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Rank formulae for faktorized groups
_PopMysbl paHra Ajs GakropusyeMbiX rpyIn

The following inequalities for the torsion-free rank ry (G) of the group G= AB and for the
p>-rank r,, (G) of the soluble-by-finite group G = AB are stated:

7o () <70 (A) + 10 (B) —ro (4 N B),
rp (O <rp (W) +r, (B)—r, (AN B).

Ilnst cBoGoHOTO paHra ry (G) rpynmst G = AB u gns P™-paura Ty (G) moutm paspelnHMOR
rpynns G = AB ycraHOBIEHH CefylOniHe HepaBeHCTBA:

7o (G) <o (A) +ro (B)—ro (A N B,
75 @ <rp (D) + 1, (B)—ry (AN B).

Ilns Binpuoro pawra ry (G) rpynu G = AB i gns p™-panra p (G) mafixe posB'saHOI rpynH G =
= AB BcTaHOBJIeHi Taki HepiBHOCTi:

70 (6) <70 (A) + 1o (B) — 70 (A N B),
rp Q) <y (A)+1, (B)—ry (A0 B).

i. Introduction. A groupG has finite torsion-free rank if it has a se-
ries of finite length whose factors are either periodic or infinite cyclic. The
number r, (G) of infinite cyclic factors in such a series is an invariant of G, called
the torsion-free rank of G. Thus the function 7, is constant on isomorphism
classes, satisfies ry (H) << 1, (G) for every subgroup H of the group G and is
additive on extensions, i. e. ry (G) = ry (N) + r, (G/N) for each normal sub-
group N of G.

Let the group G = AB with finite torsion-free rank be the product of two
subgroups A and B. If one of the factors A and B is normal in G, it is clear

that
10 (G) = ry (A) +ry(B)— 1, (A N B).

Therefore it is natural to investigate the relations between the numbers r, (G),
7o (A) and r, (B), when A and B are arbitrary subgroups of G. Results of this
type can for instance be found in [1—5]. Our first theorem on this subject is the
following.

. Theorem A. Let the group G = AB be the product of two subgroups
A and B. If G has finite torsion-free rank, then

TO(G)QI’O(A)-{—?"U(B)—-TD(A ﬂ B)

It seems to be unknown whether the inequality in Theorem A is actually
an equality. This was shown to be true by Wilson [5] for a soluble-by-finite
group with finite abelian section rank. Here a group is said to have finite abe-
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lian section rank if it has no infinite abelian sections of prime exponent.

Of course, the same type of problems can be considered for other rank
functions on a factorized group. If p is a prime, a group G has finite p=-rank
if it has a series of finite length whose factors either are of type p= or have no
-sections’ off type p=. The number r, (G) of factors of type p= in stich a series is
an invariant of G, called the p=-rank of G. Clearly a soluble-by-finite group
with finite abelian section rank has finite p®-rank for every prime p.

Theorem B. Let the soluble-by-finite group G = AB be the product
of two subgroups A and B. If G has finite p°—rank, then

rp (@) <<rp(A) +rp(B)—rp(4 N B).

Again, it is unknown whether the inequality in Theorem B is actually
an equality. It was shown by Wilson [5] that this is the case for a soluble-
by-finite minimax group. Our next result extends Wilson’s theorem to a wider
class of groups. Reccal thata soluble-by-finite group Gis an S;-group if it has
finite abelian section rank and the set = (G) of prime divisors of orders of ele-
‘ments of G is finite. -
. Theorem C. Lef the soluble-by-finite group G = AB with finite abe-
lian section rank be the product of two subgroups A and B. If at least one of the
sets . (A) and = (B) is finite, then

rp (@) =r1p(A) +15(B)—rp(A N B)

for every prime p. In particular, the p=-rank equality holds if G = AB is an
Sy-group.

Most of our notation is standard and can be found in [6].

2. Rank inequalities. Amap p assigning to each group G either
a non-negative integer p (G) or o is called an additive function if it is constant
on isomorphism classes, satisfies p (H) << p (G) for every subgroup H of the
group G and p (G) = p (N) + wn (G/N) whenever N is a normal subgroup of
G. The additive function u is of infinite type if p (E) = O for every finite
group E, but there exists a countable abelian group U such that p (U) == 0.
If p is an additive function of infinite type, it is clear that p (G) = oo for
some countable abelian group G. Examples of additive functions of infinite
type on groups are given by the rank functions r, and rp for every prime p.
Thus Theorems A and B will be obtained as special cases of a result concer-
ning additive functions of infinite type on factorized groups. '

Let p be an additive function. We shall say that the p-inequality holds
for the factorized group G = AB if

pO<pA) +p@B—p@AnNHB).-
Similarly, the factorized group G = AB satisfies the p-equality if

R(G) =u(d) +pnB)—uNB).

Our first two lemmas were already proved in [1] for the torsion-free rank.

Lemma 1. Let group G = AB be the product of two subgroups A and B.
If w is an additive function and A contains a normal subgroup N of G such that
the factor-group GIN = (A/N) (BN/N) satisfies the p-equalily (respectively:
the p-inequality), then also G = AB satisfies the w-equality (respectively: the
p-inequality).

Proof. Suppose that the p-equality holds for the factor-group G/N =
= (A/N) (BN/N). Since (A § BN)/N ~ (ANB)/(N | B), it follows that

p(G) = p(N) + p (G/N) = p(N) + p (AIN) + p (BN/N) — p (A 0 BN)/IN) =
=p@)+pB)—pBNN)—pAN B +pWNNB)=
— p(A) +p(B) —p(4 N B).

The proof for the p-inequality is similar.

The following lemma will be used to reduce the proofs of our theorems to
triply factorized groups. Recall that if N is a normal subgroup of a factorized
group G = AB, the factorizer X (N) of N in G is the subgroup AN [ BN. It .
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s well-known that-X (N) has the triple factorization
X (N)= N (ANBN)= N (B N AN) = (A (| BN)B [ AN).

Lemma 2. Let the group G = AB be the product of two subgroups A and
B. If p is an additive function and N is a normal subgroup of G such that the
n-equalities (respectively: the p-inequalities) hold for the factorizer X (N) = (A
N\BN) (B | AN) and for the factor-group G/IN = (AN/N) (BN/N), then also
G = AB satisfies the p-equality (respectively: the w-inequality).

> Proof. Suppose that the p-equalities hold for the factorizer X = X (N)
and for the factor-group G/N. Since X/N ~ (A | BN)/(A | N) ~ (B \ AN)/
] (B N N), it follows that ’
w(G) =p (G/N) + p (N)=p (AN/N) + p (BN/N)— p (X/N) + p (X) — p (X/N)=
=p(A)—pANN)+pB)—p(BNN)—2u(X/N)+p(d i BN) +
+u(BNAN)—p(A (0 B)=p(A) +pB—us N B).

" The proof for the p-inequality is similar.
" The next lemma on triply factorized groups was proved by Wilson in [5].
We give here a shorter proof.

Lemma 3. Let the soluble-by-finite group G = AB = AK = BX be
. the product of two subgroups A and B and a torsion-free abelian normal subgroup
'Ks=1such that A\ K=B N K=1and Cs (K) = K. If @ has finite tor-
. sion-free rank; then it cannot act rationally irreducibly on K.

Proof. Since A is a linear group over the field of rational numbers,
its periodic subgroups are finite (see [6, p. 85], Pt. 1), so that the set of primes
' n (G) is finite and G has finite Priifer rank (see [6], P t. 2, Lemma 9.34). Then
' G is an S;-group and has no non-trivial periodic normal subgroups since
Cs (K) = K. Therefore the Fitting subgroup F of G is nilpotent and G/F is a
- finitely generated abelian-by-finite group (see [6, p. 169], Pt. 2]).

¥ jAssume that G acts rationally irreducibly on K. If [K, F] 5= 1, then the
© Factor group K/[K, F] is periodic. Since F is nilpotent, there exists a positive
" integer i such that [K, F, ..., Fl=1, so that K is periodic. This contradiction

[

shows that [K, F] = 1, so that F < Cg (K)=K and K = F. Therefore A and
B are finitely generated abelian-by-finite groups. In particular G is finitely
- generated, and hence nilpotent-by-finite by a theorem of Zaicev (see [7], Theo-
- rem 2). Thus G/K if finite, so that 4 and B are finite. It follows that G = AB
is finite, and this contradiction proves the lemma.

It is well-known that a group with finite torsion-free rank has a normal
. series of finite length whose factors are either periodic or torsion-free abelian
groups of finite rank. Therefore Theorem A is special case of the following
result.

Theorem 1. Let the group G= AB be the product of two subgroups A
. and B, and let p be an additive function of infinite type such that p (G) is finite.
. If G has a normal series of finite length whose factors are eithers torsion-free abelian
. groups or abelian groups with the minimal condition or groups on which p is zero,
" then ithe p-inequality holds for G = AB.
Prooi. Since the additive function p is of infinite type and p (G) is
- finite, G has no free abelian sections of infinite rank, and in particular every
torsion-iree abelian section of G has finite rank. If 2 is a normal series of finite
length of G whose factors are either torsion-free abelian groups or abelian groups
~ with the minimal condition or groups on which p is zero, w, (£) denotes the
* sum of the ranks of the torsion-free abelian factors of 3 on which p is not zero.
© We shall denote by p, (G) the minimum of all p, (2)’s. The length of a shor-
_ test normal series 2 of G for which p, (E) = p, (G) will be denoted by p, (G).
It is clear that p, (H) << p, (G) and p, (2) << py (G) for every subgroup H of
- G'Moreover, if N is a normal subgroup and U/V is a torsion-free ‘abelian nor-
mal section of G, the torsion subgroup of UN/VN is the direct product of a
- G-invariant subgroup satisfying the minimal condition and a G-invariant
. subgroup on which w is zero. Hence p, (G/N) << p, (@), and if p, (G/N) =
= P (G), then p, (G/N) < ps (G). \

Assume that Theorem 1 is false, and among all the counterexamples for
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which ‘p, (G) is minimal choose one G = AB such that also p, (G) is minimal.
Let = be a normal series of G of length p, (G) for which p, (2) = pp (G). If K
is the smallest non-trivial term of X, the p-inequality holds for the factor
group G/K = (AK/K) (BK/K). Hence the factorizer X (K) of K is also a coun-
terexample by Lemma 2, and so we may suppose that G has a triple factoriza-

tion
G= AB = AK = BK,

where K is a normal subgroup of G. i
; Assume first that p (K) = 0. Then

p(G) = p(K) + p (G/K) = p (G/K) = p(AKIK) = p. (A/A (P K)) = p(4),
-and so obviously
O =pA<p@)+pnB—pn-B).
Suppose now that K is a torsion-free abelian group such that p (K) s« 0.

The subgroup A | K is normal in G = AK; and it follows from Lemma }
that the p-inequality does not hold for the factor-group

: G/(A N K) = (A/(A N K))(B(A N KA N K),
so that A | K= 1. The centralizer -C4 (K) is normal in G, and also the

group
GICa (K) = (AIC4 (K)) (BCa (K)/Ca (K))

is a counterexample by Lemma 1. Replacing G by G/C4 (K), we may suppose-
that C4 (K) = 1. Therefore A is isomorphic with a group of automorphisms
of K, and so is linear over the field of rational numbers. Since G has no free:
abelian sections of infinite rank, we obtain that A is soluble-by-finite by a
theorem of Tits (see [8, p. 145]). Then also G is soluble-by-finite. As the p-ine-
quality does not hold for the group ]
' GI(B N K) = (A(B N K)(B N K))(BI(B N K)), o
the intersection B 1 K must be trivial, and Lemma 3 shows that G does not act .
rationally irreducibly on K. Let L be a proper non-trivial G-invariant subgroup-
of K such that K/L is torsion-free. Clearly p, (G/L) << p, (G), and thus the
p-ineaquality holds for G/L = (AL/L)(BL/L). Consider the factorizer X (L)
of L in G= AB. Since X (L) 1 K=L (A N BL) N K = L, we have that
X (L)/L is isomorphic with a subgroup of G/K, and hence p, (X (L)) << p, (G).
Therefore the p-inequality holds for the factorized group X (L) = (4 N BL) -
- (B N AL), and Lemma 2 proves that also G = AB satisfies the p-inequali-
“ty. This contradiction shows that K cannot be torsion-free.

Suppose finally that K is an abelian group satisfying the minimal con--
dition. Then there exists a finite G-invariant subgroup E of K such tha
K/Eisradicable. Since u, (E)=0 it is clear that the p-inequality does not hold fort
the factor-group G/E=(AE/E) (BEI/E), and without loss of . generality it can-
be assumed that K is radicab'e. Let M be an infinite G-invariant <ubgroup of
K with minimal total rank. Then M is radicable, and by induction on the to-
tal rank of K the p-inequality holds for the group G'M = (AM/M) (BM/M). It
follows from Lemma 2 that the factorizer X (M) of M in G = AB is also a
counterexample, so that M=K. Therefore each proper G-invariant subgroup of
-K is finite, and in particular K is a p-group for some prime p. The factor-group

GlAg = (AlAg) (BAg/Ag)

is"also a counterexample by Lemma 1, and hence we may suppose that there:
are no nontrivial normal subgroups of G contianed in 4. It follows that 4
N K =Cs (K)=1, and so A is isomorphic with a group of automorphisms.
of K. Since K has no infinite proper A-invariant subgroups, A is an irreducible-
linear group (see (9], Lemma 5). Moreover A has no free abelian sections of
infinite rank, so that it is soluble-by-finite (see [8, p. 145]), and hence even
abelian-by-finite (see [6, p. 75], Pt. 1). This is a contradiction by Proposition.
1 of [5]. The theorem is proved.

Theorem B also is an easy consequence of Theorem 1.

Proof of Theorem B. Let W be an abelian section of G, and let
P be the Sylow p-subgroup of W. Then P = D X R, where D is a radicable:

-
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p-group satisfying the minimal condition and R is reduced. A basic sub-
group S of R has no radicable quotients of infinite rank, since G has
finite p=-rank. Hence S has finite exponent (see [10, p. 91], Vol. I), so
that R=S, and in particular R has no sections of type p=. This agrument
shows that the derived series of the soluble radical of G can be refined
to a normal series of finite length of G whose factors are either torsion-.
free abelian groups or abelian groups with the minimal condition or
groups without section of type p=. Application of Theorem 1 completes
the proof of Theorem B.

3. Rank equalities. In order to prove Theorem C we need the
following two technical lemmas.

Lemma 4. Let G be a group with finite p>-rank for a certain prime p,
and let H be a subgroup of G such that for every element x of G there exists a posi-
tive integer m = m (x) prime to p for which x™¢€ H. Then rp (H) = ryp (G).

Proof. Let K/L be a normal section of type p= of G, and assume that
(H N K)(H N L) has finite order p*. If x is an element of K, there exists a
positive integer m prime to p such that x™ € H. Then xm" belongsto H | L,

and hence x*" belongs to L. This contradiction shows that (H | K)/(H N L)
r=ust be infinite, and so of type p=. It follows that r, (H) = rp (G).
Lemma 5. LetG be a locally nilpotent group whose commutator subgroup
G’ is periodic and has no elements of order p, for a certain prime p. If a and b are
-elements of G such that a = bx, where x is an element whose order is finite and
prime to p, then there exists a positive integer m prime fo p such that a™® = b™.
Proof. Itisclearlyenough to prove the lemma for the subgroup (a, b),
so that we may suppose that G is a finitely generated nilpotent group. In par-
ticular G’ is a finite group whose order 7 is prime to p. Obviously we may also
assume that G is not abelian. Then G/(G'(Z (G)) has nilpotency class less
than G, and by induction there exists a positive integer % prime to p such that

& = b*u, where « belongs to G’ (] Z(G). Therefore
akﬂ. — (bku}ﬂ. = bknun. — bkn,

-and the lemma is proved, since kn is prime to p.

It is well-known that a soluble-by-finite S;-group is hypercentral-by-
polycyclic-by-finite (see for instance [11], Corollary 2.4). Thus Theorem C
-will follow from our next result. -

Theorem 2. Let the soluble-by-finite group G = AB with finite abe-
dian section rank be the product of two subgroups A and B. If at least one of the
-subgroups A and B is hypercentral-by-polycyclic-by-finite, then

rp(@) =rp(4) +rp(B)—rp(4 N B)

for every prime p. —
Proof. Assume that the theorem is false, and among the counterexam-
ples with minimal torsion-free rank consider those for which the p*-rank is
minimal. Choose finally one of these G = AB having a normal series & of mini-
mal length whose factors are either torsion-free abelian groups (of finite rank)
-or radicable abelian p-groups (with the minimal condition) or periodic abelian
-groups without elements of order p or finite groups. If K is the smallest non-
trivial term of 3, the p=-rank equality holds for the factor-group G/K =
= (AK/K) (BK/K), and Lemma 2 shows that the factorizer X (K) = (4 N
N BK) B 1 AK) of K is also a counterexample. Therefore we may suppose
‘that G has a triple factorization

G=AB = AK = BK,
‘where K is normal in G. If K is either a torsion-free abelian group or a radicable
-abelian p-group, then a contradiction can be obtained as in the proof of Theo-
«em 1. Assume that K is finite. Then 4 and B have finite indices is G, so that

also A () B has finite index in G. It follows that r, (G) = rp (4) = ! (B)= .
.rp(A (| B), and hence clearly P » P \P)

7p(G) =rp(A) + 15 (B)—rp (4 N B).
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This contradiction proves that K must be a periodic abelian group without
_elements of order p.
Suppose that A is hypercentral-by-polycyclic-by-finite. As the factor-
groap )
G/Bg = (ABg/Bg) (B/Bg) '

is also a counterexample by Lemma 1, we may assume that B contains no
non-trivi al normal subgroups of G. In particular B [} K = 1, and hence B is
hypercentral-by-polycyclic-by-finite. Application of Theorem B of [11] yields
that also the group G is hypercentral-by-polycyclic-by-finite. Let N be a hy-
_percentral normal subgroup of G such that the factor-group G/N is polycyclic-
by-finite. As KN is also hypercentral, N can be chosen containing K. Then
N=K@ANN =K(@B( N),sothatr, (N)=rp, (A N N)=r, (B N N),
since K has no elements of order p. Let a be an element of A N N, and write
‘a = bx, where b€ B | N and x € K. Clearly (a, b) is a nilpotent group whosg*
.commutator subgroup (a, b)’ is contained in K, and so has finite order prime
to p. By Lemma 5 there exists a positive integer m prime to p such that
a™ = b™, so that a" belongs to A 1 B () N. Thus it follows from Lemma
4 that rp, (AN N)=rp,(ANBNN), and hence rp (N)<Crp(4 | B). Since
‘the factor-group G/N is polycyclic-by-finite, we have also that r, (G) = rp (N).
Therefore
= rp(@)=rp(A)=rp,(B)=1p(A N B),

and this contradiction proves the theorem.

Is should be noted that the hypotheses of Theorem C can be weakened,
assuming that the soluble-by-finite group G has finite p~-rank and at least
one of the factors A and B is a soluble Sy-group. In fact, in this situation, one
can quickly reduce to the case of a triply factorized group i

G=AB= AK = BK,

where K is an abelian normal subgroup of Gsuch that A N K =B K =1,
and both the subgroups A and B are hypercentral-by-polycyclic and have
finite abelian section rank. Thus it follows from a recent result of Sysak [12]
and Wilson [13] that also the soluble group G has finite abelian section rank,
and hence Theorem 2 can be applied.

Our last result gives another condition under which the p=-rank equality
holds. .

Theorem 3. Let the soluble-by-finite group G = AB with finite abe-
lian section rank be the product of two subgroups A and B. If at least one of the
subgroups A and B is periodic by-polycyclic-by-finite, then

rp(@) =rp(4) +71p(B)—7p(4A N B)

for every prime p.
Prooi. Assume that the theorem is false. As in the proof of Theorem 2
-it can be assumed that G has a triple factorization

where K is a periodic abelian normal subgroup of G having no elements of

‘order p. As one of the factors 4 and B is periodic-by-polyeyclic-by-finite, it
follows that also G is periodic-by-polycyclic-by-finite. The factorized group

G/Ag = (AlAg) (BAelAc)

is a counterexample, so that we may suppose that A contains no non-trivial
normal subgroups of G, and in particular C4 (K) = 1. T'et 7" be a periodic
normal subgroup of G such that G/T is polycyclic-by-finite, and put 4, =
= A  T. For each prime number g, the g-component K, of K is an abelian
group satisfying the minimal condition, so that ifs periodic group of automor-
phisms A4,/Ca, (Ky) is finite (see [6, p. 85), Pt. 1). On the other hand

[] G4, (K = Ca, () =1,
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and hence A, is residually finite. Thus the Sylow subgroups of A4, are finite,
since G has finite abelian section rank, and so 4, has no sections which are infi-
nite p-groups. Moreover A/4, is polycyclic-by-finite and G = AK, where K is
a periodic normal subgroup without elements of order p, so that also G has

1o

infinite sections which are p-groups. In particular rp (G) = 0, and this

contradiction proves the theorem.
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