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Abstract. Special family of non-bijective multivariate maps
Fn of Zm

n into itself is constructed for n = 2, 3, . . . and composite m.
The map Fn is injective on Ωn = {x|x1 + x2 + . . . xn ∈ Zm

∗} and
solution of the equation Fn(x) = b, x ∈ Ωn can be reduced to the
solution of equation zr = α, z ∈ Zm

∗, (r, φ(m)) = 1. The “hidden
RSA cryptosystem” is proposed.

Similar construction is suggested for the case Ωn = Zm

∗n

.

1. Introduction

The RSA is one of the most popular cryptosystems. It is based on a
number factorisation problem and Euler Theorem. Peter Shor discovered
that factorisation problem can be effectively solved with the usage of
theoretical quantum computer. It means that RSA could not be a security
tool in the future postquantum era. One of the research directions which
can lead to a postquantum secure public key is the Multivariate Cryptog-
raphy which uses polynomial maps of affine space Kn defined over a finite
commutative ring into itself as encryption tools (see [1]). This is a young
promising research area with the current lack of known cryptosystems
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with the proven resistence against attacks with the use of Turing machines.
Other important direction of Postquantum Cryptography is a study of
Super-elliptic Curves cryptosystems.

Applications of Algebraic Graph Theory to Multivariate Cryptography
were observed in my talk at Central European Conference on Cryptology
2014 (Alfred Renyi Institute, Budapest) [2]. This talk was dedicated
to algorithms based on bijective maps of affine spaces into themselves.
Applications of algebraic graphs to cryptography started from symmetric
algorithms based on explicit constructions of extremal graph theory and
their directed analogs (see survey [3], [4]). The main idea is to convert
an algebraic graph in finite automaton and use the preudorandom walks
on the graph as encryption tools. This approach can be also used for
the key exchange protocols. Nowadays the idea of “symbolic walks” on
algebraic graphs when the walk on the graph depends on parameters given
as special multivariate polynomials in variables depending on plainspace
vector brings several public key cryptosystems. Other source of graphs
suitable for cryptography is connected with finite geometries and their
flag system (see [3], [5], [6] and further references).

This paper presents new cryptoalgorithm in terms of Algebraic Com-
binatorics which use non-bijective transformations of Kn.

Multivariate cryptography started from studies of potential for the
special quadratic encryption multivariate bijective map of Kn, where K
is an extention of finite field Fq of characteristic 2. One of the first such
cryptosystems was proposed by Imai and Matsumoto, cryptanalysis for
this system was invented by J. Patarin [1], [7]. The survey on various
modifications of this algorithm and corresponding cryptanalysis the reader
can find in [1]. Bijective multivariate sparse encryption maps of rather
high degree based on walks in algebraic graphs were proposed in [8].

One of the first usage of non bijective map of multivariate cryptography
was in oil and vinegar crptosystem proposed in [9] and analysed in [10].
Nowadays this general idea is strongly supported by the publication [11]
dedicated to security analysis of direct attacks on modified unbalanced oil
and vinegar systems. It looks like such systems and rainbow signatures
schemes may lead to promising Public Key Schemes of Multivariate
Encryption defined over finite fields. Non bijective multivariate sparse
encryption maps of degree 3 and > 3 based on walks on algebraic graphs
D(n, K) defined over general commutative ring and their homomorphic
images were proposed in [12].

The paper is dedicated to other constructions of non bijective maps.
We introduce the concept of family of multivariate maps F = Fn of
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the free modules Kn onto itself decomposed into transition functions
F 1, F 2, . . . , F s(n) of special symbolic vertex automata of linguistic graphs.
In case K = Zm, where m is composite, it allows us to construct partially
invertible Fn respectively to subsets Ωn of Zm

n. It means that the restric-
tion of F on Ωn is injective and the decomposition above allows us to solve
the equation F (x)) = b for unknown (x) ∈ Ωn and b ∈ F (Ωn) in polyno-
mial time. We are interested in the case of Eulerian maps Fn when the
solution of the equation can be reduced to the study of equations of kind
zr = d, where z in Zm

∗ and (r, φ(m)) = 1. We construct infinite families
of maps of kind Hn = τ1Fnτ2, where τi are bijective affine transformations
of Zm

n, with Eulerian Fn of bounded degree such that Hn is partially
invertible for Ωn = Zm

∗n and Ωn = {x ∈ Zm
n|x1 + x2 + . . . xn ∈ Zm

∗}.
So the following scheme of a cryptosystem can be used. Alice (the

public key owner) uses special linguistic graph Ln(Zm), its symbolic
automaton with a special symbolic key to generate the Eulerian map
Fn and the list of transition functions F 1, F 2, . . . , F s(n) of the symbolic
computation. She chooses appropriate bijective affine transformations τ1

and τ2 and creates a deformation Hn = τ1Fnτ2 which is partially invertible
for Ωn as above. Alice writes the following standard form for Hn:

x1 → h1(x1, x2, . . . , xn), x2 → h2(x1, x2, . . . , xn), . . . ,

xn → hn(x1, x2, . . . , xn)

where polynomials hi(x1, x2, . . . , xn), i = 1, 2, . . . , n are given by their
lists of monomial terms with respect to the chosen order.

She announces the form and the plainspace Ωn in public way.
Notice that Alice keeps the transition functions generating Fn and

deformation rule Hn = τ1Fnτ2 in secret. Cryptanalytic knows only the
list of hi and the graph Ln(Zm).

Public user (Bob) writes his message (p1, p2, . . . , pn) from the
plainspace Ωn. He computes the ciphertext c = (c1, c2, . . . , cn), ci =
hi(p1, p2, . . . , pn), i = 1, 2, . . . , n and sends it to Alice.

Alice solves the equation Fn(x1, x2, . . . , xn) = (c1, c2, . . . , cn) due
to her knowledge of symbolic key of the automaton. So she reads the
plaintext.

Notice that to make this scheme feasible we need to care about
polynomiality of generation time, bound for the degree of Hn, Eulerian
nature of the map Fn. We achieve it via special choice of linguistic graph
(well known graphs D(n, K)) and some restriction on symbolic keys.

Section 2 is dedicated to linguistic graphs and related to them au-
tomata. In Section 3 the reader can find information on chosen linguistic
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graph D(n, K). The properties af chosen computation of vertex automa-
ton for graph D(n, Zm) are justified in section 4. Last section gives precise
descryption of cryptosystem.

2. Linguistic graphs and their vertex automata

The missing definitions of graph-theoretical concepts which appear in
this paper can be found in [13]. All graphs we consider are simple , i.e.
undirected without loops and multiple edges. Let V (G) and E(G) denote
the set of vertices and the set of edges of G respectively. Then |V (G)|
is called the order of G, and |E(G)| is called the size of G. When it is
convenient we shall identify G with the corresponding anti-reflexive binary
relation on V (G), i.e. E(G) is a subset of V (G) × V (G) and write v G u
for the adjacent vertices u and v (or neighbours). We assume that V (G)
is a finite or an infinite set. The majority of examples will be locally finite

graphs G, i.e. each vertex v has finite number of neighbours (x ∈ V (G),
such that x G v). We refer to |{x ∈ V (G)|x G v}| as degree of the vertex v.

The sequence of distinct vertices v0, v1, . . . , vt, such that vi G vi+1 for
i = 1, . . . , t − 1 is a path in the graph. The path in G is called simple

if all its vertices are distinct. The graph is connected if each two of its
vertices are joined by some path. The length of the path is a number
of its edges. The distance between two vertices u and v of the graph,
denoted by dist(u, v), is the length of the shortest path between them.
The diameter of the graph, denoted by diam(G), is the maximal distance
between two vertices u and v of the graph. Let Cm denote the cycle
of length m, i.e. the sequence of distinct vertices v0, . . . , vm such that
vi G vi+1, i = 1, . . . , m − 1 and vm G v1. The girth of a graph G, denoted
by g = g(G), is the length of the shortest cycle in G.

The incidence structure is the set V with partition sets P (points)
and L (lines) and symmetric binary relation I such that the incidence
of two elements implies that one of them is a point and another one is a
line. We shall identify I with the simple graph of this incidence relation
(bipartite graph).

We refer to a triple consisting of set V , its partition V = P ∪ L and
symmetric and antireflexive binary relation I (incidence) on the set V ,
such that xIy implies x ∈ P , y ∈ L or x ∈ L and y ∈ P as incidence

structure. The pair {x, y}, x ∈ P , y ∈ L such that xIy is called a flag of
incidence structure I.

Let K be a finite commutative ring. We refer to an incidence structure
with a point set P = Ps,m = Ks+m and a line set L = Lr,m = Kr+m as
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linguistic incidence structure Im if point

(x) = (x1, x2, . . . , xs, xs+1, xs+2, . . . , xs+m)

is incident to line

[y] = [y1, y2, . . . , yr, yr+1, yr+2 . . . , yr+m]

if and only if the following relations hold

ξ1xs+1 + ζ1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr)

ξ2xs+2 + ζ2yr+2 = f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yr, yr+1)

. . .

ξmxs+m + ζmyr+m = fm(x1, x2, . . . , xs+m−1, y1, y2, . . . , yr+m−1)

where ξj and ζj , j = 1, 2, . . . , m are not zero divisors, and fj are multi-
variate polynomials with coefficients from K. Brackets and parenthesis
allow us to distinguish points from lines (see [14]).

The colour ρ(x) = ρ((x)) (ρ(y) = ρ([y])) of point (x) (line [y]) is
defined as projection of an element (x) ([y]) from a free module on its
initial s (relatively r) coordinates. As it follows from the definition of
linguistic incidence structure for each vertex of incidence graph there
exists unique neighbour of a chosen colour. We also consider a linguistic
incidence structures defined by infinite number of equations.

We refer to ρ((x)) = (x1, x2, . . . , xs) for (x) = (x1, x2, . . . , xs+m) and
ρ([y]) = (y1, y2, . . . , yr) for [y1, y2, . . . , ys+m] as the colour of the point
and the colour of the line respectively. For each b ∈ Kr and (p) =
(p1, p2, . . . , ps+m) there is a unique neighbour of the point [l] = Nb(p)
with the colour b. Similarly for each b ∈ Ks and [l] = [l1, l2, . . . , lr+m]
there is a unique neighbour of the line [p] = Nb([l]) with the colour b.
Let S(Kn) be the semigroup of all polynomial maps from Kn into Kn,
where K is a commutative ring.

Assume that the transformation F (n) ∈ S(Kn) is written in the form
xj → f(n)j(x1, x2, . . . , xn) where each f(n)j , j = 1, 2, . . . , n is determined
by the list of all monomial terms with the respect to some chosen order.

Let us refer to the sequence of maps F (n) from S(Kn), n = 2, 3, . . .
as a family of bounded degree, if the degree of each transformation F (n)
is bounded by some constant d, d > 0.

Let τ(n)L and τ(n)R be affine transformations of kind x → xA + b,
where x ∈ Kn, b ∈ Kn, A = (aij), 1 6 i, j 6 n.

We assume, that the transformations τL(i) and τR(i) are invertible.
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We refer to the sequence of G(n) = τL(n)F (n)τR(n) as the deformation
of the family F (n), n = 2, 3, . . . .

Notice that deg g(n) = deg f(n), but densities of the maps can be
different. In fact densities of g(n) heavily depend on the choices of an
affine transformation τL.

Let us convert the bipartite graph of incidence relation I = Im to
vertex automaton V A(Im) in the following way. We announce that vertices
of the graph are states of V A(Im). If (p)I[l)] and [l] = Nb(p) then we
draw an arrow from (p) to [l] with the weight b ∈ Kr. If (p)I[l)] and
[p] = Nb(p) then we draw an arrow from [l] to (p) with the weight b ∈ Ks.
We assume that all vertices of the bipartite graph are accepting states.

Let us assume that r = s = 1 in all further considerations. We assume
that graph Im has connectivity invariants d1(x), d2(x), . . . , dt(x) which
are multivariate functions from Ks+m into K such that for two vertices
v1 and v2 (points or lines) from the same connected component of the
graph equalities di(v2) = di(v1), i = 1, 2, . . . , t hold.

We consider symbolic vertex automaton SV (Im) correspond-
ing to Im defined in the following way. Its states are divided
into points (f1, f2, . . . , fm+1) and lines [g1, g2, . . . , gm+1] where
fi ∈ K[x1, x2, . . . , x1+m] and gi ∈ K[x1, x2, . . . , x1+m], i = 1, 2, . . . , m + 1.
There are two options for an by initial state: symbolic point
(x1, x2, . . . , x1+m) or symbolic line [x1, x2, . . . , x1+m]. The computation
of SV (Im) is given by its symbolic key hj ∈ K[z1, z2, . . . , z1+t],
j = 1, 2, . . . , k and its initial state (point for example) in the fol-
lowing way. One has to form the specialisation of a symbolic key
h̃j = h(x1, d1(x), d2(x), . . . , dt(x)) ∈ K[x1, x2, . . . x1+m] and compute the
chain (x1, x2, . . . , x1+m),

Nh̃1(x1,x2,...,x1+m)(x) = v1,

Nh̃2(x1,x2,...,x1+m)(v1) = v2,

Nh̃3(x1,x2,...,x1+m)(v2) = v3,

. . . ,

Nh̃k(x1,x2,...,x1+m)(vk−1) = vk

via symbolic computations. We refer to F = vk as a result of symbolic
computation with the given symbolic key and refer to a chain (x), vj ,
j = 1, 2, . . . , k as decomposition of vk into transition function of symbolic
automaton SV (Im). We identify vk with the corresponding multivariate
map from S(Km+1).
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We refer to the deformation rule G = τLvkτR and the chain vi,
i = 1, 2, . . . , k as decomposition of G of rank k into transition function of
symbolic vertex automaton of the graph Im. We say that G is symbolically
decomposed via linguistic graph Im.

Notice that for F = (f1, f2, . . . , fm+1) polynomial f1 coincides with
hk(x1, d1(x), d2(x), . . . , dt(x). Let us investigate the equation

F (p1, p2, . . . , pm+1) = (b1, b2, . . . , bm+1).

Assume that (b1, b2, . . . , bm+1) is an element of image of F and pi are
variables. Then hk(p1, d1(p), d2(p), . . . , dt(p)) = b1. We can rewrite it as
hk(p1, d1(b), d2(b), . . . , dt(b)) = b1. Notice that here we use the fact that
vertices (p1, p2, . . . , pm+1) and (b1, b2, . . . , bm+1) (points or lines) are in
the same connected component of the graph. Let us assume that for the
subset Ω of K the equation hk(p1, d1(b), d2(b), . . . , dt(b)) = b1, p1 ∈ Ω
has at most one solution. If b ∈ F (Ω × Km) then we can find the solution
p1 = p∗

1. After that we can compute

βk−1 = hk−1(p∗

1, d1(b), d2(b), . . . , dt(b)),

βk−2 = hk−2(p∗

1, d1(b), d2(b), . . . , dt(b)),

. . .

β1 = hk−2(p∗

1, d1(b), d2(b), . . . , dt(b)).

It allows us to compute

uk−1 = Nβk−1
(b1, b2, . . . , bm+1),

uk−2 = Nβk−2
(uk−1),

. . .

u1 = Nβk−2
(u2),

(p∗

1, p∗

2, . . . , p∗

m+1) = Np∗

1
(u1).

So the restriction of the map F on Ω × Km is injective. The equation
F (x) = b, where x ∈ Ω × Km, b ∈ F (Ω × Km) has a unique solution.

Let F ′ = τLFτR be the deformation of F and T = τL
−1(Ω × Km).

Then the equation F ′(x) = b for x ∈ T and b ∈ F ′(T ) has a unique
solution. We say that the multivariate transformation F ′ of Km+1 is
partially invertible on T . Such maps F ′ together with deformation rule
τLFτR and decomposition of F via transition functions of symbolic vertex
automaton of linguistic graph can be used in symmetric cryptography.
Let us consider two general examples in case K = Zl, l > 2.
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Example. Correspondents (Alice and Bob) take a linguistic graph Im

in cases r = s = 1 as above. Assume that they know the list of con-
nectivity invariants di(x1, x2, . . . , xm+1), i = 1, 2, . . . , t. They choose the
type of an initial state. Without loss of generality we can take point
(x1, x2, . . . , xm+1). They set the length of computation of vertex symbolic
automaton k and symbolic key

h1(z1, z2, . . . , zt+1), h2(z1, z2, . . . , zt+1), . . . hk(z1, z2, . . . , zt+1),

where hk = axr + f(z2, z3, . . . , zt+1), a ∈ Zl
∗, (r, φ(l)) = 1. They choose

affine transformation τL of kind

x1 → x1 + x2 + . . . xm+1, xj → lj(x1, x2, . . . , xm+1),

where lj(x1, x2, . . . , xm+1) are general linear transformation of Zl
m+1 into

Zl for j = 2, 3, . . . , m + 1, and general bijective affine transformation τR.

We assume that the graph Im, its connectivity invariants, and the
plainspace T = {(x1, x2, . . . , xm+1) ∈ Zl

m+1|x1 + x2 + · · · + xn ∈ Zl
∗}

are known to public. Cryptanalytic knows the general algorithm which
depends on some unknown τL, τR and some symbolic key. Correspondents
share the symbolic key hi(x1, x2, . . . , xt+1), i = 1, 2, . . . , k and affine
transformations τL and τR as above. Alice writes her plaintext p =
(p1, p2, . . . , pm+1). She computes the tuple τL(p) = (u1, u2, . . . , um+1) = u.
She computes values of connectivity invariants βi = di(u1, u2, . . . , um+1),
i = 1, 2, . . . , t. After that Alice gets the values of symbolic keys

γ1 = h1(u1, β1, β2, . . . , βt),

γ2 = h2(u1, β1, β2, . . . , βt),

. . . ,

γk = hk(u1, β1, β2, . . . , βt).

If chosen k is odd she takes the chain (u), Nγ1
(u) = [u1], Nγ2

([u1]) = (u2),
. . . , Nγk

((uk−1)) = [uk]. She takes τR(uk) = c as ciphertext. Notice that
in case of even K Alice gets Nγk

([uk−1]) = (uk).

Let us consider the decryption process. For simplicity we take the
case when k is odd. Bob takes c. He computes τR

−1(c) = uk. He takes
[uk] = [b1, b2, . . . , bn]. Bob computes parameters βi as di([b1, b2, . . . , bn])
for i = 1, 2, . . . , t.

Bob looks at expression axr + f(z2, z3, . . . , zt+1) and writes
the equation axr + f(β1, β2, . . . , βt) = b1. So he computes xr =
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(b1 − f(β1, β2, . . . , βt))a
−1 = α. So Bob gets u1 as αr′

where r′ is a
multiplicative inverse in Zφ(l).

Now, Bob computes γi = hi(u1, β1, β2, . . . , βt), i = 1, 2, . . . , k − 1. So
he gets

Nγk−1
([uk]) = (uk−1), Nγk−2

((uk−1)) = [uk−2], . . . ,

Nγ1
((u2)) = [u1], Nu1

([u1]) = (u).

Finally Bob obtains τL
−1(u) = (p1, p2, . . . , ps).

Remark 1. It is easy to see that the scheme above can be easily modi-
fied in various ways. For instance, correspondents can use T = Zl

∗m+1

and take τL as linear monomial transformation (x1, x2, . . . , xm+1) →
(λ1x1, λ2x2, . . . , λm+1xm+1), where (λ1, λ2, . . . , λm+1) ∈ Zl

∗m+1.

Remark 2. The above scheme can produce rather fast symmetric en-
cryption algorithm in case of various linguistic graphs. It is easy to define
linguistic graph Im such that the neighbour of each vertex can be com-
puted in time O(m). We can take an empty list of connectivity invariants
(parameter t is zero). Assume that we work with sparse affine transforma-
tion τL and τR which can be completed in O(m) elementary steps. Then
the encryption algorithm above takes O(m) operations.

Towards public key algorithm. Alice can take a linguistic graph
Im in case r = s = 1 as above. She knows the list of connectivity invariants
di(x1, x2, . . . , xm+1), i = 1, 2, . . . , t. She chooses the type of initial state.
Without loss of generality we can take point (x1, x2, . . . , xm+1). Alice
chooses the length k of computation of vertex symbolic automaton k and
symbolic key

h1(z1, z2, . . . , zt+1), h2(z1, z2, . . . , zt+1), . . . , hk(z1, z2, . . . , zt+1),

where hk = axr + f(z2, z3, . . . , zt+1), a ∈ Zl
∗, (r, φ(l)) = 1. She chooses

affine transformation τL of kind

x1 → x1 + x2 + . . . xm+1, xj → lj(x1, x2, . . . , xm+1),

where lj(x1, x2, . . . , xm+1) are general linear transformation of Zl
m+1 into

Zl for j = 2, 3, . . . , m + 1, and general bijective affine transformation τR.
Alice takes the initial state x = (x1, x2, . . . , xm+1). She computes the

tuple τL(x) = (v1, v2, . . . , vm+1) = v, where vi are linear expressions in
variables x1, x2, . . . , xm+1. Notice that v1 = x1+x2+· · ·+xm+1. After that
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Alice takes computation of symbolic vertex automaton with symbolic key
hi, i = 1, 2, . . . , k starting in a new initial state (v1, v2, . . . , vm+1). It means
that Alice uses symbolic computations for the constructions of multivariate
invariants dt(v1, v2, . . . , vm+1) = d′

t(x1, x2, . . . , xm+1), i = 1, 2, . . . , t.

She computes h̃1 = h1(v1, d′

2, . . . , d′

t+1), h̃2 = h2(v1, d′

2, . . . , d′

t+1), . . .
h̃k = hk(v1, d′

2, . . . , d′

t+1).

Alice computes the chain of elements from Zl[x1, x2, . . . , xm+1]m+1

(vertices of symbolic automaton, points and lines). The point
v = (v1, v2, . . . , vm+1), line [v1] = Nh̃1

(v), point (v2) = Nh̃2
([v1]), . . . ,

(vk−1) = N ˜hk−1
((vk−2)), [vk] = Nh̃k

(vk−1). For simplicity we take odd k.
Alice treats F = vk as multivariate map and computes G = FτR

(composition of two maps).

Assume that Alice can complete all steps as above in polynomial time
and get a resulting map G of finite degree. Then she can write the standard
form of G: x1 → g1(x1, x2, . . . , xm+1), x2 → g2(x1, x2, . . . , xm+1), . . . ,
xm+1 → gm+1(x1, x2, . . . , xm+1), where gi, i = 1, 2, . . . , m + 1 are given
by the lists of their monomial terms with respect to some standard order.

Then Alice can announce the public rules gi ∈ Zl[x1, x2, . . . , xm+1],
i = 1, 2, . . . , m+1 to all of her correspondents together with the plainspace
Ωm+1 = {x ∈ Zl

m+1|x1 + x2 + · · · + xm ∈ Zl
∗}.

Public user (Bob) writes a message (p1, p2, . . . , pm+1) ∈ Ωm+1 and
computes the ciphertext (c1, c2, . . . , cm+1) where ci = gi(p1, p2, . . . , pm+1),
i = 1, 2, . . . , m + 1 and sends it to Alice.

Alice knows the deformation rule G = τLFτR and the symbolic
key which gives the decomposition of F into transition functions of the
symbolic vertex automaton of the graph. So she can use the decryption
process of symmetric encryption algorithm above and restore the plaintext
(p1, p2, . . . , pm+1).

Remark 3. Similarly to symmetric algorithm Alice can change Ωm+1

for T = Zl
∗m+1 and take τL as linear monomial transformation

(x1, x2, . . . , xm+1) → (λ1x1, λ2x2, . . . , λm+1xm+1),

where (λ1, λ2, . . . , λm+1) ∈ Zl
∗m+1.

Remark 4. One can assume that cryptanalytic knows the family of
graphs Im defined over Zl, where l is known composite number.

We introduce free symbolic computation of odd case k for the general
linguistic graph Im over commutative ring K in case r = s = 1 as the
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sequence x = (x1, x2, . . . , xm+1) (initial state), line

Nz1
(x) = [u1], u1 ∈ K[z1, x1, x2, . . . , xm+1]m+1,

Nz2
([u1]) = (u2), u2 ∈ K[z1, z2, x1, x2, . . . , xm+1]m+1,

. . .

Nzk
((uk−1)) = [uk)], uk ∈ K[z1, z2, . . . , zk, x1, x2, . . . , xm+1]m+1.

3. On some extremal algebraic graphs

Recall that the girth is the length of minimal cycle in the simple graph.
Studies of maximal size ex(C3, C4, . . . , C2m, v) of the simple graph on v
vertices without cycles of length 3, 4, . . . , 2m, i. e. graphs of girth > 2m,
form an important direction of Extremal Graph Theory.

As it follows from the famous Even Circuit Theorem by P. Erdős’ we
have inequality

ex(C3, C4, . . . , C2n, v) 6 cv1+1/n,

where c is a certain constant. The bound is known to be sharp only for
2n = 4, 6, 8. The first general lower bounds of kind ex(v, C3, C4, . . . Cn) =
Ω(v1+c/n), where c is some constant < 1/2 were obtained in the 50th
by Erdős’ via studies of families of graphs of a large girth, i.e. infinite
families of simple regular graphs Γi of degree ki and order vi such that
g(Γi) > clogki

vi, where c is the independent of i constant. Erdős’ proved
the existence of such a family with arbitrary large but bounded degree
ki = k with c = 1/4 by his famous probabilistic method.

One of the first examples of the family of graphs of large girth is
the family of algebraic graphs CD(n, q) (see [15] and further references).
Graphs CD(n, q) appear as connected components of graphs D(n, q)
defined via system of quadratic equations [16].

Graphs D(n, q) and CD(n, q) have been used in symmetric cryptog-
raphy together with their natural analogs D(n, K) and CD(n, K) over
general finite commutative rings K since 1998 (see [17]). The theory of
directed graphs and language of dynamical system were very useful for
studies of public key and private key algorithms based on graphs D(n, K),
CD(n, K) (see [18–25] and further references).

There are several implementations of symmetric algorithms for cases of
fields ([26], [27], [30]) and arithmetical rings ([28], [29]). Some comparison
of bijective multivariate maps based on D(n, K) and other graphs A(n, K)
are considered in [31].
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4. Graphs D(n, K) and new algorithms related to them

Let P and L be two copies of Cartesian power K
N, where K is the

commutative ring and N is the set of positive integer numbers. Elements
of P will be called points and these of L lines.

To distinguish points from lines we use parentheses and brackets. If
x ∈ V , then (x) ∈ P and [x] ∈ L. It will also be advantageous to adopt
the notation for co-ordinates of points and lines introduced in [16] for the
case of general commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p′

2,2, p2,3, . . . , pi,i, p′

i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l′2,2, l2,3, . . . , li,i, l′i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of
elements from K, such that only finite number of components are different
from zero.

We now define a linguistic incidence structure (P, L, I) defined by
infinite system of equations as follows. We say the point (p) is incident
with the line [l], and we write (p)I[l], if the following relations between
their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i,

l′i,i − p′

i,i = li,i−1p0,1,

li,i+1 − pi,i+1 = li,ip0,1,

li+1,i − pi+1,i = l1,0p′

i,i.

(1)

(These four relations are defined for i > 1, p′

1,1 = p1,1, l′1,1 = l1,1). The
incidence structure (P, L, I) we denote as D(K). We speak now of the
incidence graph of (P, L, I), which has the vertex set P ∪ L and edge set
consisting of all pairs {(p), [l]} for which (p)I[l].

For each positive integer k > 2 we obtain a symplectic quotient
(Pk, Lk, Ik) as follows. Firstly, Pk and Lk are obtained from P and L,
respectively, by simply projecting each vector into its k initial coordinates.
The incidence Ik is then defined by imposing the first k−1 incidence
relations and ignoring all others. The incidence graph corresponding to
the structure (Pk, Lk, Ik) is denoted by D(k,K) (see [17]).

To facilitate notation in the future results on "connectivity invariants",
it will be convenient for us to define p−1,0 = l0,−1 = p1,0 = l0,1 = 0,
p0,0 = l0,0 = −1, p′

0,0 = l′0,0 = −1, p′

1,1 = p1,1, l′1,1 = l1,1 and to assume
that (1) are defined for i > 0.
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Notice, that for i = 0, the four conditions (6) are satisfied by every
point and line, and, for i = 1, the first two equations coincide and give
l1,1 − p1,1 = l1,0p0,1.

Let k > 6, t = [(k + 2)/4], and let u = (uα, u11, · · · , utt, u′

tt,
ut,t+1, ut+1,t, · · · ) be a vertex of D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not
matter whether u is a point or a line). For every r, 2 6 r 6 t, let

ar = ar(u) =
∑

i=0,r

(uiiu
′

r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). Similarly, we assume a = a(u) =
(a2, a3, · · · , at, . . . ) for the vertex u of infinite graph D(K).

Let ηn (η) be the equivalence relation:

uηnv ⇔ a(u) = a(v) (uτv ⇔ a(u) = a(v))

on the vertex set of graph D(k,K) (D(K)), respectively.

Proposition 1 (see [19] and further references).

(i) For any t − 1 ring elements xt ∈ K, 2 6 t 6 [(k + 2)/4], there exists

a vertex v of D(n,K) for which a(v) = (x2, . . . , xt) = (x).

(ii) The equivalence class Cn for the equivalence relation τ on the set

K
n∪K

n is an isomorphic to the affine variety K
t∪K

t , t = [4/3n]+1
for n = 0, 2, 3 mod 4, t = [4/3n] + 2 for n = 1 mod 4.

(iii) the vertex set Cn is the union of several connected components of

D(n,K).

Let C be the equivalence class on τ on the vertex set D(K), then the
induced subgraph with the vertex set C is the union of several connected
components of D(K).

We shall use notation C(t,K) (C(K)) for the induced subgraph of
D(n,K) (D(K)) with the vertex set Cn (vertex set C respectively).

The graph C(t,K) in the case of K = Fq coincides with CD(n, q)
which was introduced in [17].

The following statement was proven in [32].

Theorem 1. Let K be commutative ring with unity of characteristic d,

d 6= 2. Then graphs C(t,K), t > 6 and C(K) are connected.

If K = Fq, q is odd, then graph C(Fq) is a q-regular tree. In cases
char(K) = 2 the questions of the description of connected components of
C(t,K) and C(K) are open.
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5. The cryptosystem

We can rewrite result of [33] in the following form.

Proposition 2. Let Fn be a regular computation of free symbolic automa-

ton of linguistic graph D(n, Zl) and α1, α2, . . . , αk, where k is even, are

fixed elements of Zl. Then the map F̃n corresponding to a specialisation of

z2 = y+α1, z3 = z1 +α1, z4 = y+α3, z5 = z1 +α5, . . . , zk−1 = z1 +αk−1,

zk = y + αk is cubical multivariate map from K[z1, y, x1, x2, . . . , xn]m+1.

Remark 5. Similar proposition is true for odd k. The map F̃n corre-
sponding to a specialisation of z2 = y + α1, z3 = z1 + α1, z4 = y + α3,
z5 = z1 + α5, . . . , zk−1 = y + αk−1, zk = z1 + αk is cubical transformation
of Zl

n.

Proposition 3. Let Fn be a regular computation of an odd length s of

a symbolic vertex automaton of D(n.K) corresponding to symbolic key

h(z1, z2, . . . , zt)+α1, z1 +α2, h(z1, z2, . . . , zt)+α3, z1 +α4. . . . , z1 +αs−1,

h(z1, z2, . . . , zt) + αs, where h ∈ K[z1, z2, . . . , zt] has finite degree and αi,

i = 1, 2, . . . , s are constants from K. Then the degree of Fn is bounded by

3 deg h(x01, a2(x), a3(x), . . . , at(x)).

We say that the map Fn of Zl
n to itself is Eulerian partially invertible

map on the domain Ωn = {x|λ1x1 + λ2x2 + · · · + λnxn + αn+1 ∈ Zl
∗} if

it is partially invertible on Ωn and solution of equation Fn(x) = b, x ∈ Ω
and b ∈ Fn(Ωn) can be reduced to a solution of zr = a, z ∈ Zl

∗, r 6= 1,
(r, φ(l)) = 1.

Theorem 2. Let K = Zl, n be a natural number > 2, s is an odd

number > 3. For each domain of kind Ωn = {x|λ1x1 + λ2x2 + · · · + λnxn +
λn+1 ∈ Zl

∗} in Zl
n, where λi 6= 0, i = 1, 2, . . . , n there is Eulerian map

Fn of finite degree which has a symbolic decomposition of rank s. If l is a

prime number, then Eulerian map Fn is a bijection.

Proof. Let us consider a symbolic vertex automaton constructed for the
family of graphs D(n, Zl). Let a2(x), a3(x), . . . , at(x), t = [(n + 2)/4]
be the list of quadratic connectivity invariants of the graph. We shall
use polynomials from Zl[u1, u2, . . . , ut] to form special symbolic key. For
f ∈ Zl[u1, u2, . . . , ut] we define f̃ as f(z1, a2(z), a3(z), . . . , at(z), where
(z) = (z1, z2, . . . , zn) is initial point of the symbolic vertex automaton of
graph D(n, Zl). We avoid double indexes for points and lines here. We
have a free choice to take H ∈ Zl[u1, u2, . . . , ut] to form a sequence of
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weights α1(z) = H̃ +β1, α2(z) = z1 +β2, α3(z) = H̃ +β3 , α4(z) = z1 +β4,
. . . , αs−1(z) = z1 +βs−1, αs(z) = H̃ +βs, where βi, i = 1, 2, . . . , s are fixed
elements of Zl. Let F = Fn : Zl

n → Zl
n be the multivariate map generated

by symbolic computation above. We assume that H(u1, u2, . . . , ut) is
written in the form u1

r + S(u2, u3, . . . , ut), where S is arbitrary element
of Zl[u2, u3, . . . , ut] and r, r 6= 1 is a parameter such that (r, φ(m)) = 1.
Symbol φ standardly stands for Euler function. Let us consider non-
singular linear transformation τL : Zl

n → Zl
n of kind

z1 → λ1z1 + λ2z2 + · · · + λnzn + λn+1,

z2 → l2(z1, z2, . . . , zn),

z3 → l3(z1, z2, . . . , zn),

. . .

zn → ln(z1, z2, . . . , zn),

where li are linear expressions from Zl[z1, z2, . . . , zn] of general kind. We
form a composition Gn = τLFn.

Assume that z = (z1, z2, . . . , zn) is an element of Ωn. Let us identify
τL(z) = (y1, y2, . . . , yn) with the point of the graph D(n, Zl). Notice that
y1 ∈ Zl

∗. Let us show that the reimage of Gn(z) is uniquely determined.
We write the equation Gn(z) = (b1, b2, . . . , bn). It is clear that b1 =
y1

r + S(u2, u3, . . . , ut) + βs. Notice that tuples y (point) and b (line)
are located in the same connected component of the graph. So we have
ai(y) = ai(b) = γi, i = 2, 3, . . . , t. Thus y1

r + S(γ2, γ3, . . . , γt) + βs = b1.
Ler r′ be the multiplicative inverse of r in Zφ(l). We have y1 =

(b1 − S(γ2, γ3, . . . , γt) − βs)r′

= α.
The knowledge of parameter α allows us to compute all coordinates

of tuple y. Really, we can compute values αs−1 = α + βs−1, αs−2 =
H(α, γ2, γ3, . . . , γt)+βs−2, αs−3 = α+βs−3, . . . , α1 = H(α, γ2, γ3, . . . , γt)+
β1, α0 = α.

The value of y can be computed recursively ys−1 = Nαs−1
([b]), ys−2 =

Nαs−2
((ys−1)), . . . y1 = Nα1

((y2)), y0 = Nα((y1)) = (y1, y2, . . . , yn). The
tuple z equals τl

−1(y0).
The Proposition 3 establishes that the degree of Gn or Fn is bounded

by 3 deg(H̃(z)). If d = deg(S̃) > r then the degree of Gn is bounded by 3d.
Notice, that in case of prime l the equation y1

r +S(γ2, γ3, . . . , γt)+βs = b1,
r 6= 0 mod p−1 is always solvable for y1. So maps Fn and Gn are bijections.

Remark 6. In the theorem above we can change domain Ωn for Zl
∗n.
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Really we have to change a transformation τL in the proof for a linear
monomial map (x1, x2, . . . , xn) → (λ1xπ(1), λ2xπ(2), . . . , λnxπ(n)), where
λi, i = 1, 2, . . . , n are elements of Zl

∗ and π is a permutation from Sn.

The cryptosystem. Assume that Alice is the holder of a public key
based on the family of maps used in the constructive proof of the previous
theorem. So she takes l, l > 2 and parameter r, such that (r, φ(l)) = 1.
She chooses the odd length s, s > 3 of symbolic key for practical use
we set size O(n) for value of s. For example, Alice chooses the area
Ωn = {x|x1 + x2 + · · · + xn ∈ Zl

∗} which will be a domain for Eulerian
map of G = Zl

n. Alice has a rather wide choice to pick the function
S ∈ Zl[u2, u3, . . . , ut], t = [(n + 2)/4] and parameters β1, β2, . . . , βs to
form the symbolic key. She has set l1 = x1 + x2 + . . . , xn and may choose
various linear functions li ∈ Zl[x1, x3, . . . , xn], i = 2, 3, . . . , n to form
bijective affine map τl of Zl

n to itself. Finally, she has a free choice for
another affine map τR.

So in polynomial time Alice generates map Fn via computation of
symbolic vertex automaton of linguistic graph D(n, Zl) with the symbolic
key: α1(z) = H̃ + β1, α2(z) = z1 + β2, α3(z) = H̃ + β3, α4(z) = z1 + β4,
. . . , αs−1(z) = z1 + βs−1, αs(z) = H̃ + βs, where βi, i = 1, 2, . . . , s
are fixed elements of Zl. She computes the deformation Gn = τLFnτR

in standard form x1 → g1(x1, x2, . . . , xn), x2 → g2(x1, x2, . . . , xn), . . . ,
xn → gn(x1, x2, . . . , xn), where gi, i = 1, 2, . . . , n are given by list of their
monomial terms in some chosen order. Notice, that the degree of Gn is
bounded by constant.

Alice announces the public the standard form of Gn and keeps data
described above in secret. Cryptanalytic knows used graph and general
form of a symbolic key.

Assume that a public user (Bob) creates an open text p=(p1,p2,. . . ,pn).
He computes Gn((p1, p2, . . . , pn)) = (c1, c2, . . . , cn). Bounded degree of
Gn insures that the computation of ciphertext can be computed in a
polynomial time O(nc) for some positive constant c.

The knowledge of deformation rule Gn = τLFnτR and the docompo-
sition of Fn into transition functions of symbolic vertex automaton of
D(n, Zl) allows her to decrypt in polynomial time with the algorithm
described in a previous section.

Remark 7. Alice can use Zl
∗n instead of Ωn = {x|x1+x2+· · ·+xn ∈ Zl

∗}.
In this case τL has to be chosen as monomial transformation.

Remark 8. In case of prime l we can change function H + bs for
much more sophisticated expression. For instance Z(x2, x3, . . . , xt)f(x1)+
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S(x2, x3, . . . , xt) where Z(x2, x3, . . . , xt) = 0 has no solution but f(x1) =
d has exactly one solution in variable x1 for each d.

Let h(x) ∈ Zp[x] has no linear divisors. Then Z(x2, x3, . . . , xt) =
h(M(x2, x3, . . . , xt))) is always different from zero for each M ∈
K[x2, x3, . . . , xt].

The simplest case where we can use M(x2, x3, . . . , xt)(x1
r) +

S(x2, x3, . . . , xt), where (r, p−1) = 1 and the equation M(x2, x3, . . . , xt) =
0 has no solution. We say that such a cryptosystem is based on hidden

discrete logarithm problem. For general parameter l we use the term
hidden Eulerian equation. We can use recurrent expressions

Mk(. . . (M2(M1(x2, x3, . . . , xt)(x1
r1) + S1(x2, x3, . . . , xt))

r2

+S2(x2, x3, . . . , xt)) + . . . Mk−1(x2, x3, . . . , xt)(x1
rk−1)

+Sk−1(x2, x3, . . . , xt))
rk + Sk(x2, x3, . . . , xt)),

where Mi(x2, x3, . . . , xt) = 0 have no solutions for each i = 1, 2, . . . , k.
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