
Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 12 (2011). Number 2. pp. 1 – 24

c© Journal “Algebra and Discrete Mathematics”

Generalized multiplicative bases

for one-sided bimodule problems

Vyacheslav Babych, Nataliya Golovashchuk

and Sergiy Ovsienko

Communicated by A. V. Zhuchok

Abstract. We consider a class of normal bimodule problems

satisfying some structure, triangularity and finiteness conditions.

For a bimodule problem from this class we construct explicitly an

analogue of multiplicative basis which we call quasi multiplicative.

Introduction

A classification of bimodule problems of finite and tame representation
type and their indecomposable representations and description of their
representation categories belongs to important problems of representation
theory [6, 7, 8]. A useful tool for a solution of the finiteness problem is so
called “covering method” ([5, 3]), which is especially effective when the basis
of associative algebra ([4]) or bimodule problem ([9]) is multiplicative. We
give a generalization of the notion of a scalarly multiplicative basis from [9]
and apply it for a wider class of bimodule problems. For a faithful bimodule
problem from our class we construct explicitly the quasi multiplicative
basis using mainly geometrical techniques.

1. Preliminaries

Let k be algebraically closed field. Unless otherwise stated, all the
categories we consider are the categories over k, all morphism spaces are
finite dimensional, and all functors are k-linear. A category K is called local,
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2 Generalized multiplicative bases

provided for every X ∈ ObK the endomorphism algebra K(X,X) is local,
and regular, if, in addition, every invertible morphism is automorphism.
A category K is called fully additive or Krull-Schmidt category if K is
a category with finite direct sums and every idempotent from K splits,
i. e. it has kernel and cokernel. A full subcategory K0 ⊂ K will be called
an additive skeleton of K, provided K0 is regular and every X ∈ ObK is
isomorphic to a finite direct sum of objects from K0.

For a local category K and for every X ∈ ObK there exists the
decomposition K(X,X) = k1X ⊕ RadX, where RadX is the Jacobson
radical of the algebra K(X,X). If K is regular, then we denote by RadK
the radical of K, i. e. an ideal in K such that RadK(X,Y ) = K(X,Y ) for
X 6= Y , and RadK(X,X) = RadX, X,Y ∈ ObK.

Let V be a K-bimodule ([1]). A category K (a bimodule V) is called
locally finite dimensional, if for any X ∈ ObK the spaces ⊕

Y ∈ObK

K(X,Y )

and ⊕
Y ∈ObK

K(Y,X) ( ⊕
Y ∈ObK

V(X,Y ) and ⊕
Y ∈ObK

V(Y,X)) are finite di-

mensional, and finite dimensional, provided the spaces ⊕
X,Y ∈ObK

K(X,Y )

( ⊕
X,Y ∈ObK

V(X,Y )) are finite dimensional.

Given a category K, we denote by addK an additive hull of K, i. e. a
minimal fully additive category which contains K. For a K-bimodule V,
we denote by addV the corresponding addK-bimodule.

A pair A = (K,V) consisting of a category K and a K-bimodule V is
called a bimodule problem over K or shortly bimodule problem. A bimodule
problem A will be called normal, provided the category K is regular, and
both K and V are locally finite dimensional. All the bimodule problems we
will consider are assumed to be normal. Given some S ⊂ ObK denote by
KS the full subcategory of K with ObKS = S, and by VS the subbimodule
VS = KSVKS . A bimodule problem AS = (KS ,VS) is called the restriction
of A to S.

For a bimodule problem A = (K,V), a representation M of A is
a pair M = (MK,MV), where MK ∈ ObaddV = ObaddK and MV ∈
addV(MK,MK). If M , N are two representations of A, then a morphism
f from M to N is a morphism f ∈ addK(MK, NK) such that NV · f − f ·
MV = 0. The composition of morphisms and the unit morphisms in the
representation category repA and in the category addK coincide.

Given two bimodule problems A = (K,V) and A′ = (K′,V′), a mor-
phism of bimodule problems θ : A → A′ is a pair θ = (θ0, θ1), where
θ0 : K → K′ is a k-functor, θ1 : V → V′ is a K-bimodule morphism with
the K-bimodule structure on V′ induced by θ0 ([1]).

Let A = (K,V) be a normal bimodule problem. Bigraph Σ(= ΣA) =
(Σ0,Σ1) is called a basis of the bimodule problem A, if Σ0 = ObK,
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Σ0
1(X,Y ) is a basis of V(X,Y ), and Σ1

1(X,Y ) is a basis of RadK(X,Y ),
X,Y ∈ ObK. For all x, y ∈ Σ1 such that the product xy is not specified,
we assume xy = 0. A bimodule problem is called connected, if its bigraph
is connected.

Let V be a K-bimodule. We say that x ∈ RadK(X,Y ) annihilates the
bimodule V, if xa = 0, bx = 0 for any Z ∈ ObK, a ∈ V(Z,X), b ∈ V(Y, Z).
The ideal of the category K consisting of all elements annihilating the
bimodule V is called the annihilator of V and is denoted by AnnK(V). A
bimodule V is called faithful provided AnnK(V) = 0. We call a bimodule
problem A = (K,V) faithful, if the bimodule V is faithful. For a bimodule
problem A, a faithful part of A is defined as the faithful bimodule problem
Ared,Ared = (Kred,V), where Kred = K/AnnK V. Remark that a restriction
of faithful bimodule problem may not be faithful. Faithful part of restriction
of a bimodule problem is called faithful restriction.

Let A = (K,V) be a bimodule problem, and V′ ⊂ V be a subbimodule
of V such that V′ 6= 0, V′ 6= V. Denote by ≻ the minimal relation of (strict)
partial order on the set of bimodule problems such that A ≻ A′ and
A ≻ A′′, where A′ ≃ (K,V′), A′′ ≃ (K,V/V′), and A ≻ AS for any proper
subset S ⊂ ObK. Similarly we denote by ∼ the minimal equivalence such
that for every ideal I ⊂ K, IV = VI = 0, holds A ∼ AI = (K/I,V),
and if A ≃ B then A ∼ B. The transitive closure of ≻ and ∼ defines a
preorder on the set of bimodule problems, which defines the strict order,
denoted again by ≻. The relations ≻ and ∼ are obviously defined on the
set of isoclasses of bimodule problems. If for bimodule problems A, B
holds A ≻ B then we say B is a subproblem of A.

Let A = (K,V) be a normal bimodule problem, R = RadK, Σ be a
basis of A. Radical R is called nilpotent if Rn = 0 for some n ∈ N. The
integer N is called the nilpotence degree of A if RN = 0, but RN−1 6= 0.
Denote by Vi = Ri−1V, i = 1, . . . , N . We have two filtrations

R ⊃ R
2 ⊃ . . . ⊃ R

N−1 ⊃ 0, V1 ⊃ V2 ⊃ . . . ⊃ VN ⊃ 0. (1)

Remark that all inclusions in (1) are strict, and for A faithful Vi 6= 0 for
all i = 1, . . . , N .

The map h : R ∪ V → N such that h(x) = max{i ∈ N | x ∈ Ri ∪ Vi} is
called the height of an element. Let h(0) = ∞. Then h(xy) > h(x) + h(y)

and h(x+ y) > min{h(x), h(y)} for x, y ∈ R∪V. Let Σk1
(i)

= Σk1 ∩ h
−1(i),

i = 1, . . . , N , k = 0, 1. Clearly, the set {Σk1
(i)
, i = 1, . . . , N} is a partition

of Σk1, k = 0, 1.

Definition 1. The basis Σ of bimodule problem A we call triangled (with

respect to the filtration (1)), if
N−1
∪
l=i

Σ1
1
(l)

is a basis of Ri and
N
∪
l=i

Σ0
1
(l)

is a

basis of Vi, i = 1, . . . , N .
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Lemma 1 ([6]). Every normal finite dimensional bimodule problem A
with the nilpotent radical has a triangled basis.

Remark 1. For a triangled basis Σ of a normal bimodule problem A =
(K,V) with nilpotent radical R = RadK, the following properties hold:

1) Σ1
1
(i)

is a basis of Ri/Ri+1 modulo Ri+1, i = 1, . . . , N − 1, Σ0
1
(i)

is a
basis of Vi/Vi+1 modulo Vi+1, i = 1, . . . , N ;

2) for x ∈ R∪V the equality x =
∑
y∈Σ1

λyy, λy ∈ k, implies h(y) > h(x)

for any y ∈ Σ1 with λy 6= 0.

Definition 2. A normal bimodule problem A with nilpotent radical R =
RadK we call admitted if the set ObK can be decomposed to a disjoint
union ObK = ObK+ ∪ObK− such that inequality V(X,Y ) 6= 0 implies
X ∈ ObK−, Y ∈ ObK+, and R(X,Y ) 6= 0 implies X,Y ∈ ObK+.
The property of a bimodule problem A to be admitted depends only on
the bigraph ΣA, therefore we will use the notation Σ+

0 = ObK+ and
Σ−
0 = ObK−.

Let A = (K,V) be an admitted bimodule problem with nilpotent
radical R = RadK and a triangled basis Σ.

Remark 2. There are the decompositions

Vi = ⊕
E∈Σ−

0 ,A∈Σ
+
0

Vi(E,A), R
i = ⊕

A,B∈Σ+
0

R
i(A,B), i = 1, . . . , N

of k-vector spaces with the multiplications

R
i(A,B)× Vj(E,A) → Vi+j(E,B), A,B ∈ Σ+

0 , E ∈ Σ−
0 ,

R
i(B,C)× R

j(A,B) → R
i+j(A,C), A,B,C ∈ Σ+

0 .

Definition 3. For a, b ∈ V, we say that a<
R

b (or simply a < b), if b ∈ Ra.

In other words, a < b if and only if ra = b for some r ∈ R(A,B), in this
case we write a <r b. Obviously, the order <

R

on V is non-reflexive and

transitive. Two elements a, b ∈ V are called comparable is either a<
R

b or

b<
R

a. For A ∈ Σ+
0 let ordA =

∑

E∈Σ−

0

dimkV(E,A) =
∑

E∈Σ−

0

|Σ1(E,A)|. It

is clear, that h(a) < h(b) for any a, b ∈ Σ0
1, a < b, i. e. h is monotonous

with respect to <.

Lemma 2. The admitted bimodule problems Ak = (Kk,Vk), k = 1, ., 4,
given respectively by the following bases (see bigraphs below)

1) Σ+
0 = {A}, Σ−

0 = {E1, E2, E3, E4}, Σ0
1 = {ai : Ei → A, i =

1, . . . , 4}, Σ1
1 = ∅;
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2) Σ+
0 = {A}, Σ−

0 = {E}, Σ0
1 = {a1, a2 : E → A}, Σ1

1 = ∅;
3) Σ+

0 = {A,B}, Σ−
0 = {E1, E

′
1, E2, E

′
2, E3 = E′

3}, Σ
0
1 = {ai : Ei →

A, bi : E
′
i → B, i = 1, 2, 3}, Σ1

1 = ∅;
4) Σ+

0 = {A,B}, Σ−
0 = {E1, E2, E3}, Σ

0
1 = {ai : Ei → A, bi : Ei →

B, i = 1, 2, 3}, Σ1
1 = {ϕ : A→ B}, and ϕai = bi, i = 1, 2, 3;

E1

a1

��
E4 a4

//
A E2

a2oo

E3

a3

OO

A1

A

E

a1

DD

a2

ZZ

A2

E1

a1

��

E′

1

b1
��

A E3a3
oo

b3
//
B

E2

a2

OO

E′

2

b2

OO

A3

E1

a1

��

b1

��
A

ϕ //
B

E2

a2

OO

b2

99

E3

a3

ee

b3

OO

A4

are of strictly unbounded representation type (see [6]).

Definition 4. Define the class C of admitted bimodule problems A = (K,V)
with nilpotent radical R = RadK and a triangled basis Σ such that for any
E ∈ Σ−

0 , A,B ∈ Σ+
0 , A 6= B:

1) ordA 6 3;
2) any a1, a2 ∈ Σ0

1(E,A) are comparable;
3) if ordA = ordB = 3, then any a ∈ Σ0

1(E,A), b ∈ Σ0
1(E,B) are

comparable;
4) if ϕ ∈ R(A,B), then

∑

E∈Σ−

0

dimkϕV(E,A) < 3.

If one of the conditions 1)–4) does not hold, then, using Lemma 2,
it is easy to check that the bimodule problem is of strictly unbounded
representation type.

Let A ∈ C. For any x ∈ R ∪ V there is a basis decomposition x =∑
y∈Σ1

λy y, where almost all λy ∈ k equals 0. Denote by cony x = λy the

content of y in x. Two nonzero elements x, y ∈ R ∪ V are called collinear
if k∗x = k∗y, in this case we write x‖y. Given a, b ∈ Σ0

1 we shall write
a<

Σ
b and a<

ξ
b if there exists ξ ∈ Σ1

1 such that b‖ξa.

Definition 5. Given A,B ∈ ObΣ+
0 , denote by A(A,B) = (K(A,B),V(A,B))

the restriction of the bimodule problem A to the set

SA,B = {A,B}∪{E ∈ Σ−
0 | V(E,A) 6= 0 or V(E,B) 6= 0}.

Denote by Σ(A,B) ⊂ Σ the basis of A(A,B) which is the restriction of Σ
to A(A,B). We will write A(A) instead of A(A,A) in the case A = B. The
bimodule problem A(A,B) inherits the triangled structure from A (and may
have the proper one).
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Remark 3. Let A,B ∈ Σ+
0 . If A is faithful, then bimodule problem

A(A,B) is faithful as well. Moreover, R(A,B) = Rad(K(A,B))(A,B). This
fact follows from the equality

AnnK(V) = ∪
A,B∈ObΣ+

0

Ann
K(A,B)(V(A,B)).

2. Quasi multiplicative basis. Main result

Let A = (K,V) be a bimodule problem from C with nilpotent radical
R = RadK and a triangled basis Σ.

A change of basis Σ1 = Σ0
1 ∪ Σ1

1 consists of a family of changes of
bases in all V(E,A) (the change of Σ0

1) and in all R(A,B) (the change of
Σ1

1), A,B ∈ Σ+
0 , E ∈ Σ−

0 . These new bases gives the new basis Σ′ of A.
The change of basis from Σ to Σ′ we call triangled, provided both Σ and
Σ′ are triangled.

Definition 6. Let x, y ∈ Σi1(X,Y ), i = 0, 1. For λx ∈ k, λy ∈ k∗, the
change of basis from Σ to Σ′ such that y′ = λyy + λxx, and z′ = z
for all z ∈ Σ1\{y} we call elementary. An elementary change is called
correct, if h(x) > h(y). Denote by Cλ(x, y) and Cλ(y) elementary changes
y′ = y + λx, λ ∈ k, and y′ = λy, λ ∈ k∗, respectively.

The change of basis from Σ to Σ′ is called standard if it is the super-
position of correct elementary changes. We use only standard changes of
basis. Usually we do not modify the notations of basis and its elements
after change, and write Σ and y instead of Σ′ and y′ respectively.

Definition 7. For A,B ∈ Σ+
0 , E ∈ Σ−

0 , a ∈ Σ0
1(E,A), b ∈ Σ0

1(E,B) let

S(a, b) = {ξ ∈ Σ1
1(A,B) | conb(ξa) 6= 0},

C(a, b) = {ξ ∈ Σ1
1(A,B) | ξa‖b} ⊂ S(a, b).

(2)

A pair (a, b) is called adjusted if S(a, b) = C(a, b). For any ϕ ∈ Σ1
1,

denote Pϕ = {(a, b) ∈ Σ0
1 × Σ0

1 | ϕ ∈ S(a, b)}. A ϕ ∈ Σ1
1 is called

single provided Pϕ = {(a, b)} and the pair (a, b) is adjusted, and joint
if Pϕ = {(a1, b1), (a2, b2)} with a1 6= a2, b1 6= b2, and the pairs (a1, b1),
(a2, b2) are adjusted. Obviously, if A is faithful, Pϕ 6= ∅ for any ϕ ∈ Σ1

1.

Remark 4. Let A,B ∈ Σ+
0 , A 6= B, ϕ ∈ Σ1

1(A,B). If three adjusted pairs
(ai, bi), i = 1, 2, 3, lies in Pϕ, then A 6∈ C by Definition 4, item 4).

Lemma 3. Let a ∈ Σ0
1(E,A), b ∈ Σ0

1(E,B), and a < b.
1) If ϕ, ψ ∈ S(a, b) and h(ϕ) > h(ψ), then there is a correct elementary

change of basis Cλ(ϕ, ψ), λ ∈ k∗, such that S′(a, b) = S(a, b)\{ψ}.
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2) There is a standard change of basis from Σ1 to Σ′
1 on Σ1

1(A,B),
such that |S′(a, b)| = 1.

Proof. Since h(ϕ) > h(ψ), then the elementary change of basis ψ′ =

ψ − conb(ψa)
conb(ϕa)

ϕ is correct and leads to the condition S′(a, b) = S(a, b)\{ψ}.
The second item follows from the first by induction algorithm.

We call elements ϕ1, ϕ2 ∈ Σ1
1(A,B), A,B ∈ Σ+

0 , A 6= B, joint parallel
if ord(A) = ord(B) = 3, and there are E0, E1, E2 ∈ Σ−

0 , ai ∈ Σ0
1(Ei, A),

bi ∈ Σ0
1(Ei, B), i = 0, 1, 2, such that the following hold:

1) C(a0, b0) = {ϕ1, ϕ2}, C(ai, bi) = {ϕi}, i = 1, 2;
2) Pϕi = {(a0, b0), (ai, bi)}, i = 1, 2 (see diagram below).

E1

a1
��

b1

&&

E2

b2
��

a2

xx
A

ϕ1

33
ϕ2

++
B

E0

a0

[[

b0

CC

Here some of vertices E0, E1, E2 may be equal, but the arrows a0, a1, a2
(b0, b1, b2) are pairwise different.

Given a1, . . . , at ∈ Σ1, define k∗〈a1, . . . , at〉 =
{ t∑
i=1
λiai | λi ∈ k∗

}
.

Definition 8. We say that the multiplication rule holds on A if given
any ϕ, ψ ∈ Σ1

1 with ψϕ 6= 0, one of the following conditions holds:
1) there is τ ∈ Σ1

1 s.t. ψϕ‖τ ;
2) ϕ, ψ are joint, and there are single τ1, τ2 ∈ Σ1

1 such that ψϕ ∈
k∗〈τ1, τ2〉, and there are E1, E2 ∈ Σ−

0 , with, possibly, E1 = E2, A,B,C ∈
Σ+

0 , where two of the vertices A, B, C may be equal, ai ∈ Σ0
1(Ei, A),

bi ∈ Σ0
1(Ei, B), ci ∈ Σ0

1(Ei, C), such that ϕai ‖bi, ψbi ‖ci, i = 1, 2, and
τjai‖δijci, i, j = 1, 2 where δij is the Kronecker delta:

E1a1

��
b1
��

c1

��
A

τ2

33
τ1

++ϕ //
B ψ //

C

E2

a2

[[
b2

OO

c2

CC

Definition 9. The triangled basis Σ of a bimodule problem A ∈ C is called
quasi multiplicative if the following properties hold:

1) Any pair (a, b) ∈ Σ0
1 × Σ0

1 with S(a, b) 6= ∅ is adjusted.
2) Any ϕ ∈ Σ1

1 with Pϕ 6= ∅ is either single or joint.
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3) For any a ∈ Σ0
1(E,A), b ∈ Σ0

1(E,B), the inequality |C(a, b)| 6 2
holds. If C(a, b) = {ϕ1, ϕ2}, then ϕ1, ϕ2 are joint parallel.

4) The multiplication rule holds on A.

It is an approximation of the notion of multiplicative basis ([4], [9]).

Theorem 1 (Main result). Let A be a faithful connected finite dimensional
bimodule problem from class C with nilpotent radical. Then there exists a
standard change of triangled basis to a quasi multiplicative one.

The rest of this paper is devoted to the proof of Theorem 1.

3. Bimodule problems with |Σ+
0 | = 1

Proposition 1. Let A = (K,V) be a faithful connected bimodule problem
from C with nilpotent radical R = RadK and a triangled basis Σ such
that Σ+

0 = {A}. Then there exists a standard change of basis such that Σ
becomes multiplicative and one the following conditions hold:

1) Σ1
1(A,A) = ∅;

2) |Σ1
1(A,A)| = 1, |Σ−

0 | 6 2, and there exists E ∈ Σ−
0 such that

Σ0
1(E,A) = {a1, a2}, ϕ12a1 = a2 for ϕ12 ∈ Σ1

1(A,A);
3) 2 6 |Σ1

1(A,A)| 6 3, Σ−
0 = {E}, Σ0

1(E,A) = {a1, a2, a3}, and
Σ1
1(A,A)={ϕ12, ϕ23, ϕ13} with, possibly, ϕ12 = ϕ23, where ϕ13 = ϕ23ϕ12,

ϕ12a1 = a2, ϕ23a2 = a3, ϕ13a1 = a3 (all other products are zero).

Proof. By Definition 4, ordA 6 3. Thus dimkV 6 3 and |Σ−
0 | 6 3. If

R = 0, then, obviously, Σ1
1(A,A) = ∅. Assume R 6= 0.

Consider the case |Σ−
0 | = 1. Here dimkVi/Vi+1 6 1, i = 1, 2, R3V =

V4 = 0 and so R3 = 0. Let N be nilpotence degree of A. Then 2 6 N 6 3.

We have V1 % V2 % V3 and dimkVi/Vi+1 = 1, i = 1, 2. Let ai ∈ Σ0
1
(i)

,
i = 1, . . . , N .

Let N = 2. If ϕ ∈ Σ1
1, then ϕa1 = λϕa2 for some λϕ ∈ k∗ and ϕa2 = 0.

If there is another ψ ∈ Σ1
1, then λψϕ− λϕψ = 0 due to faithfulness of A.

Hence, |Σ1
1| = 1. Applying correct elementary change Cλ−1

ϕ
(ϕ), we obtain

Σ1
1 = {ϕ12} such that ϕ12a1 = a2.

Let N = 3. Then for any ϕ ∈ Σ1
1
(2)

, we have ϕa1 ‖ a3, ϕak = 0,

k = 2, 3. Hence, as above, Σ1
1
(2)

= {ϕ13} and ϕ13a1 = a3, ϕ13a2 = 0.
Now if ϕ ∈ S(a1, a3)\{ϕ13}, then there exists correct elementary change
Cλ(ϕ13, ϕ) such that cona3(ϕa1) = 0, i. e.

S(a1, a3) = C(a1, a3) = {ϕ13}. (3)

Further, there is ϕ ∈ Σ1
1
(1)

such that ϕa2 = λϕa3, λϕ ∈ k∗. For

another ψ ∈ Σ1
1
(1)

with ψa2 = λψa3, λψ ∈ k∗, we have (λψϕ−λϕψ)a2 = 0.
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Applying correct elementary changes C−λψ/λϕ(ϕ, ψ) and Cλ−1
ϕ
(ϕ) (that

does not change C(a1, a3)), we obtain that Σ1
1
(1)

contains ϕ23 such that

ϕ23a2 = a3 and ϕa2 = 0 for any ϕ ∈ Σ1
1
(1)

\{ϕ23}, i. e.

S(a2, a3) = C(a2, a3) = {ϕ23}. (4)

Now it is obvious that Σ1
1\{ϕ13, ϕ23} ⊂ C(a1, a2) ⊂ Σ1

1
(1)

. For ϕ, ψ ∈
C(a1, a2), ϕ 6= ϕ23, Cλ(ϕ, ψ) does not change (3) and (4). Then, simi-
larly, S(a1, a2) = C(a1, a2) = {ϕ12}. If ϕ12 6= ϕ23, then there is some
Cλ(ϕ12) such that ϕ12a1 = a2, ϕ12a2 = 0. In this case ϕ23a1 = 0. Oth-
erwise, ϕ23a1 = λa2. Applying correct elementary changes Cλ(ϕ13) and
Cλ−1(a1), we obtain ϕ23a1 = a2, ϕ23a2 = a3 and ϕ13a1 = a3. In both
cases ϕ23ϕ12a1 = a3 = ϕ13a1, and hence ϕ23ϕ12 = ϕ13.

It remains to consider the case |Σ−
0 | > 1. If |Σ−

0 | = |Σ0
1|, then R = 0. So

Σ−
0 = {E1, E2}, and |Σ0

1| = 3. We have (up to renumbering) Σ0
1(E1, A) =

{a1, a2}, Σ
0
1(E2, A) = {a}. Since a1 and a2 are comparable by Definition

4 and A is faithful, then Σ1
1(A,A) = {ϕ}, and a2‖ϕa1. Therefore, we can

obtain ϕa1 = a2.

4. Bimodule problems with |Σ+
0 | = 2

Proposition 2. Let A = (K,V) be a faithful connected bimodule problem
from C with nilpotent radical R = RadK and a triangled basis Σ such
that Σ+

0 = {A,B}, A 6= B, and Σ−
0 = {E}. Then there exists a standard

change C of basis such that Σ becomes quasi multiplicative. If A(A) and
A(B) are endowed with quasi multiplicative basis, then C leaves these bases
unchangeable.

We give the proof by series of lemmas under conditions of Proposition 2.
First of all we note that since A ∈ C is a faithful connected bimodule
problem, then the bimodule problems A(A) and A(B) are faithful connected
as well by Remark 3. We assume that bases of A(A), A(B) are quasi
multiplicative (they exist by Proposition 1). So, it is sufficient to change
the basic elements from Σ1

1(A,B) ∪ Σ1
1(B,A) without changing the rest

of them from Σ1 in order to make Σ quasi multiplicative.
By Proposition 1, we can assert that Σ0

1(E,A) = {a1, . . . , aqA}, where
1 6 qA = dimkV(E,A) 6 3 due to Definition 4, Σ1

1(A,A) = {αij |
1 6 i < j 6 qA} where, possibly, α12 = α23 for the case qA = 3, and
C(ai, aj) = {αij}, α13 = α23α12 (if qA = 3), αijai = aj , i < j, and all
other products equals zero.

Similarly, Σ0
1(E,B) = {b1, . . . , bqB}, where 1 6 qB = dimkV(E,B) 6

3, Σ1
1(B,B) = {βij | 1 6 i < j 6 qB} (possibly, β12 = β23) and C(bi, bj) =
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{βij}, β13 = β23β12 (if qB = 3), βijbi = bj , i < j, and all other products
are zero.

Let h, hA and hB be heights of elements of bimodule problems A, A(A)

and A(B) respectively.

Remark 5. Any nonzero a ∈ V(E,A) is uniquely decomposed to a sum

a =
qA∑
k=i

λkak with i = hA(a), λi ∈ k∗, 1 6 i 6 qA. For a, a′ ∈ V(E,A),

a<
R

a′ if and only if hA(a) < hA(a
′) (see Proposition 1).

Lemma 4. Let a ∈ V(E,A), b ∈ V(E,B), and a<
R

b. Then au <
R

bv for all

u, v such that 1 6 u 6 hA(a) and hB(b) 6 v 6 qB. Besides, S(ai, bj) 6= 0
if and only if ai<

R

bj.

Proof. Denote i = hA(a), j = hB(b). Due to transitivity of <
R

it is sufficient

to show that ai<
R

bj . By Remark 5, we can assume a = ai + a′, where

a′ = 0 or hA(a
′) > i, and r′ai = a′ for some r′ ∈ R. Similarly, b = bj + b′,

where b′ = 0 or hB(b
′) > j. Since ra = b for some r ∈ R, then ai <s b for

s = r + rr′, and so ai<
R

b. While b<
R

b′, then s′ai = b′ for some s′ ∈ R. So

ai <s−s′ bj , and hence ai<
R

bj .

To prove second statement consider ξ ∈ S(ai, bj). Then hB(ξai) 6

hB(bj) = j. Since ai<
R

ξai, then ai<
R

bj as proved above. Conversely, while

rai = bj with r =
∑
ξ∈Σ1

1

λξξ, then S(ai, bj) 6= ∅.

4.1. The case qA = qB = 3

We have Σ0
1 = {a1, a2, a3, b1, b2, b3} with a1 <

α12

a2 <
α23

a3, α13 = α23α12,

and b1 <
β12

b2 <
β23

b3, β13 = β23β12. Any ak ∈ Σ0
1(E,A) and bl ∈ Σ0

1(E,B),

1 6 k, l 6 3, are comparable by Definition 4. Then, due to the triangularity,
there is the linear order on the set Σ0

1. Without loss of generality we can
assume a1 the smallest element. For x, y ∈ Σ0

1, let n(x, y) = |{z ∈ Σ0
1 |

x < z < y}|. If α12 = α23 = α then Σ1
1(A,A) = {α, α2}, and α3 = 0.

Lemma 5. If qA = qB = 3, α12 = α23 = α, and β12 = β23 = β, then
n(a1, a2) = n(a2, a3) = 0 and n(b1, b2) = n(b2, b3) = 0. Therefore the
following case occurs: a1 <α a2 <α a3 < b1 <β b2 <β b3.

Proof. If there exists b ∈ V(E,B) such that ai < b < ai+1, i = 1, 2, then
due to Lemma 4, there is bj ∈ Σ0

1(E,B) such that ai < bj < ai+1, in
particular, n(ai, ai+1) > 0.
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Assume n(a2, a3) > 1 (the cases n(a1, a2), n(b1, b2), n(b2, b3) > 1 can
be considered similarly). Then a2 <r bj <β bj+1 <s a3 for some r ∈
R(A,B), s ∈ R(B,A), j ∈ {1, 2}, and we have sβr = α+ λα2 ∈ R(A,A).
We can assume λ = 0. Indeed, otherwise sβrα = α2 and sβr′ = α for
r′ = r− λrα ∈ R(A,B). Since C(a2, a3) = S(a2, a3) = {α}, then there are
b′, b′′ ∈ V(E,B) such that a1 <r b

′ <β b
′′ <s a2. But this is impossible

while qB = 3.
Hence n(a1, a2) = n(a2, a3) = 1, and a1 <r b1 <s a2 with r ∈ R(A,B),

s ∈ R(B,A). As above, we can assume sr = α, a2 < b2 < a3. Then
a1 < b1 < a2 < b2 < a3 < b3.

Note that h(ϕ) = 1 for any ϕ ∈ ∪
i=1,2,3

S(ai, bi). By Lemma 3, there

is standard change of basis such that S(a3, b3) = C(a3, b3) = {ϕ3} and
S(a2, b2) = C(a2, b2) = {ϕ2} where, possibly, ϕ2 = ϕ3. Let ϕiai = λibi,
λi ∈ k∗, i = 2, 3. If there is ϕ ∈ S(a1, b1), ϕ 6= ϕ2, ϕ3, then we can do
standard change of basis such that S(a1, b1) = C(a1, b1) = {ϕ1}, ϕ1 6=
ϕ2, ϕ3. Otherwise, we can assume S(a1, b1) ⊂ {ϕ2, ϕ3}. Let ϕ3 ∈ S(a1, b1)
and ϕ3a1 = λ1b1 + λ′2b2 + λ′3b3, λ1 6= 0. If ϕ3 6= ϕ2, then standard

change ϕ′
3 = ϕ3 −

λ′2
λ2
ϕ2α −

λ′3
λ3
ϕ3α

2 leads to equalities ϕ′
3a1 = λ1b1,

ϕ′
3a2 = ϕ3a2 = 0, ϕ′

3a3 = λ3b3. If ϕ2 ∈ S(a1, b1), then similarly we
obtain ϕ′

2a1 = µ1b1, ϕ
′
2a2 = ϕ2a2 = λ2b2, ϕ

′
2a3 = 0, µ1 ∈ k∗. Hence

S(ai, bi) = C(ai, bi), i = 1, 2, 3, and we have one of the cases:
1) C(ai, bi) = {ϕi}, i = 1, 2, 3, where two of ϕ1, ϕ2, ϕ3 may be equal;
2) C(ai, bi) = {ϕi}, i = 2, 3, C(a1, b1) = {ϕ2, ϕ3}.
In the case ϕ2 = ϕ3 we have ϕ1 = ϕ3 as well, and similarly S(a1, b1) =

C(a1, b1) = {ϕ1}. But this case contradicts A ∈ C (see Remark 4).
Similarly, we can find ψ1, ψ2 ∈ Σ1

1 such that S(b1, a2) = C(b1, a2) =
{ψ1}, S(b2, a3) = C(b2, a3) = {ψ2}, where possibly ψ1 = ψ2, and finally

a1 <
ϕ1

b1 <
ψ1

a2 <
ϕ2

b2 <
ψ2

a3 <
ϕ3

b3 or a1 <
ϕ2,ϕ3

b1 <
ψ1

a2 <
ϕ2

b2 <
ψ2

a3 <
ϕ3

b3.

Let ϕ ∈ C(a1, b1), then ψ1ϕ‖α. Since αa2 = a3 then ϕ ∈ C(a2, b2),
and therefore ϕ = ϕ2. Furthermore, ϕ2ψ1‖β, then ψ1 = ψ2 and ϕ2a3 6= 0,
hence ϕ2 = ϕ3. But this contradicts Remark 4.

4.2. Comparable pairs

Definition 10. Denote by Π = ΠA,B the set

Π =
{
(ai, bj) ∈ Σ0

1(E,A)× Σ0
1(E,B) | ai<

R

bj
}
.

Let us define partial order on Π: given different pairs (ai, bj), (au, bv) ∈ Π,
we say that (ai, bj) ≺ (au, bv) if au 6 ai < bj 6 bv. We say that two
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pairs (ai, bj), (au, bv) ∈ Π are comparable, provided (ai, bj) ≺ (au, bv) or

(au, bv) ≺ (ai, bj). We call the map Π ∋ (ai, bj)
hm7−→ max

ξ∈S(ai,bj)
h(ξ) ∈ N

the maximal height, and denote by Sm(ai, bj) = {ξ ∈ S(ai, bj) | h(ξ) =
hm(ai, bj)}. For (ai, bj) ∈ Π, Sm(ai, bj) 6= ∅.

Lemma 6. If (ai, bj) ∈ Π, ξ ∈ Sm(ai, bj), then hB(ξai) = hB(bj) = j. In
particular, h(ξai) = h(bj), and h(bj)− h(ai) > hm(ai, bj).

Proof. If ξai ‖ bl + b′ for l < j and hB(b
′) > l, then βljξai ‖ bj + b′′ and

hB(b
′′) > j. Hence there exists η ∈ S(ai, bj) such that h(η) > h(βljξ) >

h(ξ) = hm(ai, bj), and we get contradiction. Then h(bj) = h(ξai) >

h(ξ) + h(ai), hence h(bj)− h(ai) > hm(ai, bj).

Lemma 7. If (ai, bj), (au, bv) ∈ Π and hm(ai, bj) = hm(au, bv) then the
pairs (ai, bj), (au, bv) are incomparable.

Proof. If conbj (rai) 6= 0, r ∈ R(A,B), then hm(ai, bj) > h(r). Indeed, if
r =

∑
ξ∈Σ1

1(A,B)

λξξ, then h(ξ) > h(r) whenever λξ 6= 0. Since conbj (rai) 6= 0,

then there exists ξ ∈ S(ai, bj) such that λξ 6= 0, and therefore hm(ai, bj) =
max

η∈S(ai,bj)
h(η) > h(ξ) > h(r).

For (ai, bj), (au, bv) ∈ Π, the inequality hm(ai, bj) < hm(au, bv) holds
whenever (ai, bj) ≺ (au, bv). Let (ai, bj) ≺ (au, bv), ϕ ∈ Sm(ai, bj). If i = u
and j < v, then conbv(rai) 6= 0 for r = βjvϕ. If u < i, j = v, then
conbj (rau) 6= 0 for r = ϕαui. If u < i, j < v, then conbv(rau) 6= 0 for
r = βjvϕαui. For all the cases, hm(au, bv) > h(r) > h(ϕ) = hm(ai, bj).

Further, writing (ai, bj), (au, bv) ∈ Π, we assume (ai, bj) 6= (au, bv).

Remark 6. If (ai, bj), (au, bv) ∈ Π are incomparable, then either i < u,
j < v or i > u, j > v.

Proof. The pairs (ai, bj), (ai, bv), j 6= v, are comparable as well as the
pairs (ai, bj), (au, bj), i 6= u. Hence i 6= u, j 6= v. Given i < u, assume that
j > v, then ai < au < bv < bj , and hence (au, bv) ≺ (ai, bj).

Definition 11. For any subset X ⊂ Π, put C(X) =
⋃

(ai, bj)∈X

C(ai, bj).

Given ϕ ∈ Σ1
1(A,B), let Xϕ = {(ai, bj) ∈ X | ϕ ∈ C(ai, bj)}. Obviously,

Xϕ 6= ∅ if and only if ϕ ∈ C(X). A subset X ⊂ Π is named upper closed
if for any (ai, bj) ∈ X and (au, bv) ∈ Π there hold:

if hm(au, bv) > hm(ai, bj), then (au, bv) ∈ X;

if hm(au, bv) = hm(ai, bj) and u > i, then (au, bv) ∈ X.
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The pair (ai, bj) ∈ Π\X is called boundary for the upper closed set
X ⊂ Π if X ∪ {(ai, bj)} is upper closed too. A upper closed subset X ⊂ Π
is said to be canonical if the following conditions hold:

1) if (ai, bj) ∈ X then we have |S(ai, bj)| = |C(ai, bj)| = 1;
2) 1 6 |Xϕ| 6 2 for each ϕ ∈ C(X);
3) if Xϕ = {(ai, bj), (au, bv)}, then ai 6= au, bj 6= bv, and hm(ai, bj) =

hm(au, bv) = 1.

Remark that X = ∅ is canonical.
A standard basis change is called careful for the canonical subset

X ⊂ Π if X is a canonical subset with respect to the new basis as well.

Lemma 8. Let X ⊂ Π be a canonical subset and let (ai, bj) ∈ Π\X be a
boundary pair. Then Sm(ai, bj) ⊂ C(ai, bj).

Proof. If conbk(ξai) 6= 0, ξ ∈ S(ai, bj), k > j, then ξ ∈ S(ai, bk), and so
(ai, bk) ∈ X since (ai, bk) ≻ (ai, bj). We have S(ai, bk) = C(ai, bk) = {ξ} by
the definition of X, hence ξai‖bk that contradicts to inclusion ξ ∈ S(ai, bj).
Therefore conbk(ξai) = 0 for all ξ ∈ S(ai, bj) and k > j.

Let ϕ ∈ Sm(ai, bj). If ϕai∦bj , then we conclude ϕai = µkbk+ . . .+µjbj
with k < j and µk 6= 0, µj 6= 0. Therefore (βkjϕ)ai = µkbj+. . .+µj(βkjbj).
There exists ξ in decomposition βkjϕ =

∑
ξ∈Σ1

1(A,B)

λξξ such that λξ 6= 0 and

conbj (ξai) 6= 0, so ξ ∈ S(ai, bj). But h(ξ) > h(βkjϕ) > h(ϕ) = hm(ai, bj),
and we obtain contradiction.

Lemma 9. If qA = qB = 3, α12 = α23 = α, and β12 = β23 = β, then
ΠA,B = {(ai, bj) | i, j = 1, 2, 3} is canonical, each ϕ ∈ Σ1

1(A,B) is single,
and multiplication rule holds.

Proof. By Lemma 5, a1 <α a2 <α a3 <τ b1 <β b2 <β b3. Hence, ΠA,B =
{(ai, bj) | i, j = 1, 2, 3} is upper closed. By Lemma 3 there is standard
basis change that leads to condition S(a3, b1) = C(a3, b1) = {τ}. Obviously,
h(τ) = 1.

Let τa2 = λ1b1 + λ2b2 + λ3b3, then standard basis change τ ′ = τ −
λ1τα − λ2βτα − λ3β

2τα implies τ ′a2 = 0, τ ′a3 = b1. Similarly, we can
obtain τa1 = 0, τa2 = 0, τa3 = b1.

Denote ϕij = βj−1τα3−i, i, j = 1, 2, 3. Then ϕij = ϕkl implies i = k,
j = l. Indeed, if k < i, then 0 = βl−1τα3−kai = βj−1τα3−iai = bj . So
i = k. Similarly, j = l. It is easy to check that ϕijak = δikbj .

If there is ϕ ∈ S(ai, bj)\{ϕij}, then h(ϕ) 6 h(ϕij) and ϕ 6= ϕkl for
all k, l. So basis change Cλ(ϕij , ϕ) with λ = conbj (ϕai) is correct and
leads to condition ϕ /∈ S(ai, bj). Thus, C(ai, bj) = S(ai, bv) = {ϕij} and
Σ1
1(A,B) = {ϕij , i, j = 1, 2, 3}. Multiplication rule holds obviously.
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4.3. Induction step

We exclude the case of Lemma 9 from further consideration in this
subsection. Let us fix a canonical subset X ⊂ Π and a boundary pair
(ai, bj) ∈ Π\X.

Lemma 10. If there exists ϕ ∈ Sm(ai, bj)\C(X), then there is a careful
basis change such that S(ai, bj) = C(ai, bj) = {ϕ}, ϕ 6∈ C(X).

Proof. By Lemma 8, ϕ ∈ C(ai, bj). For a ψ ∈ S(ai, bj)\{ϕ}, we have
h(ψ) 6 h(ϕ). Hence, there exists λ ∈ k∗ such that the elementary basis
change ψ′ = ψ + λϕ is correct and leads to the condition S(ai, bj) =
S(ai, bj)\{ψ} by Lemma 3.

Let us show that this change is careful. If ψ 6∈ C(X) then it is clear.
Otherwise, there is the pair (au, bv) ∈ X such that S(au, bv) = C(au, bv) =
{ψ}. If ϕau 6= 0, then ϕ ∈ S(au, bw) for some v 6 w 6 qB since h(ϕau) >
h(ψau) = h(bv). Then (au, bw) ∈ X while (au, bw) ≻ (au, bv), and therefore
ϕ ∈ C(X). We have a contradiction. So ϕau = 0, and ψ′au = ψau, hence
this change of basis is careful.

Corollary 1. If Sm(ai, bj) 6⊂ C(X) then X∪{(ai, bj)} is a canonical subset
as well.

Lemma 11. Let Y = {(aik , bjk), k = 1, . . . , n} ⊂ Π be any set of pairwise
incomparable pairs in Π. Then n 6 3, and if n = 3, then qA = qB = 3,
Y = {(a1, b1), (a2, b2), (a3, b3)}.

Proof. By Remark 6 i1 < . . . < in and j1 < . . . < jn up to renumbering.
Then n6qA63. If n = 3, then i1 = j1 = 1, i2 = j2 = 2, i3 = j3 = 3.

Lemma 12. If Sm(ai, bj) ⊂ C(X), then hm(ai, bj) = 1.

Proof. Assume h = hm(ai, bj) > 1. Denote Y =
⋃

ϕ∈Sm(ai,bj)

Xϕ. By defini-

tion 11, |Y| > |Sm(ai, bj)|, and hm(au, bv) = h for any (au, bv) ∈ Y, and
hence the pairs from Y ∪ {(ai, bj)} are pairwise incomparable by Lemma
7. By Lemma 11, |Y| 6 2.

Assume Sm(ai, bj) = {ϕ, ψ}, and |Xϕ| = |Xψ| = 1,Y = Xϕ
⋃
Xψ. Then,

by Lemma 11, qA = qB = 3, and Y ∪ {(ai, bj)} = {(ak, bk) | k = 1, 2, 3},
besides, (ai, bj) = (a1, b1) and Π = X

⋃
{(a1, b1)} while X is upper closed.

Let Xϕ = {(a2, b2)}, Xψ = {(a3, b3)}.
Since hm(ak, bk) = h > 1, k = 1, 2, 3, and there is a basic element

of each height, then either a1 < a2 < b1 < a3 < b2 < b3 or a1 < a2 <
a3 < b1 < b2 < b3. In the first case hm(a1, b1) = hm(a3, b3) = 2 but
hm(a2, b2) = 3, and we get a contradiction.
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In the second case hm(ak, bk) = 3, k = 1, 2, 3. Let τ ∈ S(a3, b1). Then
h(τα13) > h(τ) + h(α13) > 3, and τα13 =

∑
ξ∈Ξ

λξξ, where Ξ = {ξ ∈

Σ1
1(A,B) | h(ξ) > 3}. Since each pair (ak, bk) is adjusted, conbk(ξak) = 0

for all ξ ∈ Ξ\{ϕ, ψ}. Then 0 = conb2(τα13a2) = λϕ while conb2(ψa2) = 0.
Similarly, λψ = 0, in contradiction with condition conb1(τα13a1) 6= 0.

Therefore, Sm(ai, bj) = {ϕ} ⊂ C(ai, bj), h(ϕ) = h. Since ϕ ∈ C(X),
there exists (au, bv) ∈ X such that C(au, bv) = {ϕ}, the pairs (ai, bj) and
(au, bv) are incomparable, and i < u, j < v by Remark 6 in view of X is
upper closed.

Since h > 1, then ϕ is a linear combination of the summands belonging
to the set

Γ =
{
ξα, βξ, βξα | α ∈ Σ1

1(A,A), β ∈ Σ1
1(B,B), ξ ∈ Σ1

1(A,B)
}
∩ R

h.

Since ϕai‖bj (resp., ϕau‖bv) then there is γ ∈ Γ such that conbj (γai) 6= 0
(resp., conbv(γau) 6= 0). Denote Γ′ = {γ ∈ Γ | conbj (γai) 6= 0}, Γ′′ = {γ ∈
Γ | conbv(γau) 6= 0}. Then Γ′ = Γ′′. Indeed, if γ =

∑
ψ∈Σ1

1(A,B)
h(ψ)>h

λψψ ∈ Γ′,

then conbj (ψai) = 0 and conbv(ψau) = 0 for any ψ 6= ϕ by the construction.
Therefore λϕ 6= 0, conbv(γau) = λϕ conbv(ϕau) 6= 0 and γ ∈ Γ′′. The proof
of inclusion Γ′′ ⊂ Γ′ is similar. Remark that γai 6= 0 and γau 6= 0 for any
γ ∈ Γ′.

Let γ ∈ Γ′. If γ = ξα or γ = βξα, then αai 6= 0 and αau 6= 0. So
α is joint arrow while i < u, and qA = 3. If γ = βξ or γ = βξα, then
γai‖bj+ b

′, where h(b′) > h(bj), j > 2, and bv‖b3. Thus bj , bv ∈ βV(E,B).
But j < v, hence β is a joint arrow, and qB = 3.

If γ = ξα ∈ Γ′, then α = α12 = α23, so i = 1, u = 2, and we
have a1 <α a2 <ξ b

′
j , a2 <α a3 <ξ b

′
v. Here h(b′j − bj) > h(bj) and

h(b′v − bv) > h(bv). There is r ∈ R(B,B) such that b′j <r b
′
v by Remark 5.

We obtain a2 <ξ b
′
j <r b

′
v, and we can find β ∈ Σ1

1(B,B) such that
conbv(βξau) 6= 0, hence βξ ∈ Γ′ and β is a joint arrow. If γ = βξ, then,
similarly, α is a joint arrow.

If α, β are both joint, then qA = qB = 3, α = α12 = α23, β = β12 = β23.
This case of Lemma 9 is excluded from consideration.

Lemma 13. Let Sm(ai, bj) ⊂ C(X). Then one of the following conditions
holds (after some careful basis change):

1) S(ai, bj) = C(ai, bj) = {ϕ}, h(ϕ) = 1, ϕ ∈ C(X), and |Xϕ| = 1;

2) qA = qB = 3, i = j = 1, Π = X
⋃
{(a1, b1)} and C(ak, bk) = {ϕk},

Xϕk = {(ak, bk)}, k = 2, 3, C(a1, b1) = {ϕ2, ϕ3}.
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Proof. By Lemma 12, hm(ai, bj) = 1. Clearly, Sm(ai, bj) = S(ai, bj). By
Lemma 8, S(ai, bj) = C(ai, bj). Denote Y =

⋃
ϕ∈C(ai,bj)

Xϕ. By definition 11,

|Y| > |C(ai, bj)|, and if (au, bv) ∈ Y , then hm(au, bv) = 1. Hence, the pairs
from Y

⋃
{(ai, bj)} are pairwise incomparable by Lemma 7, and so |Y| 6 2

by Lemma 11.

If |Y| = 1 then C(ai, bj) = {ϕ} and |Xϕ| = 1, which implies 1). Assume
|Y| = 2. If C(ai, bj) = {ϕ} then Y = Xϕ. Thus Pϕ includes three adjusted
pairs, which is impossible by Remark 4. Hence, C(ai, bj) = {ϕ, ψ}, and
Y = Xϕ ∪ Xψ. There are (a′, b′), (a′′, b′′) ∈ X such that a′ < a′′, and
C(a′, b′) = {ϕ}, C(a′′, b′′) = {ψ}. The pairs (ai, bj), (a

′, b′), (a′′, b′′) are
pairwise incomparable by Lemma 7, while h(ϕ) = h(ψ) = 1. Since X is
upper closed, it is possible only if i = j = 1, then a1 <

ϕ,ψ
b1 < a′ <

ϕ
b′ <

a′′ <
ψ
b′′, and Π = X

⋃
{(a1, b1)}. We obtain the case 2).

Lemma 14. Let X ⊂ Π be a canonical subset and let (ai, bj) ∈ Π\X be a
boundary pair. Then there exists a careful basis change on Σ1

1(A,B) such
that X∪ {(ai, bj)} is a canonical subset in Π except of the case qA = qB =
3, a1 <

ϕ2,ϕ3

b1<a2 <
ϕ2

b2 < a3 <
ϕ3

b3, and i = j = 1, Π = X
⋃
{(a1, b1)},

C(ak, bk) = {ϕk}, Xϕk = {(ak, bk)}, k = 2, 3, C(a1, b1) = {ϕ2, ϕ3}.

Proof. By Lemma 12, if ϕ ∈ C(X ∪ {(ai, bj)}) and h(ϕ) > 1, then ϕ is
single. Then the proof follows from Lemmas 10 and 13.

Combining results of Lemmas 9, 14 and 12, we obtain the following

Corollary 2. Under conditions of Proposition 2, one of the following
cases occurs:

1) Π is a canonical set;

2) Π\{(a1, b1)} is a canonical set; this is the case from Lemma 14.

In any case, for every ai ∈ Σ0
1(E,A) and ϕ ∈ Σ1

1(A,B), either ϕai = 0
or ϕai‖bj for some bj ∈ Σ0

1(E,B), and the height of each joint arrow in
Σ1
1(A,B) equals 1.

Denote by ΠA,B and ΠB,A
1 the sets, defined by definition 10. Assume

both ΠA,B and ΠB,A satisfy Corollary 2. Then at most one of these set
may be not canonical (since a1 < b1 and b1 < a1 are not simultaneous).

1Defined as in Definition 10.
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4.4. Multiplication rule on Σ1
1

For any ϕ, ψ ∈ Σ1
1, we say that the product ψϕ belongs to Σ1

1, if
ψϕ ‖ ξ ∈ Σ1

1. Further considerations are provided under assertions of
Corollary 2.

Lemma 15. Under conditions of Proposition 2, multiplication rule holds
for A.

Proof. Due to Corollary 2, either the set ΠA,B is canonical, or we have the
special case of Lemma 14 and ΠA,B\{(a1, b1)} is a canonical set. Similarly,
ΠB,A or ΠB,A\{(b1, a1)} is a canonical set. The special case occurs at
most for one of the cases ΠA,B and ΠB,A, so we can assume ΠB,A to be
canonical. Due to Proposition 1, the sets ΠA,A and ΠB,B are canonical as
well.

Since AnnR V = 0 then C(ΠX,Y ) = Σ1
1(X,Y ) for all X,Y ∈ {A,B}. If

X, Y or Z denotes one of the vertices A or B, then we write xi, yi or zi
instead of basic elements ai or bi respectively. Further we will omit the
condition 1 6 i for the indices.

Assume r = ψϕ 6= 0, ϕ ∈ Σ1
1(X,Y ), ψ ∈ Σ1

1(Y, Z) where X,Y, Z ∈
{A,B}. Let

r =
∑

ξ∈Σ1
1(X,Z)

λξξ, λξ ∈ k. (5)

Denote by Σr the set of all ξ from decomposition (5) such that λξ 6= 0.
Then h(ξ) > h(r) > 1 for any ξ ∈ Σr, and if X 6= Z, ξ is single by
Corollary 2.

1) If rxi 6= 0 for some i 6 qX , then there exist j 6 qY and k 6 qZ
such that ϕxi‖yj and ψyj‖zk by construction, so rxi‖zk.

2) Let r∈R(A,A). If Σ1
1(A,A) = {α, α2}, then r belongs to Σ1

1(A,A).
Indeed, if r = λα+ µα2, λ, µ ∈ k∗, then ra1 = λa2 + µa3 in contradiction
with item 1), and Lemma is proved. So, if r ∈ R(A,A), we assume all the
arrows from Σ1

1(A,A) to be single below.

3) Now it is enough to consider the situation when all the arrows from
Σr are single. Denote Σr = {τ1, . . . , τp}, p > 0, and Pτt = {(xit , zkt)},
t = 1, . . . , p. Then xi1 , . . . , xip are pairwise different arrows and p 6 3.
Indeed, if xiu = xiv then zku 6= zkv while ΠX,Z\{(x1, z1)} is canonical,

and the sum rxiu =
p∑
v=1

λτvτvxiu =
qZ∑
i=1

µizi contains at least two nonzero

summands in contradiction with item 1).

4) If τ1, τ2 ∈ Σr, τ1 6= τ2, then ϕ, ψ are joint. Indeed, since Pτt =
{(xit , zkt)}, then ϕxit 6= 0 for t = 1, 2, and hence there exist yj1 , yj2 such
that (xit , yjt) ∈ Pϕ. By item 3),xi1 6= xi2 and hence Pϕ = {(xi1 , yj1), (xi2 , yj2)},
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and ϕ is joint. Obviously, both (xi1 , yj1), (xi2 , yj2) have the same maximal
height. By Lemma 7, the pairs (xi1 , yj1), (xi2 , yj2) are incomparable, and
hence yj1 6= yj2 by Remark 6. Since ψyjt ‖ rxit ‖ zkt , t = 1, 2, then ψ is
joint as well, and Pψ = {(yj1 , zk1), (yj2 , zk2)}. The pairs (yj1 , zk1), (yj2 , zk2)
are incomparable as above. In particular, zk1 6= zk2 . Due to Remark 4,
|Σr| = p 6 2. In the case p = 1 the assertion of Lemma is obvious. Now
assume p = 2.

5) The pairs (xi1 , zk1), (xi2 , zk2) are incomparable. Otherwise, up to
renumbering, xi1 < xi2 < zk2 < zk1 . But xi1 < yj1 < zk1 and xi2 < yj2 <
zk2 . The elements yj1 and yj2 are comparable, hence either xi1 < yj1 <
yj2 < zk2 < zk1 , and (yj2 , zk2) ≺ (yj1 , zk1), or xi1 < xi2 < yj2 < yj1 , and
so (xi2 , yj2) ≺ (xi1 , yj1). Both cases contradict to 4).

6) Let r = ψϕ ∈ R(A,B), ϕ = α ∈ Σ1
1(A,A). Then by 4), α and

ψ ∈ Σ1
1(A,B) are joint. Hence qA = 3, Σ1

1(A,A) = {α, α2}, Pα =
{(a1, a2), (a2, a3)}, Pψ = {(a2, bj1), (a3, bj2)}, j1 < j2. Using 4) and 5),
we obtain ψα = λ1τ1 + λ2τ2, where λ1, λ2 ∈ k∗ and τ1, τ2 ∈ Σ1

1(A,B)
are single, and Pτt = {(at, bjt)}. By Corollary 2 and Definition 11,
C(at, bjt) = {τt}, C(at+1, bjt) = {ψ}, t = 1, 2. So we have the follow-
ing partially ordered set:

a3 ψ

''
a2

τ2 //

α
88

ψ

&&

bj2

a1 τ1
//

α
99

bj1
βj1j2

88

where
ξ

−→ means <
ξ
, and C(bj1 , bj2) = {βj1j2}. If |Σβj1j2ψ| > 1, then βj1j2

is joint by 4), and the proof follows from Lemma 9. Otherwise βj1j2ψ‖τ2.

Assume that bj1 < a3 with C(bj1 , a3) = {ξ}. Then a1 < a2 <ψ bj1 <ξ
a3 < bj2 . We obtain ξψa2 ‖ a3 and hence ξψ ‖α + µα2, µ ∈ k. In this
case ξψa1 ‖a2 + µa3 6= 0 and ψa1 6= 0 which contradicts to Remark 4.
If a3 < bj1 with C(a3, bj1) = {ξ}, then a1 < a2 <α a3 <ξ bj1 < bj2 and
hence ξαa2 ‖ bj1 , and therefore h(ψ) > h(ξα) > 1 which contradicts to
Definition 11, since ψ is joint. Thus, a3 and bj1 are incomparable. By 3)
of Definition 4, qB = 2. In particular, j1 = 1, j2 = 2.
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Therefore, we have the following bigraph2:

A

α
-- ψ //

τ1
))

τ2

55 B

β12
qq

(a3, b1 are incomparable)

E

a1

SS

a2

__
a3

jj

b1

66

b2

II

According to 2) of Definition 8 multiplication rule holds for ψϕ.

7) Let r = ψϕ ∈ R(A,B), ψ = β ∈ Σ1
1(B,B). Then similarly qA = 2,

qB = 3, Σ1
1(B,B) = {β, β2}, ϕ, τ1, τ2 ∈ Σ1

1(A,B), ψ = β, βϕ ∈ k∗〈τ1, τ2〉,
Pϕ={(a1, b1), (a2, b2)}, Pβ={(b1, b2), (b2, b3)}, Pτt={(at, bt+1)}, t=1, 2.

A

α12

-- ϕ //
τ1

))

τ2

55 B

β
qq

(a2, b1 are incomparable)

E

b1

44

b2

@@

b3

KK

a1

UU
a2

ii

8) Let r = ψϕ ∈ R(A,A). Then qA = 3, qB > 2, ϕ ∈ Σ1
1(A,B),

ψ ∈ Σ1
1(B,A), ψϕ = k∗〈α12, α23〉, α12, α23 ∈ Σ1

1(A,A), α12 6= α23, and
Pϕ = {(a1, bj1), (a2, bj2)}, Pψ = {(bj1 , a2), (bj2 , a3)}, 1 6 j1 < j2 6 qB;

A

α12

--
α23

;;

ϕ
++
B

ψ

kk
β

qq

E

a1

SS

a2

]]
a3

ii

bj1

77

bj2

JJ

If qB = 3 and b ∈ Σ1
1(E,B)\{bj1 , bj2} then either b < a1 or a3 < b. Besides,

β12 6= β23.

Indeed, by 2), α12 6= α23. By 3), 4), 5) we have ai1 <
ϕ
bj1 <

ψ
ak1 ,

ai2 <
ϕ
bj2 <

ψ
ak2 , and hence a1 <

ϕ
bj1 <

ψ
a2 <

ϕ
bj2 <

ψ
a3. Then rat ‖ at+1,

ϕat‖bjt , ψbjt‖at+1, t = 1, 2, and r = λα12 + µα23, λ, µ ∈ k∗.
If qB = 3, then there exists bk ∈ Σ0

1(E,B)\{bj1 , bj2}. Since ϕ is joint,
then h(ϕ) = 1 by Definition 11, and hence bk < a1 or a3 < bk. Assume
β12 = β23 = β. If b1 < a1 <

ϕ
b2 <

ψ
a2 <

ϕ
b3 <

ψ
a3, then ϕψ‖β + µβ2, µ ∈ k,

and hence ψb1 6= 0 which is impossible by Remark 4. If a1 <
ϕ
b1 <

ψ
a2 <

ϕ

2Note that the pictured subbigraphs can be non-full.
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b2 <
ψ
a3 < b3, then ϕψ‖β+µβ2, µ ∈ k, and hence ϕa3 6= 0 in contradiction

with Remark 4. Finally, if we have the special case from Lemma 14, and
ϕ,ϕ′ ∈ C(a1, b1), then ψϕ′‖α12 since otherwise ϕ′ ∈ C(a2, b2).

9) The case r = ψϕ ∈ R(B,B) can be obtained from 8) by swapping
A and B.

The proof of this Lemma implies the following result.

Remark 7. If qA 6 2, qB 6 2, then all the arrows from Σ1
1 are single and

the product of two basic elements is basic up to scalar multiplier.

The proof of Proposition 2 is complete.

5. General case

Remark 8. Let A = (K,V) be a faithful connected bimodule problem
from C with nilpotent radical R = RadK and a triangled basis Σ, and
A ∈ Σ+

0 , E ∈ Σ−
0 . In this case R{A,E} = R(A,A). If V(E,A) 6= 0 and

AnnR(A,A) V(E,A) 6= 0, then dimkV(E,A) = 1 and AnnR(A,A) V(E,A) =

R(A,A). Moreover, in this case ordA = 3, and there is E1 ∈ Σ−
0 such that

dimkV(E1, A) = 2, AnnR V(E1, A) = 0.

Proposition 3. Let A = (K,V) be a faithful connected bimodule problem
from C with nilpotent radical R = RadK and a triangled basis Σ such
that |Σ+

0 | = 2 (but not necessary |Σ−
0 | = 1). Then there exists a standard

change C of basis from Σ to quasi multiplicative one. If A(A) for A ∈
Σ+

0 is endowed with quasi multiplicative basis, then C leaves these bases
unchangeable.

To prove Proposition 3, let Σ+
0 = {A,B}, Σ−

0 = {E1, . . . , Ep}. Since
A is faithful, then the restrictions A(A) and A(B) are faithful as well by
Remark 3. Due to Proposition 1, we can assume that both A(A) and A(B)

have quasi multiplicative bases.
Denote by Ai and A′

i the restriction and the faithful restriction of
A to the set {A,B,Ei}, i = 1, . . . , p, respectively. Then V′

i = Vi, and
R′
i = Ri/AnnRi Vi. For the proof of proposition, it is enough to check, that

we can choose a correct basis simultaneously for all A′
i, i = 1, . . . , p.

Due to connectivity of A, there exists i such that V(Ei, A) 6= 0
and V(Ei, B) 6= 0. Therefore, if |Σ−

0 | > 1, then dimV(Ej , A) 6 2 and
dimV(Ej , B) 6 2 for all j 6= i. If V(Ej , A) = 0 for some j, then denote

Ã = (K̃, Ṽ) = A{A,B,Σ−

0 \{Ej}}
If dimV(Ej , B) = 1 then Ã is faithful

as well as A, and the proof for A follows from the proof for Ã. Other-
wise, if dimV(Ej , B) = 2, then Σ1

1(B,B) = {β12} by Proposition 1, and
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Ann
K̃
Ṽ = 〈β12〉. In this case the proof for A follows from the proof for

the faithful part of Ã.
So we can assume that dimkV(Ei, A) > 0 and dimkV(Ei, B) > 0 for all

i = 1, . . . , p. By Definition 4,
p∑
i=1

dimkV(Ei, A) 6 3,
p∑
i=1

dimkV(Ei, B) 6 3.

Therefore p 6 3. If p = 1, then the proof follows from Proposition 2. Hence
p = 2 or p = 3.

Assume there exists E1 ∈ Σ−
0 such that dimkV(E1, A) = 3 (resp.,

dimkV(E1, B) = 3); then p = 1. In the case dimkV(E1, A) = 2 (resp.,
dimkV(E1, B) = 2) we have p 6 2. Finally, p = 3 only for the case
dimkV(Ei, A) = dimkV(Ei, B) = 1 for i = 1, 2, 3.

Consider the case Σ−
0 = {E1, E2}. By Proposition 2 A′

1 is endowed
with quasi multiplicative basis Σ1

1(A
′
1).

Lemma 16. Assume Σ−
0 = {E1, E2}, dimkV(E2, A) = dimkV(E2, B) = 1.

Then Proposition 3 holds.

Proof. Assume A′
1 satisfies Proposition 2. We have 1 6 |Σ0

1(E1, A)| 6 2,
1 6 |Σ0

1(E1, B)| 6 2. Consider the case Σ0
1(E1, A) = {a1, a2}, a1 < a2,

Σ0
1(E1, B) = {b1, b2}, b1 < b2. By assumption, Σ0

1(E2, A) = {a3}, and
Σ0
1(E2, B) = {b3}.

E2

a3

��
b3

��
A

α12

-- ...
B...

β12
qq

E1

a1

ZZ
a2

ff

b1

88

b2

DD

Note that S(a3, b3) = C(a3, b3). Due to triangularity condition, either
C(a3, b3) = ∅ or C(b3, a3) = ∅. Since A is faithful, and h(ϕ) = 1 for
any ϕ ∈ C(a3, b3), then C(a3, b3) contains at least one ϕ 6∈ Σ1

1(A
′
1). If

ϕ, ψ ∈ C(a3, b3), ϕ 6∈ Σ1
1(A

′
1), ψ ∈ Σ1

1(A
′
1), then correct elementary change

Cλ(ϕ, ψ) leads to condition C(a3, b3) = {ϕ} without corruption of multi-
plication on Σ1

1(A
′
1). Finally, if C(a3, b3) ⊂ Σ1

1(A
′
1), then |C(a3, b3)| 6 2

while hm(a3, b3) = 1. If C(a3, b3) = {ϕ}, then ϕ can not be joint in A′
1

by Remark 4. Hence, ϕ is joint in A. If C(a3, b3) = {ϕ, ψ}, ϕ, ψ are joint
parallel in A. Obviously, multiplication rule holds in any case. The cases
|Σ0

1(E1, A)| = 1 or |Σ0
1(E1, B)| = 1 are similar.

Lemma 17. Assume Σ−
0 = {E1, E2}, Σ

0
1(E1, A) = {a1, a2}, a1 < a2,

Σ0
1(E2, A) = {a3}, Σ

0
1(E1, B) = {b1}, Σ

0
1(E2, B) = {b2, b3}, b2 < b3. Then

Proposition 3 holds.
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Proof. Let us apply Proposition 2 to A′
1. We have

E2

a3

��

b3

��b2
**

A

α12

-- ... ,,
B...ll

β23
qq

E1

a1

\\
a2

kk

b1

??

Denote Ξ = Σ1
1(A

′
1)(A,B). Since A′

1 has quasi multiplicative basis
Σ1
1(A

′
1), then |Ξ ∪ Σ1

1(A
′
1)(B,A)| 6 2. If Ξ = {ϕ, ψ}, then a1 <

α12

a2<
ϕ
b1,

a1<
ψ
b1 and hence h(ϕ) = 1, ψ ‖ ϕα12. By the associativity condition,

ψ 6∈ Σ1
1(A

′
2)(A,B). If Ξ = {ϕ}, then h(ϕ) = 1. Thus, if Ξ 6= ∅, then Ξ

contains the unique ϕ of height 1. If ϕ 6∈ Σ1
1(A

′
2) or Ξ = ∅, then there is a

standard change of Σ1
1(A

′
2)(A,B) such that each pair (ai, bj) ∈ ΠA,B(A

′
2)

is adjusted and every arrow in Σ1
1(A,B) is single.

Let ϕ ∈ Ξ ∩ Σ1
1(A

′
2). Then h(ϕ) = 1. Consider (ai, bj) ∈ ΠA,B(A

′
2).

If ϕ, ψ ∈ S(ai, bj), then Cλ(ψ, ϕ) leads to condition ϕ /∈ S(ai, bj). If
ϕ /∈ S(ai, bj), then |S(ai, bj)| = 1 and S(ai, bj) = C(ai, bj) after some
standard basis change on Σ1

1(A
′
2)(A,B). If S(ai, bj) = {ϕ}, then ϕ is

joint. In any case, each arrow from Σ1
1(A,B)\{ϕ} is single. All changes

above does not corrupt quasi multiplicativity of Σ1
1(A

′
1). The basis on

Σ1
1(A

′
2)(B,A) can be chosen similarly. It is clear that multiplication rule

holds on A.

Lemma 18. Let Σ−
0 = {E1, . . . , Ep}, 2 6 p 6 3, and Σ0

1(Ei, A) = {ai},
Σ0
1(Ei, B) = {bi}, i = 1, . . . , p. Then Proposition 3 holds.

Proof. Here we have

E2

a2
��

b2

''

E3

b3
��

a3

ww
A

...
B...

E1

a1

^^

b1

@@

As above, applying a standard basis change we obtain that each comparable
pair is adjusted and every arrow from Σ1

1 is either single or joint, which
implies multiplication rule on A.

The proof of Proposition 3 is completed.



V. Babych, N. Golovashchuk, S. Ovsienko 23

Lemma 19. Let A ∈ C be a faithful bimodule problem with a triangled
basis Σ, and Σ+

0 = {A,B,C}. If ϕ ∈ Σ1
1(A,B), ψ ∈ Σ1

1(B,C), and
|{A,B,C}| = 3, then ψϕ belongs to Σ1

1 except of the case:

E1
a1

��
b1

��

c1

��
A

τ2

44
τ1

**ϕ //
B ψ //

C

E2

a2

ZZ

b2

OO

c2

DD

where ψϕ ∈ k∗(τ1, τ2), τ1, τ2 ∈ Σ1
1(A,C), and Pϕ = {(a1, b1), (a2, b2)};

Pψ = {(b1, c1), (b2, c2)}, Pτt = {(at, ct)}, t = 1, 2.

The proof is similar to the proof of Lemma 15.

The proof of Theorem 1. Since A is a faithful, then the bimodule problems
A(A), A(A,B) are faithful as well for any A,B ∈ Σ+

0 by Remark 3. Applying
consequently Proposition 1 to A(A), Proposition 3 to A(A,B), and Lemma 19
for all A,B,C ∈ Σ+

0 , we obtain the proof of Theorem 1.

Conclusion

The main result of the paper states the existence of quasi multiplicative
basis for a faithful connected finite dimensional bimodule problem with
nilpotent radical from considered class C. The authors are going to apply
the obtained results to construct the universal covering for such problem.
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