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Towards the rank-one singular perturbations
theory of seif-adjoint operators

K cuHrynsipHoii TEOpHH BO3MYLIEHHH paHra oOJHH
CaMOCONPSAIKEHHBIX ONepPaTopos :

The perturbation theory is developed in the case when an arbitrary positive self-adjoint ope-
rator is perturbed by the projector on a generalized vector. Similar to the well-known prob-
lem — A 4+ A8 we obtain in general situation explicit representations for singularly pertu-
rbed operators their resolvents find the point spectrum and an explicit form of the correspon-
ding eigenvectors. Our approach ‘differs from usual ones and based on the self-adjoint exten-
sions theory of semibounded operators. : '

PasBuTa TeopHs BOIMYIIEHHH B ciIydae, KOTJd IPOH3BOJBHBII MOJOXKHTETBHEA CaMOCONPSIMKEH-
HELH on::gamp BOSMYINEH MPOEKTOPOM Ha o6obmeHHbIi BeKTOp. AHAJOIHYHO H3BeCTHOH 3ajiade
—A~+ A0 monyueHO ABHOe IpeJCTABJeHHe [JIS CHHTYJISADHO BOSMYIIEHHOTO ONEpaTopa H ero.
pesoNbBeHTH B OOmEH CHTyalHH, Haiifien TOYeUHEI CHNEKTP H SBHBLI BHJ COOTBETCTBYIONETO '
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cofCcTBEHHOTO BeKTopa. Hanl moaXox OTIHYHTENEH TeM, YTO OCHOBAaH HA TEOPHH CaMOCOINDSIKEH-
HEIX pacIIHpeHHN NOJyOorpaHHYEHHLIX OIEPATOOB. .

PosprryTo Teopilo s6ypens y BHNAJKy, KOJH JOBIJBHHH JOHATHINH CaMOCHpPSIKEHHH OIepartop e
‘86ypeHEM IPOEKTOPOM Ha ysarambHeHnrH Bexrtop. IlomiGHo mo Bimomoi sapmaui — A -~ A8 onepx«a-
HO fABHE IIpelcTaBienHs 30ypeHOTo OIepaTopa Ta HOTO Pe30JbBEHTH Y saralbHill cHTvanii, suafi-
NIeHO TOUKOBHE CIEKTp Ta SBHHE BHIMIAJ BifNOBiHOro BiacHoro sexropa. Ham mixxix Bixpis-
HAETbCSA 3 NOMIXK {HIIMX THM INO TPYHTYEThCA Ha Teopil CaMOCHpAMKEHHX PO3INHpeHb HamiB-
0OMEIKEHHX ONepaTopis.

Introduction. The perturbation T of the self-adjoint operator A in
the Hilbert space % is called singular if the set Ker T belongs to the domain
D (A) and is dense in J¢. A large number of pertrubations of the Laplace opera-
tor A is given in L? (R?) by the potentials with support with Lebesgue measure
zero. The tipical rank-one singular perturbations of — A are given by the Di-
rac §-function. A lot of physically interesting models with the singular pertu-
rbations have been considered in the fundamental monograph [11].

In this work we attempt to develope a general approach to the singular
perturbation problem. Our results are based on the abstract theory of self-
adjoint extensions of semibounded symmetric operators [2] and they are analo-
gous to the ones from [1]. We show that for arbitrary rank-one singular pertur-
bations all usual problems may be solved in an explicit form. Namely we give
the unique construction for the singularly perturbed operator, describe its
domain, obtain the explicit formula for resolvent and finally find the point
spectrum and corresponding eigenvector.

Therankonesingularperturbations. Letd = A4*>
= m > 0 be an unbounded self-adjoint operator in the Hilbert space %. In-
troduce the rigged Hilbert space

H_22He=%> Hy
where J, coincides with the domain 2(A4) in the norm| g =49l

QED(A), and J_ is the completion of % in the norm |[f||_: =] 47|,
f€4¢. The duality between % -and 3«’{3+ we denote as (@, ¢) or (g, @),
PEH,, 0EH_.

" Definition 1. A symmetric lower semibounded closed quadratic form vin
H,. is called a singular perturbation for A if the set

@,: = Kery
is dense in #.The singular perturbation vy has rank equal n(n=1.2, ..., oo)
if

dim N, =n
where

Ny =t in B #y=AD,.

The set of all such perturbations we denote by T s (A).
Denote the mapping A: %0, — % by o4, and Iy o= IE].ﬁ.: A", Denote
by I_ the continuous mapping from ¥ to #_ which equals A on D (4),

f[md To—=I"). At last setl_ 4 :=1I_olo4, I4,—:=I"". Note (see [3])
hat :
(03, ':P) =5 (I+.— , q))..}. e (0), 1’—,-]-‘1’)_: (0] Egg_! @ Egg_l_)

(f: ‘p>=(f! q;), fegg? @E%_,_ (1)

With each singular perturbation y € 7% (4) in % is associated the self-adjoint
operator V,, : :

v(@ )=y Py 0 PEDVY)=Q) S H,-
Using V, we can introduce the operator _
Tn? = 1._,+V? : 3(8_'_‘—)— 5[8__.'
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It is obvious that
@,: = Kery = Ker V;, = Ker T,.

We can write
L%+ = (DU @ NO-‘}“ ND,-]— L= !+v0"r0'

So
rank y = rank V,, = rank Ty : = dim N/ y=dim N, 4.

Now we can give another equivalent definition of singular perturbation.
Definition 1. A linear lower bounded operator T : Jf,— #— which
is closed and Hermitian (<T@, P =>=<<¢,TV>) is called a singular perturba-
tion for A if the set
@,:=KerT

is dense in %¢. rank T : = dim R (T) = dim No,—, where No _:=1_,N,. If

rank T = n we write T € T (A).
Between the singular perturbations for A given by quadratic forms y and
the one given by linear operators T there exists a one-to-one correspondence

which is fixed by the formula
(@ ) = -4V 0 =(Te, ), & $ED(T) =Q)

The following assertion is obvious.
Proposition 1. Each rank-one singular perturbation for A is uni-

quely determined by a vector ® € HN\TL || @ ||-= 1 and by a number A€ R,
A==0:
PP V=7, @ 1) =Mp o) (@ P), ¢, PEQ(V),

Ty9=Tho? = A(p, @) 0, € D(T)=Q(V).
Let now Y10 or Ti.o be given. The singular perturbed operator formally is de-
fined as

@)

Ayo=A4+ The.

The first problem of the singular perturbation theory is to give the
precise definition, of A, , at the self-adjoint operator in . We shall solve
this Igroblem in the particular case which is described below.

enote H4o: = Y+, and ¥4 is the completion of D (A) in the norm
Illqau_H = ||Ae|; H_o:=H_ and #_, is the completion of % in the
norm || fll_, : =1l A7'2f||. So we have the scale of Hilbert spaces
H.>DH_, DHe=X :jf_;_; :}8_1.2 .
The canonical unitary isomorphism between %¢; and %, (j. £ =0, =1, =£2)
we denote by /;,.. We write y,  (or TL_,,,)EQ’:, if ?klm(T;_,w}Eﬁl and the
set @, is dense in J, .

Proposition 2. The rank-one singular perturbation v, . respectively

Th.o belongs to class s, (A) iff

oE ﬁ_z\\%_l .

Proof. See Theorem 4.

The parametrization of the singularly pertur-
bed operators. To the notion of the singular perturbation one can come
from another side. If for a pair of self-adjoint operators A and Ain 2 there
exists a dense s?t D= D(A) N D (A) on which these operators coincide then
the difference A — A makes only sense as an unclosable quadratic form in .

In such case it is naturally to sonsider both A and A as the singularly pertur-
bed operators with respect to one another. The corresponding perturbation
value is equal to zero on the dense set}® in 7. -

Definition 2. The self-adjoint operator A in % is called singularly
perturbed with respect to A if the set
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Di={feD(A) N DA) | Af =) )
it dense in 3. The set of all such operators we denote as A, (A). '

Let A=A4s(A) be fixed. Introduce for the pair 4, A their common
symmetric operator

A:=419=1|9.

Obviou,slyu A is a closed operator. We write AME A? (4) if the deficiency in-
dexes of A
nt(A)=n, n=12, .., 0

If in addition A is boundary invertible and the Friedrichs extension of 4 co-
incides with A4, i. e.

RA)=%=R(4), A)r=4.=A

then we write AEAS‘( ).
The following theorem contams the main result of the work.

Theorem l. Between sets ??‘s (A) and Ai (A) there exists abt;ecfwe cor-
respondence:
T5 (4)3 Tho & Aro= =2 €As, (A).
The correspondence can be explicitely described as follows. For each smgu!ar

perturbation Th,e €T (4) (0 EH-2NH—1, loll2=1, MER, A5<0 the
singularly pﬁ'rfurbed operator Aj,e is defined as

Aﬁr.fﬂ g = Af' g EQ(A?;,@), (4)

L DAe)=Dro:={g€RIg=T+1" (f, o)n, fE€D(A)} ()
where 1= ly,_s0. Frorm (4), (5) it follows that Aj,e € As, (A). Conversely for
each A € As, (A) the corresponding singular perturbation T, is defined by
the vector ® € #_,\H_, and by the number A E€R* which are given as follows
0=I_am, [nll=1, n€N,: = Mf, M, = 4D, ®)

v (@ =AY, ) o
(6) ‘implies that Th,e €7 s, (A). Moreover the operator A,e which is constru-
cted starting from (4), (5) coincides with A.

Proof. Let Tho €T, 0€%_,\J, AER, A=£0be given. First we
show that the set D), is dense in 3. Actually even its subset

D:={feD(A)|Af L) (3)
is dense in- . Note that Af_L'n is equivalent to (f, ®) =0 as n = ly,s0.

Let now {€ % be a vector such that (f, ) =0 for all feD. Then (4f,

A7) =0 also. Tt means that A~ "p=cn, c€C. If c5£0 then the vector n
must belong to the domain @ (A) and An€ ¥. But it is impossible because
on 9 (A) the operators A and [_g,0 coincide and therefore ® must be in 7.
Hence p=0. So @ and also D, are dense in %.

Now ‘we verify that the operator A, which is defined on D0 by (4)
is symmetric:

(Ar,081 €2) = (AFy, &) = (Afy, fa)"f‘?\'_l (-Afs? n) (Af;, m) =
= (fu, Afz)“"l#l ((Afp m)m, Af) = (g1, Afy) =
= (g1 An082): &1 &2€Dr0
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since A>m>0 the range R (4) = %. (4) implies that R (4x,e) = % also.
It means that A, is a self-adjoint operator since it is Hermitian and its
range equals the whole space. Further from (5) it is obvious that on & the
operators A and A,,, coincide. It means that A, €.4,(4). Introduce now

the operator Ay = A|D=A4y,0|D. From (3) it follows that dim N, = 1

where N, = M, Mo:zﬁﬁ). So Ajne E,/Zi(A}. By the construction AI,‘L
exists and is bounded. Finally the coincidence of the Friedrichs extension

(ﬁn)p with A follows from condition o € #_,\J_, (see Theorem 4). Hence
we have proved that Ao €A4s, (A4). Conversely for given A€ A; (4) we

introduce the Hermitian operator 4, = a |D where D is defined by (3).

Further we consider the subspace N, = Ker (4,)*=(4 D)t. As an starting
assumptionn + (A;) =1, i. e. dim N,=1. Let €N, be a unit vector.
Then we set @ equal I-p0m. We show that mEJff_g\ . Indeed if we
assume that o€ % then :

(qJ! Cﬁ):((p, 0)):0, EPE"D

since (¢, ®) = (@, I5m) = (49, n) and A _L n for all cpEfD. But 9 is
dense in % and the equality (@, ®)=0 implies that ® = 0. That is a
contradiction. Therefore o ¢ . Moreover o @ %, Indeed if o€, then

D is not dense in ¥ (see Theorem 4). In such case An 5= A. That also is

a confradiction to the starting conditions. Now by the vector @ =1/7_5,47
and by the number AR, A5=0 we can define the operator Aso accordmg

to-(4) -and (b). It is obvious that all three operators 4, g, A and A coincide
on &. We have to show that choosing the number A acording to (7) we

ensure the equality 4,,o = A. For this aim consider in J a pair of vectors
Uy = A7y and u A"ln. It turns out that Uy — Uy €N,. In fact we have

(0 — thyy Mo) = (4 n—A“'n,_ My)=(n, (A~ — A7) My)

where Mo- AD = AD. Hence Uy — U, = where ¢c=2A" ' with A7 from
(7). Using [|m]l=1 we can wnte :

0, =ty + 4" (Auy, m)n

and now it is obious that n = AU = Au = A, 0¥y So the equality A Aso

is established on the two subsets & and’ N1 = A“Nn By linearity it

extends on the whole domain 2 (A) D (Ap,0).
Finally we can define the singular. perturbation T, corresponding to

A accordingi_to‘(2). Clearly the set @) = KerT),o =2 is dense in H#,,-

Therefore T3,0€ 3, (A). The theorem is proved.
The exp11c1t form for the resolvent of A;Lm From
(5) it follows that for each g € D (4;,0) the following representatlon is valid

g= f+2""PyAf, - fFED(A) (5%

where Py, is the projector-in % on the vector n € Ay.-Denote h: = 4,6 g =
= Af. Then irom (5’) we have

g=Anph= A“Ih + AP,

Ak=aieaipy ®)
Now we show that an analogous formula is true for the resolvent of Ay e
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Denote : .
—A—27", RZ:i=(Ao—2

where 2€p:=p (4) 1 p (Ar,0) (p is the common set of the regular points
for A and A,,,). Let 4, be the common symmetric operator for 4 and 4, e,
D (Ay) : = D. Then for the deficiency subspace

N,: = (A —2) D)*
there is the reprgsentation
. N = {cU-20—29 "0kee- ©
In fact using (1) we have
((A4,—2D,N,)=0= (A D, N,)—2(D, N,) ={D, I_3,0N;) — 2(D, N,).

Hence
I_3,0N, — 2N, ={co)cec
and (9) is proved.
We know [2] thet the difference

R —R,:=B,:N,—N,.
Since it follows from (9) that dim N =1, E€p the operator B, may be

written as B
B =" (9, n) nz, (10)

where 1, (n;)is a unit vector in N, (N5). Note that n=n,,
Theorem 2. If (8) is ﬂaIzd for the operator A, defined by (4), (5)
then for its resolvent the representation Irue:
Ry =R, + V" |n,><m (11
where number : -
A =(M—2a, )7, ag;:=, ) (12)

and a dyadic operator | 133 =< | acts as follows : ¢ — ({p 1)

P roof. The validity of formula (11) follows from he general theory of
self-adjoint extentions of symmetric operators. We have to prove (12). For
this aim we use the Hilbert resolvent identity:

Ry—Ry= (H‘—'\’)—RuRv-

R —R®=2RfR® (R°=Roo=45y)

and substitute instead R® and R7 by their representations given by (8) and
(11). After some simplification we have

2 'B,(A—2) R —2A'Py) = A AR, Py,

Further we act on the vector 1 an take the product with vector n,. Carrying out
the calculation we obtain s

At — AT =47

We write

and finally (12).
Example. Let 3 = L?([1, o0); dx) and A be the multiplicatoron a va-

riable x. Set © = 1€ %o\ %. Then n=A4A""0 = —}c- . The norm Hol, =

=|nl= 5:" xdx = 1. Note that if f€24) then Srf(x)dr{w because
it is equal to Af, m). It is convenient to write Aj,, = A, for arbitrary A€
€R™'. The domain of A, has the form

[ee#le=F+27" ([TF@de) s, feD@A}.
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Moreover '
A;g - Aﬁ

The eigenvector of the operator A, is explicitly given by
Yo () =2 (x— )", =2"1a

and it corresponds to the eigenvalue o = 1— exp(—A). Infact let 1, (x) =
= ¢y (X) + A" (9., n)-n under the condition (@, 1)=1. Then for ¢, we
_have: x~. And for 1P, (¥) we obtain

P, (%) = A —) T S A S = e (x-— a _1+1)}c'_1=2.°1(x—a.)_l-

Let us to find now a number «. From the condition (9, 1) =1 after cal-
culation ‘we have
1 =oar™? 5;" (x— o) ldx = — 27" In (1 — ).
So .
exp(—M)=1—oaando=1—exp(—A).
Therefore for arbitrary &€ R? the operator 4, has the eigenvector P, with
.eigenvalue o= 1—exp(—A)<<l.
The additional point spectrum of Aj,, Consider the
question on additional point spectrum of the operator A4, ,, With regard to
(4), _(5) the eigenvalue problem for Ay, has a form:

Ay, o, = o, = a (9, + A (A, n)n = Ag,
where

¥, =9, + 3" (Ag,, ﬂ)ﬂ € D, 00 €RL.
‘We can take the length of the vector @, such that

(Apy, m) = 1. _ (13)
Then we have

_ Ar, oV, = ap, = Ap, = agp, + ad™y.
It gives ,
9, = ah " (A— o) 'n=ar"'Ray
and
P, = A Ran + A =2"" (@Ra + 1)n.
Using the operatdr identity A(A — &)1 = a(A— )~ 1 we have finally
Py, = N"ARa = A 'Rao =X "n_.. (14)

The quality (13) contains the condition for the value a. Rewrite (13) using (1)
in the following form

1= (Ap,, 1) = ad™ (ARan, 1) = o™ (Ran, o).

=a(n, 'r]m) = ddy, . (15)

So

Thus we have theorem 3. '
Theorem 3. Let MeRY, mEJg 2\3!5_1 Then the essenrsal Spectrum
of A and A, coincide

Oess (Aa, o)) = Oess (4).”

For each real o. € p (A) the vector (o given by (14) is an eigenvector for é‘te opera-
tor Ay,o where h satisfies (15), i. e.

Up (A;Ihm) =0
if M and o are connected by (15).
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Description of i Let A = A* > m > 0 be a unbounded ope-
rator in #. Introduce the continuous scale (4-scale) of he Hilbert spaces

{Seerell-ll = || A1l

Note that %, [>>0 coincides with 2 (4"%). The mapping
c 1—d ;
A® > %! dER
is isometrical, densely defined and has a dense range. So its closure is the uni-
tary operator which we denote by

Loi: 30— Has 1o = 151

H-1D>H > K <0

is a rigged Hibert space. It meansthat %_, is dual to %, with respect to %. The
last property preserves under shifts along A-scale. The triple

Hrya D Wy Hiya, 1>0, dER?

is also the rigged Hilbert space. '

Let 1>0 be fixed. Denote $f+= %o and Yy =y Ler D be
some closed subspace in % 4. Under what condition is 2 dense in %2
Denote N+ L= ﬁi‘. in :?f_;_, N:= 13,+N+, N_:= f__.;,N_}.‘

Theorem 4. The subspace Dy < Y+ is dense in 3 iff one of the
following equivalent conditions: _

A N_N% = (0

¢) Ny () #yy={0
is ful}flte_!&f.f In ;a_;ticugai if dim N =1 and a vector n€N then &, is den-
se in J iif:

a) @EHN\K 0:=1_,m;

b) n€ F\H+;

c) 1‘]+€,:‘f"8+\3‘f+.+; Ny v= Iy,om.

Proof. We only prove a). Lef ¢ be in % and ¢ L Dy, i. e. (4,
2;) = 0. Then using (1) we have

0= (pDy) = (b, D1) = (I4,—, D)4

It means that 7/, _peN, and therefore peN_. It shows that condition
a) is equivalent to the property & be a dense set in #. The next state-
ments are proved by the same way with using the invariance A-scale under

the shifts. :
Let a vector n €0, I1>2, n: =An and 0: = I qom, =I5,0m and

let Th,o (MER, A5=0) be an operator of the form (2).

"Proposition 3.
TroET:OMNER\D (A).

Proof follows from Theorem 4.

The triple
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