the Blaschke-
Privalov Theorem [8, p. 20] that u is subharmonic in D.

To show that u has a subharmonic extension u* to D, we employ (the classical
form of) Lemma 2.3 given above as follows. We write w : = sup,.yu,. Since u is
locally bounded above in D and @ <0, the functions u » k €N, are locally uniform-
ly bouhdcd above in D. Thus, by Lemma 2.3, w*, the upper semicontinuous regular-
ization of w, is subharmonic in D. Moreover, theset F:={xe D :w (x) < w*(x)}
is polar.

It remains to show that w*(x ) =u (x) for all x e D\E. For this purpose, we
writt H:={xeD:®(x)=—c} and E"=EU FU H.If xe D\E’, then clearly,
w(x) =u (x ). Using this fact, the polarity of E’, the subharmonicity of w*, and the
upper semicontinuity of u in D\E, we find that, for each x € D\E,

*(x) = * =
W)= EI%WJ‘SQJJ\E’W ()05, ()

1
= do =
f—g(lj Gﬂ r"_l S(x’r)\gaw(y) x,r (y)

= lim

TS e SRR =
A o 7T st u(y)do,, (y) S ux).

To show that in fact w¥*(x) =u (x) for all x e D\E, we suppose, on the contrary,
that w*(x o) <u (xo) forsome x,e D\E. Choose o € R such that w¥(x ) < o <
<u(xg). Since w* is upper semicontinuous in D, there is ry > 0 such that B (x, -
ro) € D and w*(x) <o forall x B (xg,ro). Thus, '
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ON SUBHARMONIC EXTENSION AND THE EXTENSION IN HARDY-ORLICZ CLASSES 1133

11m sup [L(w xo. D —ulxg] =

~ On the other hand, by using the fact that w*(x) = w(x )=u(x) forall xe D\E’
and the assumption, we get

l1m sup [L{w xepr)—ulxg)l = hm sup [L(u, Xg. ") —u(xg)l =

arriving at a contradiction.

The next lemma is a particular case of the result from our preprint [3, Theorem 1]
which is below formulated as Theorem 2. 8. Under the more restrictive assumption
that v is subharmonic in D, these statements are contained in [4, Theorem 1], [5,
Theorem 1].

2. 5. Lemma. Let D be an open subset of R™ and E C D be polar. Sup-
pose that u € A (D\E). Suppose that there is a function v € A (D\E) such that,
for each component Q of D, one has v|IQ\E £ —oo and such that, for all
£>0 andforall x' e E,

lim sup [u (x) +&v (x)] < ee. (©)

Then u has a subharmonic extension u* to D.

Proof. Since u and v are upper semicontinuous in D \E, each x e D\E hasa
neighborhood U, € D such that u and v are bounded above in U, \E. Thus, by
Lemma2.4, ul U \E and v|U \E have subharmonic extensions u, and vy to
U,. Since x € D\E is arbitrary and E is polar, we can see that  and v have sub-
harmonic extensions u; and v; to D\E,, where

Bi:=DX | &,

xeDM\E

isclosedin D. Since E; C E, E, is also polar. In the remaining part of the proof,
we write, for simplicity of notation, E = E;, u = u;, and v = v,. Since E is polar,
(6), clearly, still holds. Moreover, in the remaining part of the proof W€ may Suppose
that D is a domain and that u % —eo.

For each ke N, wewrite u,: D\E — [— oo, ),

w(x):= u(x)+i—v(x).

By (6) and Lemma 2.4, we find that ea(‘:i? u,, k € N, has a subharmonic extension uz'
to D. Since 1{=2(u; —u;)_ almost everywhere in D, we get v € L{OC(D). Similar-
ly, u= u; —v almost everywhe:re in D; hence, u € L}OC(D) Therefore, w:=|u|+
+|v| € Lig(D), and uk <w forall ke N. Then, foreach m € N, we defme the
function w,, : D — [~ e, =), where

w,(x):= sup{ug(x): k =m}.

'(the:that indeed w,,:D — [—, =), by Lemma 2.3). By Lemma 2.3, we see that
w.,, the upper semicontinuous regularization of w,, is subharmonic in D. Since,
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1134 J. RIIHENTAUS, P. M. TAMRAZOV

* * -
clearly, w, 2w, ;, and thus, w, > W, forall m e N, we can see that w*:=

=lim,, .. w:, is subharmonic,
It remains to show that w* is an extension of u. It is clearly sufficient to show that

wH(x)=u(x) foralmostall x e D\E. Letus writt F:={xeD\E:v(x)=—o}
and take x € D\ (E U F) arbitrarily. If v(x)>0, then w,&)= u(x)+ (I/m)v (x).
Since 1 and v are subharmonic in the open set D \ E, we have w:, x)=w,x)=
=u(x) + (1/m)v (x). Thus, w:, @)D u®) as m—ee, If v (x)-s 0, then w, ()=
=u(x) =w*(x) > u(x) as m—> o. Therefore, w*(x) = u(x) for all x e D\(EU F).
Since F is polar, the theorem is proved. _

2.6. Theorem. Let D be an open subset of R " and let E € D be polar.
Suppose that u e A (D\E). Suppose also that there is a function v € A (D\E)
and a nonpositive function w € A (D\E), such that for each component Q of D,
we have v Q\E £ —o and wl Q\E £ —oo and such that, for all € >0 and
all x’eE,

’ u(x)+ev(x) '
e S M

Then w has a subharmonic extension u* to D. .
Proof. It follows from Lemma 2.4 that w has a subharmonic extension w* to
D. Hence, we P (D\E), h:=v+weA(D\E). Foralmostall x € D\E, we have
h(x)+# —eoo; forevery such x, we also have w (x)# —oo. It follows from (7) that
u(x)+ev(x) <e
-w(x) -

il

u(x)+eh(x)<O,
provided that this x is sufficiently close to x’. Consequently, for each x’ € E,

lim sup [ (x) +eh (x)] <0.

Thus, the result immediately follows from Lemma 2.5.
2.7. Remarks. Choosing w =1, we see that Theorem 2.6 contains [11, Théo-

reme 3,]. If, moreover, we choose, for example, v € A (D\E) with v (x) = —o for

each x € E, then we get that [9, Theorem 5. 18] is contained in Theorem 2.6, as well.
On the other hand, by choosing v = 0, we find that [13, Theorem 1 and Proposition 2]
and [14, Theorem 2, p. 73] are contained in Theorem 2.6.

Let ‘ v

1
log—, for n=2;
K x):= IxI

12", for n>3.

2.8. Theorem [3, Theorem 1]. Let D be an open subset of R" and let E C
C D be polar. Suppose that u € A (D\E). Suppose further that for each a € E
there is r,>0 with B (a,r,) € D and a function ve A B (a, r)\E), v % —oo,
with the following property: For each €, 0 <g <1, there is a function O gp:
(0, 74) = [0, =) locally bounded and such that Oqe(r) = o(K,()), as r — 0, and
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ON SUBHARMONIC EXTENSION AND THE EXTENSION IN HARDY-ORLICZ CLASSES 1135

u@)+ev@x)<a, (Ix-al) (8)

forall xeB (a,r)\E.
Then u has the subharmonic extension u* to D.
Proof. Since the problem is local, we may suppose that r, <1. By [1, Theorem 1

a), p. 24], there is a superharmonic function ® in B (a, r,) such that ® > 0, ® % oo,
and w(x)=-< forall xe EN B (a, r,). Then the function ®,:B (a, r,) = (0, ],
where ©;(x):=K,(x—al)+ax), is superharmonic. We show that, for each €, 0 < -
<g<1,and foreach x"e EN B (g, r,), '

lim sup u(x)+ev(x)
x—x' (O] (JC )

<0. ©)

To show this, we first suppose that x“# a. Since @, is locally bounded in (0, r,),
thereis ry >0 and M <o suchthat o, (Ix—al)<M forall x e B (x’, r,). Then
it follows from (8) and the choice of ® that (9) holds. Supposé also that x’ = a.
Since ®; > 0, we may suppose that, for each r > 0, the set A,:= {x € B (g,
M\E:u@)+ev(x)=>0} is nonempty. Namely, otherwise, (9) holds automatically
for x’=a. Therefore, we have

lim SHPM = lim sup utev) oo o u(x)+ev(x)

x—a W (x) B x—a, x€A, W (x) x—a,x€A, K,,(Ix—al) ’
Since by assumption '
lim sup ue eyl < 0;
x—a K, (Ix~al]

we again have (9). Thus, the statement follows from Theorem 2.6.

2.9. Remark. For other types of subharmonic extension results see [14, Theorems
4 and 5] and [16, Corollary, p. 56].

3. On the extension in the Hardy-Orlicz classes. _

3.1. Let @:[—o0, o) — [0, o) be a strongly convex function, i. e., nondecreas-
ing and such that @R is convex, ¢(—e0) = lim,,..¢(?), and @(1)/t oo as t — o,

Let G = &,. We say that a function w: G — (0, =] is suitable for G if the uni-
on of all components " of G with w|T # oo is densein G. Denote hy G) := {ue
€A (G): @ o u hasin G a majorant w, suitable for G, with —w.€ A (G)}.

We say that a function w is @-admissible for a function u e hg, (G), if w 1is de-
fined on G and is a majorant for @ e u, suitable for G, with —w € A (G).

Let D be an open subset of R™ andlet E C D be closed in D and polar. Sing-
man [17, Corollary, p. 300] has shown that each u € hq)(D\E) has an extension u* e
€ h, (D). Fora similar result in the special case where @ (t) = (¢t*)¥, p > 1, see [18,

Theorem 2.5). Here, ¢+ :=max{t, 0}, as usual. Theorem 3.2 below generalizes Sing-
man’s result by allowing E to be nonclosed in D, too.
3.2. Theorem. Let D be an open subset of R" and E C D be polar. Let

@:[=o0, ) = [0, ) be strongly convex. Then every u € hy (D\E) has an exten-
sion u* € hy (D), and every function w, @-admissible for u, has a superhar-
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monic extension wy to D which is ¢-admissible for u*.
Proof. Since u = hq, (D\E), there exists a function w suitable for D\E, with
—weA(D\E) and

9ousw. (10)

Since ¢ =0, it follows from Lemma 2.4 that w has a superharmonic extension

wy to D. Clearly, wy % o on any component of D, so w, is suitable for D.

. Forany fixed €>0, wehave u,:= u—ew<u—g@eu<u in D\E. For t>0,
the quantity t—e¢ (t)=¢ (1 —€@ (1)/t) tends to —= as t — . Hence, u, is bounded
above in D\ E. Therefore, we can apply Lemma 2.5to u and v:=-w and state that
u has a subharmonic extension u* to D.

Since w* is subharmonic, @ o u* is also subharmonic. :
For any fixed point @ « E and sufficiently small r > 0, we have 0,.(S (a,
M\D\E)) =0,0,,(S (a,r) N E)=0. By using these facts and (10), we get

(peu*Na) £ Lpeou*,ar) = Leouar) < Lw,ar) = Lw,ar) < wla).

Together with (10) this again yields ¢ o u* < w,. Since w, is suitable for D, so
u* e hq, (). The theorem is proved.

3.3. In order to give two corollaries, we recail the definitions of the Hardy-Orlicz
class Hy and of the Smirnev class S. For this purpose, let @ : [ —oo, o) — [0, =) be
a strongly convex function and let € be an open subsetof C”, n = 1, identified with
R?". We then write

H (€)= {f: Q — C:f is holomorphic, @ » fog |f | has a superharmonic
majorant in  whichis # oo on each component of Q}

for the Hardy-Orlicz class. If @ (1) =eP', p>0, then we get the familiar Hardy class
HP(Q). The Smirnov class is defined by

S(Q) = {f: Q> C: f is holomorphic, there is a strongly convex function
@: [ —oo,00) —> [0, ) suchthat @ » log*|f| has a superharmonic
majorant which is # o on each component of Q}.
Compare [19] with [20, Theorem 1 and Corollary 3].

3.4. Corollary. Let Q be an open subset of C*,n 2 1. Let EC Q be closed
in & and polar. Let @ : [ — oo, ) — [0, =) be strongly conve-x‘_ Then every f €
€ Hy (Q\E) has an extension f* e Hy (Q) and every Jfunction w, @-admissible
for log|f |, has a superharmonic extension w, to S which is ¢-admissible for
log [f*|.

3.5. Corollary. Let Q and E be as in Corollary 3.4. Then every f e
e § (Q\E) has an extension f* e § (). _

3.6. Remarks. If @(t)=¢F'.p>0, then the result of Corollary 3.4 is due to
Parreaun [21, Théordme 20] for n =1 and to Jérvi [22, Theorem 1] for n> 1. See also
[20, Corollary 2]. [23, Theorem 4], [24, Theorem 8], [13, Theorem 5], and [25, The-

orem 3. 2].
Tumarkin and Havinson [26, Theorem 1] proved the result of Cornllary 3.5 for n=
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ON SUBHARMONIC EXTENSION AND THE EXTENSION IN HARDY-ORLICZ CLASSES 1137

=1 and E being compact. The general case for n=1 was later proved by Yamashita
[20, Corollary 1].
4. On isometric removability.

4.1. Let Q be a domain in the space C”, n2> 1. Suppose that E C Q is closed in
Q and Q\E is adomain. Conway, Dudziak, and Straube [27, Corollary] showed that -

if, moreover, € is bounded (and thus, both HF(Q) and HP(Q2\E) contain noncons-
tant functions), then E is isometrically removable for functions in the Hardy classes
HP, p>0,if and only if E is polar. This means, say, that the following three condi-
tions are equivalent:
(a) E is polar. _
(b) For every p, 0 <p <o, the restriction map HP(Q) — H P(Q\E) is a sur-
jective isometry..
(c) There is a value of p, 0 <p <o, and a nonconstant function fe H? (Q\E)
that has an extention f* e H¥? (Q) with

”f*”Hp(Q) = ”f”Hp(Q\E).
Here, we use the standard norm: If Q; is adomainin C", n>1,if a e Q; and
f e HP (Q,), then
' I fllgeg,y = ur@, - 3an

where 1 is the least harmonic majorant of the subharmonic function If1P. Above, in

(c), the norming point a can be chosen arbitrarily from Q \E. Note that (11) gives a-
real norm only if p = 1. For more details, see [27, pp. 270-271].

In Corollary 4. 4 below, we generalize, in a certain sense, the above Hardy class
HP result by Conway, Dudziak, and Straube to the Hardy-Orlicz class Hy. Our proof
differs from the argument in [27, pp. 269-271].

We put the main part of the argument into the following theorem:

4.2. Theorem. Let Q be a domainin CT*, n=1, a.';d let E C Q be closed in

Q and such that Q\E is a domain. Let @ : [ —oo, ) — [0, o) be strongly convex.
Then the condition

@) (E is polar)
implies the condition
") {Each fe Hy (Q\E) has an extension f* e Hqy (Q) with upx = us in
Q\E}, '
where ur (upx, respectively) is the least superharmonic majorant of ¢ » log |f |in

Q\E (respectively, @ olog|f*| in Q).
Conversely, the condition
(c") (There is fe Hy (Q\E), f% 0, for which us— @ o log|f | has a superhar-
monic extension w20 to S that is not harmonic}
implies-(a). “* '
Proof. Recall first that Uy is harmonic.

To show that (a") = (b"), suppose.that E is polar. By Corollary 3.4, each fe
€ H, (Q\E) has an extension f* e H, () and Uy has a superharmonic extension

(uf)* to Q which is @-admissible for log|f*|. Thus, (uf)*z U in €. On the other
hand, u, < up in Q\E and E is polar which implies that (uf)* < Ups in Q. Thus,
tps= (ue)y in Q and up= () = Uy in Q\E, proving the implication (") = (b").
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To show that (¢) = (a), we take f and w as in (¢). Obviously, w > 0. Let us
write )

RE : = inf{u: u is superharmonic in Q, ¥>0, u>w in E}.

Then (Rf )%, thé lower semicontinuous regularization of Rf , satisfies the inequality
(R,f)t >0 and is superharmonic in £, by Lemma 2.3 (or, of course, directly by [1,
Theorem 1, p. 14]). By [1, Proposition 1 ¢), p.17], (Ry)s and, hence, also u,—
—(Ry)+ are harmonic in Q\E. Since (Rj)s <w, wehave u, — (Ry)s > @ elog|f]
in Q\E. It follows from the definition of us Ithat (R;f)* =0 in Q \E, and, thus,
(RE)* =0 in Q. Since we also have w > 0, it follows from [1, Theorem 1 b), p. 24]

that E is polar (in the case n=1 we may certamly suppose that Q is bounded), con-
cluding the proof.

4.3. Corollary. The statements of Theorem 4.2 remain true if condition (¢) in
its formulation is changed by the following condition:

(c”) {There exists fe H'P (Q\E), f£ 0, with an extension f* e HtP Q) for-
which @ o log|f*| is not harmonic and uf(a) — uf(a) at some point a €
e Q\E}.

Proof. 1t is sufficient to show that (¢”) = (a) We take f and a as in (c”).
Clearly, up < up in Q\E. Since Ueda@) = ug(a), we have up = ug in Q\E. Thus,
Uy has a harmonic extension (uf)* to Q which is equal to iz In €, the function
W =le—@ o log |f*| is superharmonic but not harmonic and w = 0. We can also
see that w| Q\E = us— @ o log | f |. Hence, (¢) = (¢') = (&), concluding the proof.

One can get various corollaries just by providing that the function w from (c”) is
not harmonic. As an example we give:

4.4, Corollary. The statements of Theorem 4.2 remain valid if the condition (c")
in its formulation is changed by the following condition:

) {@|R is twice differentiable with ¢" >0 and there exists a nonconstant
function fe Hy (Q\E) for which ur—@ e log|f| has a superharmon'ic
extension w>0 to Q}.

Proof. 1tis sufficient to show that for each nonconstant g € H ¢ (Q\E) the sub-

harmonic function u =@ » log|g| is not harmonic. Suppose, on the contrary, that
is harmonic. Then by the minimum principle we see that g (z) # 0 for all z € Q\E.
Then h:=log|g| is (pluri)harmonic in Q\ E. By an easy computation, we get

2
Au) = w”(h())Z[[a;f)J +[a;f)] } |
J o

j=1

This is clearly a contradiction, since .(p”(r) >0 forall re R and g is nonconstant.

Note that if we choose @ () = e?’, then Corollary 4.4 gives the cited result of

Conway, Dudziak, and Straube.
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