Preradicals and submodules Yuriy Maturin

Communicated by M. Ya. Komarnytskyj

Abstract. Some collections of submodules of a module defined by certain conditions are studied.

Throughout the whole text, all rings are considered to be associative with unit $1 \neq 0$ and all modules are left unitary.

Let R be a ring. The category of left R-modules will be denoted by R-Mod. We shall write $N \leq M$ if N is a submodule of M.

Let $a \in R, I \subseteq R$. Put

$$
(I: a)=\{x \in R \mid x a \in I\}
$$

Let M be an R-module. Let $\operatorname{End}(M)$ be the set of all endomorphisms of the R-module M. A submodule N of M is said to be fully invariant in case

$$
\forall f \in \operatorname{End}(M): f(N) \leq N
$$

Let $N \leq M$ and $f \in \operatorname{End}(M)$. Put

$$
(N: f)_{M}=\{x \in M \mid f(x) \in N\}
$$

It is clear that $(N: f)_{M} \leq M$. Put

$$
\operatorname{End}(M)_{N}=\{f \in \operatorname{End}(M) \mid f(M) \subseteq N\}
$$

Let $F(M)$ be some non-empty collection of submodules of a left R module M.

We shall consider the following conditions:

C1. $L \in F(M), L \leq N \leq M \Rightarrow N \in F(M)$;
C2. $L \in F(M), f \in \operatorname{End}(M) \Rightarrow(L: f)_{M} \in F(M)$;
C3. $N, L \in F(M) \Rightarrow N \cap L \in F(M)$;
C4. $N \in F(M), N \in \operatorname{Gen}(M), L \leq N \leq M \wedge \forall g \in \operatorname{End}(M)_{N}:(L:$ $g)_{M} \in F(M) \Rightarrow L \in F(M)$;

C5. $N, K \in F(M), N \in G e n(M) \Rightarrow t_{(K \subseteq M)}(N) \in F(M)$.
Remark 1. Let F be a non-empty set of left ideals of R.
(1) Then F is a preradical filter if and only if F satisfies C1, C2, C3.
(2) Then F is a radical filter if and only if F satisfies $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4$.

Proof. (1) (\Rightarrow) Let F be a preradical filter.
(C1) This is clear.
(C2) Let $f \in \operatorname{End}(R)$. Then there exists $a \in R$ such that

$$
\forall r \in R: f(r)=r a
$$

Therefore for $L \in F$ we obtain $(L: f)_{R}=\{x \in R \mid f(x) \in L\}=\{x \in$ $R \mid x a \in L\}=(L: a)$. Since F is a preradical filter, $(L: f)_{R}=(L: a) \in F$.
(C3) This is clear.
(\Leftarrow) Let F satisfy (C1), (C2), (C3). Then it satisfies (a2) and (a3) [1, p.36].
(a1) (See [1, p.34]. Let $a \in R$ and $L \in F$. Define $f: R \rightarrow R$, where $\forall x \in R: f(x)=x a$.

It is easy to see that $f \in \operatorname{End}(R)$. Obtain $(L: f)_{R}=(L: a)$. But $(L: f)_{R} \in F$. Hence $(L: a) \in F$.
$(2)(\Rightarrow)$ Let F be a radical filter.
(C1),(C2) This is clear (see (1) (\Rightarrow)).
(C4) Let N be a left ideal of R and $g \in \operatorname{End}(R)_{N}$. Then there exists $a \in R$ such that

$$
\forall r \in R: g(r)=r a
$$

It follows from this that $a=1 a=g(1) \in N$. Taking into account (a5) (see [1, p.36]), it is obvious that F satisfies C4.
(\Leftarrow) Let F satisfy C1, C2, C4. Then it is easy to see that it satisfies (a1) and (a2).
(a5) Let $N \in F, L \leq N \leq R \wedge \forall a \in N:(L: a) \in F$. Then $N \in G e n(R)$ because R is a generator. Let $g \in \operatorname{End}(R)_{N}$. It means that there exists $a \in N$ such that $\forall r \in R: g(r)=r a$. But $(L: g)_{R}=(L: a)$. Therefore $(L: g)_{R} \in F$. By (C4), $L \in F$. Hence F satisfies (a5).

Remark 2. Let M and H be left R-modules and $q: M \rightarrow H$ be an isomorphism, U be a non-empty set of submodules of M and $q(U)=$ $=\{q(L) \mid L \in U\}$. Then $q(U)$ satisfies (Ci) if and only if U satisfies (Ci) for every $i \in\{1,2,3,4,5\}$.

Proof. It is suffice to verify that $q(U)$ satisfies (Ci) if U satisfies (Ci) for every $i \in\{1,2,3,4,5\}$.
(1) Let U satisfy (C1). Consider $L \in q(U), L \leq N \leq H$. Hence $q^{-1}(L) \in U, q^{-1}(L) \leq q^{-1}(N) \leq M$. By $(\mathrm{C} 1), q^{-1}(N) \in U$. Whence $N=q\left(q^{-1}(N)\right) \in q(U)$.
(2) Let U satisfy (C2). Consider $L \in q(U), f \in \operatorname{End}(H)$. Hence $q^{-1} f q \in \operatorname{End}(M), q^{-1}(L) \in U$. By $(\mathrm{C} 2), q^{-1}(L: f)_{H}=\left(q^{-1}(L):\right.$ $\left.q^{-1} f q\right)_{M} \in U$. Hence $(L: f)_{H} \in q(U)$.
(3) Let U satisfy (C3). Consider $N, L \in q(U)$. Hence $q^{-1}(N), q^{-1}(L) \in$ U. By (C3), $q^{-1}(N \cap L)=q^{-1}(N) \cap q^{-1}(L) \in U$. Therefore $N \cap L \in q(U)$.
(4) Let U satisfy (C4) and let
$N \in q(U), N \in G e n(H), L \leq N \leq H \wedge \forall g \in \operatorname{End}(H)_{N}:(L: g)_{H} \in q(U)$.
Then $q^{-1}(N) \in U, q^{-1}(N) \in \operatorname{Gen}(M), q^{-1}(L) \leq q^{-1}(N) \leq M$. Let $f \in \operatorname{End}(M)_{q^{-1}(N)}$. Hence $q f^{-1} \in \operatorname{End}(H)_{N}$. Since $\forall g \in \operatorname{End}(H)_{N}$: $(L: g)_{H} \in q(U)$,

$$
q\left(q^{-1}(L): f\right)_{M}=\left(L: q f q^{-1}\right)_{H} \in q(U)
$$

Hence $\left(q^{-1}(L): f\right)_{M} \in U$. By $(\mathrm{C} 4), q^{-1}(L) \in U$. Hence $L \in q(U)$.
(5) Let U satisfy (C5) and $N, K \in q(U), N \in G e n(H)$. Hence

$$
q^{-1}(N), q^{-1}(K) \in U, q^{-1}(N) \in \operatorname{Gen}(M)
$$

By $(\mathrm{C} 5), t_{\left(q^{-1}(K) \subseteq M\right)}\left(q^{-1}(N)\right) \in U$. Hence $q\left(t_{\left(q^{-1}(K) \subseteq M\right)}\left(q^{-1}(N)\right)\right) \in$ $q(U)$. But

$$
\begin{aligned}
& q\left(t_{\left(q^{-1}(K) \subseteq M\right)}\left(q^{-1}(N)\right)\right)=q\left(\sum_{g \in \operatorname{End}(M)_{q^{-1}(N)}} g\left(q^{-1}(K)\right)\right)= \\
= & \sum_{g \in \operatorname{End}(M)_{q^{-1}(N)}} q\left(g\left(q^{-1}(K)\right)\right)=\sum_{g \in \operatorname{End}(M)_{q^{-1}(N)}}\left(q g q^{-1}\right)(K)= \\
= & \sum_{f \in \operatorname{End}(H)_{N}} f(K)=t_{(K \subseteq H)}(N) . \text { Therefore } t_{(K \subseteq H)}(N) \in q(U) .
\end{aligned}
$$

Remark 3. Let M be a left R-module. Then the sets

$$
\{M\} \text { and }\{L \mid L \leq M\}
$$

satisfy (C1), (C2), (C3), (C4), (C5).
Proposition 1. If $F(M)$ satisfies (C1), (C2), (C4), then it satisfies (C5).
Proof. Let $N, K \in F(M), N \in \operatorname{Gen}(M)$. Then

$$
t_{(K \subseteq M)}(N)=\sum_{g \in \operatorname{End}(M)_{N}} g(K)
$$

(see [3, p.40]).
It is easy to see that

$$
\forall h \in \operatorname{End}(M)_{N}: K \leq\left(t_{(K \subseteq M)}(N): h\right)_{M}
$$

By (C1), it follows from this that

$$
\forall h \in \operatorname{End}(M)_{N}:\left(t_{(K \subseteq M)}(N): h\right) \in F(M)
$$

It is obvious that $t_{(K \subseteq M)}(N) \leq N$. Therefore

$$
\begin{aligned}
& N \in F(M), N \in G e n(M), t_{(K \subseteq M)}(N) \leq N \leq M \wedge \\
& \wedge \forall h \in \operatorname{End}(M)_{N}:\left(t_{(K \subseteq M)}(N): h\right)_{M} \in F(M)
\end{aligned}
$$

Taking into consideration (C4), it follows from this that $t_{(K \subseteq M)}(N) \in$ $F(M)$.

Put

$$
\operatorname{ker} F(M):=\bigcap_{L \in F(M)} L
$$

Proposition 2. If $F(M)$ satisfies (C2), then $\operatorname{ker} F(M)$ is a fully invariant submodule of M.

Proof. Let $f \in \operatorname{End}(M), m \in \operatorname{ker} F(M)$. By (C2),

$$
\bigcap_{L \in F(M)} L \subseteq \bigcap_{L \in F(M)}(L: f)_{M}
$$

Then $m \in \bigcap_{L \in F(M)}(L: f)_{M}$. Hence $f(m) \in \bigcap_{L \in F(M)} L$. Thus

$$
f(\operatorname{ker} F(M)) \subseteq \operatorname{ker} F(M)
$$

Let M be a left R-module. Let r be a preradical in R-Mod. Put

$$
F_{r}(M)=\{L \leq M \mid M / L \in T(r)\}
$$

where $T(r)=\{M \in R-\operatorname{Mod} \mid r(M)=M\} \quad($ see $[1,3])$.
Lemma 1. Let $N \leq M$ and $f \in \operatorname{End}(M)$. Then $f(M) \cap N=f((N$: $\left.f)_{M}\right)$ and $f(M) /(f(M) \cap N) \cong M /(N: f)_{M}$.

Proof. It is obvious that $f(M) \cap N=f\left((N: f)_{M}\right)$. Let

$$
g:\left\{\begin{array}{l}
M /(N: f)_{M} \rightarrow f(M) /(f(M) \cap N) \\
m+(N: f)_{M} \mapsto f(m)+f(M) \cap N
\end{array}\right.
$$

Since

$$
\begin{gathered}
m_{1}+(N: f)_{M}=m_{2}+(N: f)_{M} \Rightarrow m_{1}-m_{2} \in(N: f)_{M} \Rightarrow \\
\Rightarrow f\left(m_{1}-m_{2}\right) \in f(M) \cap N \Rightarrow f\left(m_{1}\right)+f(M) \cap N=f\left(m_{2}\right)+f(M) \cap N
\end{gathered}
$$

the correspondence g is a mapping.
It is easy to see that g is an epimorphism.
Let $f\left(m_{1}\right)+f(M) \cap N=f\left(m_{2}\right)+f(M) \cap N$. Then $m_{1}-m_{2} \in(N: f)_{M}$. Hence $m_{1}+(N: f)_{M}=m_{2}+(N: f)_{M}$. Thus g is a monomorphism.

Therefore g is an isomorphism.
Theorem 1. Let r be a hereditary preradical in $R-M o d$ and M be a left R-module. Then the system $F_{r}(M)$ satisfies (C1), (C2), (C3).

Proof. (C1). Let $L \in F_{r}(M), L \leq N \leq M$. Since $M / N \cong(M / L) /(N / L)$ [2], $N \in F_{r}(M)$ because the class $T(r)$ is closed under epimorphic images [3] (see also [1, p.36]).
(C2). Let $L \in F_{r}(M), f \in \operatorname{End}(M)$. Then $M / L \in T(r)$. Since the class $T(r)$ is closed under submodules, $(f(M)+L) / L \in T(r)$. But $(f(M)+$ $L) / L \cong f(M) /(f(M) \cap L)$ [2]. Hence $f(M) /(f(M) \cap L) \in T(r)$. Since $f(M) /(f(M) \cap L) \cong M /(L: f)_{M}($ See Lemma 1$),(L: f)_{M} \in F_{r}(M)$.
(C3). Let $N, L \in F_{r}(M)$. Then $M / N, M / L \in T(r)$. Hence $M / N \oplus$ $M / L \in T(r)$ because the class $T(r)$ is closed under direct sums [1, 3].

Consider the homomorphism $w:\left\{\begin{array}{l}M \rightarrow M / N \oplus M / L, \\ m \mapsto(m+N, m+L) .\end{array}\right.$
Then $\operatorname{im}(w) \in T(r)$ because $T(r)$ is closed under submodules [1, 3].
It is clear that $\operatorname{ker}(w)=N \cap L$. But $\operatorname{im}(w) \cong M / \operatorname{ker}(w)$ [2]. Therefore $N \cap L \in F_{r}(M)$ (see also [1, p.36]).

Theorem 2. Let r be a hereditary radical in $R-M o d$ and M be a left R-module. Then the system $F_{r}(M)$ satisfies (C1), (C2), (C3), (C4).

Proof. Taking into account Theorem 1, we shall prove only (C4).
Let

$$
\begin{aligned}
& N \in F_{r}(M), N \in G e n(M), L \leq N \leq M \wedge \\
& \quad \wedge \forall g \in \operatorname{End}(M)_{N}:(L: g)_{M} \in F_{r}(M)
\end{aligned}
$$

By Lemma 1,

$$
\forall g \in \operatorname{End}(M)_{N}:(g(M)+L) / L \cong M /(L: g)_{M}
$$

It follows from $\forall g \in \operatorname{End}(M)_{N}:(L: g)_{M} \in F_{r}(M)$ that

$$
\forall g \in \operatorname{End}(M)_{N}: M /(L: g)_{M} \in T(r)
$$

Therefore

$$
\forall g \in \operatorname{End}(M)_{N}:(g(M)+L) / L \in T(r)
$$

Since the class $T(r)$ is closed under direct sums and factor modules [1, 3],

$$
\sum_{g \in \operatorname{End}(M)_{N}}(g(M)+L) / L \in T(r)
$$

Since $N \in \operatorname{Gen}(M)$,

$$
\sum_{g \in \operatorname{End}(M)_{N}} g(M)=N
$$

(see [2]).
Thus $N / L=(N+L) / L=\sum_{g \in \operatorname{End}(M)_{N}}(g(M)+L) / L \in T(r)$.
Since the class $T(r)$ is closed under extensions [1, 3], taking into account that $N / L \in T(r),(R / L) /(N / L) \cong R / N \in T(r)$, we have that $R / L \in T(r)$.

Thus $L \in F_{r}(M)$.
Corollary 1. Let r be a hereditary radical in $R-M o d$ and M be a left R-module. Then the system $F_{r}(M)$ satisfies (C5).

Proof. By Theorem 2, Proposition 1.
Corollary 2. Let r be a hereditary preradical in $R-M o d$ and M be a left R-module. Then $\operatorname{ker} F_{r}(M)$ is a fully invariant submodule of M.

Proof. By Theorem 1, Proposition 2.
Proposition 3. Let M be a left R-module and K be a fully invariant submodule of M. Then $U=\{L \mid K \leq L \leq M\}$ satisfies (C1), (C2), (C3).

Proof. (C1) This is clear.
(C2) Let $L \in U, f \in \operatorname{End}(M)$. Since K is a fully invariant submodule of $M, f(K) \leq K \leq L$. Therefore $K \leq(L: f)_{M}$. By $(\mathrm{C} 1),(L: f)_{M} \in U$. (C3) This is clear.

Theorem 3. Let M be a left R-module and K be a fully invariant submodule of M such that $t_{(K \subseteq M)}(K)=K$. Then $U=\{L \mid K \leq L \leq M\}$ satisfies (C1), (C2), (C3), (C4).

Proof. By Proposition 3, U satisfies (C1), (C2), (C3).
(C4) Let

$$
N \in U \wedge L \leq N \leq M \wedge\left(\forall g \in \operatorname{End}(M)_{N}:(L: g)_{M} \in U\right)
$$

and k be an arbitrary element of K. Since $t_{(K \subseteq M)}(K)=K$,

$$
k=p_{1}\left(k_{1}\right)+p_{2}\left(k_{2}\right)+\ldots+p_{s}\left(k_{s}\right)
$$

where $s \in\{1,2, \ldots\}, p_{1}, p_{2}, \ldots, p_{s} \in \operatorname{End}(M)_{K}, k_{1}, k_{2}, \ldots, k_{s} \in K$. Since $K \leq N, \operatorname{End}(M)_{K} \leq \operatorname{End}(M)_{N}$. Thus $p_{1}, p_{2}, \ldots, p_{s} \in \operatorname{End}(M)_{N}$. Now we obtain that $\forall j \in\{1,2, \ldots, s\}:\left(L: p_{j}\right)_{M} \in U$. Hence $\forall j \in\{1,2, \ldots, s\}$: $p_{j}(K) \leq L$. It means that $\forall j \in\{1,2, \ldots, s\}: p_{j}\left(k_{j}\right) \in L$. Taking this into consideration, we have

$$
k=p_{1}\left(k_{1}\right)+p_{2}\left(k_{2}\right)+\ldots+p_{s}\left(k_{s}\right) \in L
$$

Therefore $K \leq L$. It follows from this that $L \in U$.
Theorem 4. Let F be a field and V be a vector space over F with $\operatorname{dim}_{F} V<\infty$. If $U \neq\{V\}$ is a non-empty set of subspaces of V satisfying (C1), (C2), (C3), then $U=\{L \mid L \leq V\}$.

Proof. By Proposition 2, ker U is a fully invariant subspace of V. It is easy to see that every fully invariant subspace of V is either $\{0\}$ or V. Since $U \neq\{V\}, \operatorname{ker} U=\{0\}$. Let $P=\left\{\operatorname{dim}_{F}\left(\bigcap_{L \in D} L\right)|D \subseteq U \&| D \mid<\infty\right\}$. Hence $\emptyset \neq P \subseteq\{0,1,2, \ldots\}$. Therefore there exists $t=\min P \in\{0,1,2, \ldots\}$. It follows from this that there exists $D_{0} \subseteq U$ such that $\left|D_{0}\right|<\infty$ and $\operatorname{dim}_{F}\left(\bigcap_{L \in D_{0}} L\right)=t$. Hence

$$
\forall B \in U: t \leq \operatorname{dim}_{F}\left(\left(\bigcap_{L \in D_{0}} L\right) \cap B\right) \leq \operatorname{dim}_{F}\left(\bigcap_{L \in D_{0}} L\right)=t
$$

Hence $\forall B \in U: \operatorname{dim}_{F}\left(\left(\bigcap_{L \in D_{0}} L\right) \cap B\right)=\operatorname{dim}_{F}\left(\bigcap_{L \in D_{0}} L\right) \&$ $\&\left(\bigcap_{L \in D_{0}} L\right) \cap B \leq \bigcap_{L \in D_{0}} L$. It follows from this that $\forall B \in U:\left(\bigcap_{L \in D_{0}} L\right) \cap$ $\cap B=\left(\bigcap_{L \in D_{0}} L\right)$. Then we obtain $\forall B \in U: \bigcap_{L \in D_{0}} L \subseteq B$. It means
that $\bigcap_{L \in D_{0}} L \subseteq \operatorname{ker} U$. But $\operatorname{ker} U \subseteq \bigcap_{L \in D_{0}} L$. Therefore $\operatorname{ker} U=\bigcap_{L \in D_{0}} L$. Now we have that $\{0\}=\bigcap_{L \in D_{0}} L$. Taking into account $\left|D_{0}\right|<\infty$, by (C3), $\{0\}=\bigcap_{L \in D_{0}} L \in U$. Now apply (C1).

Example 1. Let F be a field and V be a vector space over F with $\operatorname{dim}_{F} V=k_{0}$ and k be a non-finite cardinal number such that $k \leq k_{0}$. Then

$$
U_{k}=\left\{L \mid L \leq V, \operatorname{dim}_{F}(V / L)<k\right\}
$$

satisfies (C1), (C2), (C3), (C4), (C5).
Proof. (C1) Let $L \in U_{k}, L \leq N \leq V$. It is obvious that there exists an epimorphism $\pi: V / L \rightarrow V / N$. Hence $V / L=H \oplus T$ for some subspaces $H \cong V / N, T$ of V / L. It follows from this that $\operatorname{dim}_{F}(V / N)=\operatorname{dim}_{F}(H) \leq$ $\operatorname{dim}_{F}(H \oplus T)=\operatorname{dim}_{F}(V / L)<k$. Whence $\operatorname{dim}_{F}(V / N)<k$. Now we obtain $N \in U_{k}$.
(C2) Let $L \in U_{k}, f \in \operatorname{End}(V)$. By Lemma 1, $V /(L: f)_{V} \cong$ $\cong f(V) /(f(V \cap L)$. By Corollary 3.7 (3) [2, p.46], $f(V) /(f(V) \cap L) \cong$ $\cong(f(V)+L) / L$. It follows from this that $V /(L: f)_{V} \cong(f(V)+L) / L$. Since $(f(V)+L) / L \leq V / L \& \operatorname{dim}_{F}(V / L)<k, \operatorname{dim}_{F}\left(V /(L: f)_{V}\right)<k$. Thus $(L: f)_{V} \in U_{k}$.
(C3) Let $L, M \in U_{k}$. Hence $\operatorname{dim}_{F}(V / L)<k \& \operatorname{dim}_{F}(V / M)<k$. It is easy to see that

$$
\operatorname{dim}_{F}(V /(L \cap M)) \leq \operatorname{dim}_{F}(V / L)+\operatorname{dim}_{F}(V / M)
$$

Therefore $\operatorname{dim}_{F}(V /(L \cap M))<k+k=k$ [4, p.417]. Thus $L \cap M \in U_{k}$. (C4) Let $N \in U_{k} \wedge L \leq N \leq V \wedge\left(\forall g \in \operatorname{End}(V)_{N}:(L: g)_{V} \in\right.$ U_{k}). Thus $V=N \oplus W$ for some subspace W. Consider the following homomorphism:

$$
g: V \rightarrow V, g(n+w)=n,(n \in N, w \in W)
$$

Then, by Lemma $1, V /(L: g)_{V} \cong g(V) /(g(V) \cap L)=N / L$. Hence

$$
\operatorname{dim}_{F}(N / L)=\operatorname{dim}_{F}\left(V /(L: g)_{V}\right)<k
$$

It is obvious that $V / L=N / L \oplus K$ for some subspace K. But $K \cong$ $\cong(V / L) /(N / L) \cong V / N$. Since $N \in U_{k}, \operatorname{dim}_{F} K=\operatorname{dim}_{F}(V / N)<k$. Hence $\operatorname{dim}_{F}(V / L)=\operatorname{dim}_{F}(N / L)+\operatorname{dim}_{F} K<k+k=k$. Thus $L \in U_{k}$.
(C5) Now apply Proposition 1.

Definition 1. A non-empty collection $F(M)$ of submodules of a left R module M satisfying (C1), (C2), (C3) is said to be a (preradical) filter of M.

Example 2. Let M be a left R-module and $f \in \operatorname{End}(M)$ such that $f^{n}(M)$ is a fully invariant submodule of M for any $n \in\{1,2, \ldots\}$. Then $\left\{L \leq M \mid \exists n \in\{1,2, \ldots\}: f^{n}(M) \subseteq L\right\}$ is a collection satisfying (C1), (C2), (C3), (C4), (C5).

Proof. (C1) This is clear.
$(\mathrm{C} 2)$ Let $f^{n}(M) \subseteq L$ and $g \in \operatorname{End}(M)$. Then $g\left(f^{n}(M)\right) \subseteq f^{n}(M)$. Hence $g\left(f^{n}(M)\right) \subseteq L$. Therefore $f^{n}(M) \subseteq(L: g)_{M}$.
(C3) Let $f^{n}(M) \subseteq L, f^{m}(M) \subseteq N$, and $n \leq m . f^{m}(M) \subseteq f^{n}(M)$. Hence $f^{m}(M) \subseteq L \cap N$.
(C4) Let $f^{m}(M) \subseteq N, N \in G e n(M), L \leq N \leq M$, and

$$
\forall g \in \operatorname{End}(M)_{N} \exists n(g): f^{n(g)}(M) \subseteq(L: g)_{M}
$$

Then it is easily seen that $f^{m} \in \operatorname{End}(M)_{N}$. Put $n_{0}:=n\left(f^{m}\right)$. Hence $f^{n_{0}}(M) \subseteq\left(L: f^{m}\right)_{M}$. Therefore $f^{n_{0}+m}(M) \subseteq L$. (C5) Apply Proposition 1.

References

[1] A.I. Kashu, Radicals and torsions in modules, Chisinau: Stiintsa, 1983. 154 p.
[2] F.W. Anderson, K.R. Fuller, Rings and categories of modules, Berlin-Heidelberg-New York: Springer, 1973. 340 p.
[3] L. Bican, T. Kepka, P. Nemec, Rings, modules, and preradicals, Lect. Notes Appl. Math. 75, New York, Marcell Dekker, 1982. 241 p.
[4] W. Sierpinski, Cardinal and ordinal numbers, Warsaw: PWN, 2nd edition, 1965. 492 p.

Contact information

Yuriy Maturin
Institute of Physics, Mathematics and Computer Science,Drohobych Ivan Franko State Pedagogical University, Stryjska, 3, Drohobych 82100, Lviv Region, Ukraine E-Mail: yuriy_maturin@hotmail.com URL: www.drohobych.net/ddpu/

Received by the editors: 03.11.2010
and in final form 03.11.2010.

