Generalized \oplus -supplemented modules

Hamza Çalışıcı and Ergül Türkmen

Communicated by V. V. Kirichenko

ABSTRACT. Let R be a ring and M be a left R-module. M is called generalized \oplus - supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized \oplus -supplemented modules is generalized \oplus -supplemented. If M is a generalized \oplus -supplemented module with (D3), then every direct summand of M is generalized \oplus -supplemented. We also give some properties of generalized cover.

1. Introduction

In this note R will be an associative ring with identity and all modules unital left R-modules. Let M be an R-module. The notation $N \leq M$ means that N is a submodule of M. Rad (M) will indicate Jacobson radical of M. A submodule N of an R-module M is called *small* in M (notation $N \ll M$), if $N + L \neq M$ for every proper submodule L of M. An epimorphism $f: K \to M$ is called a *small cover* (cover in [9]) if $Ker f \ll K$. Let M be an R-module and let N and K be any submodules of M. K is called a *supplement* of N in M if K is minimal with respect to M = N + K. K is a supplement of N in Miff M = N + K and $N \bigcap K \ll K$ (see [8]). Following [8], M is called *supplemented* if every submodule of M has a supplement in M, and is called *amply supplemented* (supplemented in [6]) if for any two submodules U and V of M with M = U + V, V contains a supplement of U in M.

²⁰⁰⁰ Mathematics Subject Classification: 16D10,16D99.

Key words and phrases: generalized cover, generalized supplemented module, \oplus -supplemented module, generalized \oplus -supplemented module.

and $N \cap K \ll M$, then K is called a *weak supplement* of N in M(see [5]). Then clearly N is a weak supplement of K, too. A module M is called *weakly supplemented* if every submodule of M has a weak supplement in M.

Let M be an R-module and let N and K be any submodules of M with M = N + K. If $(N \cap K \subseteq \text{Rad}(M))N \cap K \subseteq \text{Rad}(K)$ then K is called a *(weak) generalized supplement* of N in M. Since Rad (K) is the sum of all small submodules of K, every supplement submodule is a generalized supplement in M. Following [9], M is called *generalized supplemented* or briefly GS- module if every submodule N of M has a generalized supplement K in M, and it is called *generalized amply supplemented* or briefly GAS-module in case M = K + L implies that K has a generalized supplement $L' \leq L$. Clearly every (amply) supplemented module is generalized (amply) supplemented. In [7], a module M is called *weakly generalized supplemented* or briefly WGS-module if every submodule K of M has a weak generalized supplement N in M. For characterizations of generalized (amply) supplemented and weakly generalized supplemented modules we refer to [7] and [9].

Recall from [1] that an epimorphism $f: P \to M$ is called a generalized cover if $Ker f \subseteq \text{Rad}(P)$, and a generalized cover $f: P \to M$ is called generalized projective cover in case P is a projective module. Clearly every small cover is a generalized cover. In [1], M is called (generalized) semiperfect if every factor module of M has a (generalized) projective cover. The concepts of (generalized) semiperfect modules were introduced in [1] and [9].

This note consists of two sections. We obtain some properties of generalized cover in section 2. In section 3 we introduce generalized \oplus -supplemented modules. We show that every finite direct sum of generalized \oplus -supplemented modules is generalized \oplus -supplemented.

2. Generalized cover

It was shown in [9, Lemma 1.1] that if $f: M \to N$ and $g: N \to K$ are generalized covers, then $gf: M \to K$ is a generalized cover, too. We prove that the converse of this fact is also true.

Proposition 2.1. If $f: M \to N$ and $g: N \to K$ are two epimorphisms, then f and g are generalized covers if and only if $gf: M \to K$ is a generalized cover.

Proof. (\Rightarrow) Let $m \in Kergf$. Then (gf)(m) = 0 and $f(m) \in Kerg \subseteq$ Rad (N). Note that $Rf(m) \ll N$. Suppose that $m \notin$ Rad (M). Then there exists a maximal submodule P of M such that P + Rm = M. Then f(P) + R f(m) = N, and since $R f(m) \ll N$ it follows that f(P) = N. Hence $P = f^{-1}(f(P)) = P + Ker f = M$. This is a contraction.

(⇐) Let $m \in Ker f$. Then g(f(m)) = 0 and by assumption, $m \in Ker gf \subseteq \text{Rad}(M)$, i.e. $Ker f \subseteq \text{Rad}(M)$.

Let $n \in Ker g$. Since f is an epimorphism there exists an element m of M such that f(m) = n. Then (gf)(m) = g(n) = 0 and hence $m \in Ker gf \subseteq \text{Rad}(M)$, which implies $n = f(m) \in f(\text{Rad}(M)) \subseteq \text{Rad}(N)$ by [8, 21.6]. Hence $Ker g \subseteq \text{Rad}(N)$.

Theorem 2.2. An epimorphism $f: M \to N$ is a generalized cover if and only if for every homomorphism $h: L \to M$ such that $fh: L \to N$ is epic, h(L) is a weak generalized supplement of Ker f.

Proof. (\Rightarrow) Let $f : M \to N$ be a generalized cover and let $m \in M$. Since fh is epic there exists $l \in L$ such that f(m) = (fh)(l). Then $m - h(l) \in Ker f$ and hence $m \in h(L) + Ker f$, which means that M = Ker f + h(L). By assumption, $Ker f \cap h(L) \subseteq \text{Rad}(M)$ and so h(L) is a weak generalized supplement of Ker f.

(\Leftarrow) It is clear that $1_M f = f$ is epic, for the identity homomorphism $1_M : M \to M$. By the hypothesis, $1_M (M) = M$ is a weak generalized supplement of Ker f, that is, Ker $f \subseteq \text{Rad}(M)$. Hence $f : M \to N$ is a generalized cover.

Proposition 2.3. Any homomorphic image of a WGS-module is a WGS-module.

Proof. Let $f: M \to N$ be a homomorphism and M be a WGS-module. Suppose that U is a submodule of f(M). Then $f^{-1}(U)$ is a submodule of M. Since M is a WGS-module, $f^{-1}(U)$ has a weak generalized supplement V in M, i.e. $f^{-1}(U) + V = M$ and $f^{-1}(U) \cap V \subseteq \operatorname{Rad}(M)$. Then $f(f^{-1}(U)) + f(V) = f(M)$. It follows that U + f(V) = f(M). Note that $U \cap f(V) = f(f^{-1}(U) \cap V) \subseteq f(\operatorname{Rad}(M)) \subseteq \operatorname{Rad}(f(M))$ by [8, 23.2]. Hence f(M) is a WGS-module. □

3. Generalized \oplus -supplemented modules

Recall from [6] that a module M is called \oplus -supplemented if every submodule of M has a supplement that is a direct summand of M. Clearly \oplus -supplemented modules are supplemented.

In this section, we define the concept of generalized \oplus -supplemented modules, which is adapted from Xue's generalized supplemented modules, and give the properties of these modules.

Definition 3.1. A module M is called generalized \oplus -supplemented if every submodule of M has a generalized supplement that is a direct summand of M.

Clearly \oplus -supplemented modules are generalized \oplus -supplemented. Also, finitely generated generalized \oplus -supplemented modules are \oplus -supplemented by [8, 19.3], but it is not generally true that every generalized \oplus -supplemented module is \oplus - supplemented. Let R be a non-local dedekind domain with quotient field K. Then the module K is generalized \oplus -supplemented, but it is not \oplus -supplemented. If K is \oplus -supplemented, R is a local ring by [10]. This is a contradiction by assumption. Later we shall give other examples of such modules (see Example 3.11).

To prove that a finite direct sum of generalized \oplus -supplemented modules is generalized \oplus -supplemented, we use the following standard lemma (see [8, 41.2]).

Lemma 3.2. Let N and K be submodules of a module M such that N+K has a generalized supplement X in M and $N \cap (K+X)$ has a generalized supplement Y in N. Then X + Y is a generalized supplement of K in M.

Proof. Let X be a generalized supplement of N + K in M. Then M = (N + K) + X and $(N + K) \cap X \subseteq \text{Rad}(X)$. Since $N \cap (K + X)$ has a generalized supplement Y in N, we have $N = N \cap (K + X) + Y$ and $(K + X) \cap Y \subseteq \text{Rad}(Y)$. Then

$$M = N + K + X = \left[N \bigcap (K + X) + Y\right] + K + X = K + (X + Y)$$

and

$$K \bigcap (X+Y) \leq X \bigcap (K+Y) + Y \bigcap (K+X)$$

$$\leq X \bigcap (K+N) + Y \bigcap (K+X)$$

$$\leq \operatorname{Rad} (X) + \operatorname{Rad} (Y)$$

$$\leq \operatorname{Rad} (X+Y) .$$

Hence X + Y is a generalized supplement of K in M.

Theorem 3.3. For any ring R, any finite direct sum of generalized \oplus -supplemented R-modules is generalized \oplus -supplemented.

Proof. Let n be any positive integer and M_i $(1 \le i \le n)$ be any finite collection of generalized \oplus -supplemented R-modules. Let $M = M_1 \oplus M_2 \oplus \dots \oplus M_n$.

Suppose that n = 2, that is, $M = M_1 \oplus M_2$. Let K be any submodule of M. Then $M = M_1 + M_2 + K$ and so $M_1 + M_2 + K$ has a generalized supplement 0 in M. Since M_1 is generalized \oplus -supplemented,

 $M_1 \cap (M_2 + K)$ has a generalized supplement X in M_1 such that X is a direct summand of M_1 . By Lemma 3.2, X is a generalized supplement of $M_2 + K$ in M. Since M_2 is generalized \oplus -supplemented, $M_2 \cap (K + X)$ has a generalized supplement Y in M_2 such that Y is a direct summand of M_2 . Again applying Lemma 3.2, we have that X + Y is a generalized supplement of K in M. Since X is a direct summand of M_1 and Y is a direct summand of M_2 , it follows that $X \oplus Y$ is a direct summand of M. The proof is completed by induction on n.

We prove the following proposition, which is a modified form of Proposition 2.5 in [3]. We need the following lemma.

Lemma 3.4. Let M be a module and N be a submodule of M. If U is a generalized supplement of N in M, then $\frac{U+L}{L}$ is a generalized supplement of $\frac{N}{L}$ for every submodule L of N.

Proof. By the hypothesis, M = N + U and $U \cap N \subseteq \text{Rad}(U)$. Hence $\frac{M}{L} = \frac{N}{L} + \frac{U+L}{L}$ for every submodule L of N. Consider that the natural epimorphism $\phi : N \to \frac{N}{L}$. Then by [8, p. 191], $\phi(\text{Rad}(U)) \subseteq \text{Rad}(\frac{U+L}{L})$. Since $U \cap N \subseteq \text{Rad}(U)$ it follows that

$$\frac{N}{L} \bigcap \frac{U+L}{L} = \frac{L+(N \bigcap U)}{L} =$$
$$= \phi\left(N \bigcap U\right) \subseteq \phi\left(\operatorname{Rad}\left(U\right)\right) \subseteq \operatorname{Rad}\left(\frac{U+L}{L}\right).$$

Hence $\frac{U+L}{L}$ is a generalized supplement of $\frac{N}{L}$ in $\frac{M}{L}$.

Proposition 3.5. Let M be a nonzero generalized \oplus -supplemented R-module and let U be a submodule of M such that $f(U) \leq U$ for each $f \in End_R(M)$. Then

- (1) The factor module $\frac{M}{U}$ is generalized \oplus -supplemented.
- (2) If, moreover, U is a direct summand of M, then U is also generalized \oplus -supplemented.

Proof. (1) Let $\frac{L}{U}$ be any submodule of $\frac{M}{U}$. Since M is generalized \oplus supplemented, there exist submodules N and N' of M such that M = L + N, $L \cap N \subseteq \text{Rad}(N)$ and $M = N \oplus N'$. By Lemma 3.4, $\frac{N+U}{U}$ is a generalized supplement of $\frac{L}{U}$ in $\frac{M}{U}$. Since $f(U) \leq U$ for each $f \in End_R(M)$, it follows from [3, Lemma 2.4] that $U = (U \cap N) \oplus (U \cap N')$. Hence $(N + U) \cap (N' + U) \leq U$ and so $\frac{N+U}{U} \cap \frac{N'+U}{U} = 0$, i.e. $\frac{N+U}{U}$ is a direct summand of $\frac{M}{U}$. Thus $\frac{M}{U}$ is generalized \oplus -supplemented. (2) Let U be a direct summand of M and let X be a submodule of U. Since M is generalized \oplus -supplemented, there exist submodules Y and Y' of M such that M = X + Y, $X \cap Y \subseteq \text{Rad}(Y)$ and $M = Y \oplus Y'$. Hence $U = X + (U \cap Y)$. Again applying [3, Lemma 2.4], we have that $U = (U \cap Y) \oplus (U \cap Y')$. Now we show that $X \cap (U \cap Y) = X \cap Y \subseteq$ Rad $(U \cap Y)$. Let m be any element of $X \cap Y$. Then $m \in \text{Rad}(Y)$ and so Rm is small in Y. Since U is a direct summand of M, by [8, 19.3], Rm is small in U. Again by [8, 19.3], Rm is also small in $U \cap Y$ because $U \cap Y$ is direct summand of U. Hence $m \in \text{Rad}(U \cap Y)$. Consequently, U is generalized \oplus -supplemented. \Box

Corollary 3.6. Let M be a nonzero generalized \oplus -supplemented module. If Rad (M) is a direct summand of M, then Rad (M) is also generalized \oplus -supplemented.

For a positive integer n, the modules M_i $(1 \le i \le n)$ are called *rela*tively projective if M_i is M_j -projective for all $1 \le i \ne j \le n$.

Theorem 3.7. Let M_i $(1 \le i \le n)$ be any finite collection of relatively projective modules and let $M = M_1 \oplus M_2 \oplus ... \oplus M_n$. Then M is generalized \oplus -supplemented module if and only if M_i is generalized \oplus -supplemented for each $1 \le i \le n$.

Proof. (\Leftarrow) It follows from Theorem 3.3.

(⇒) Clearly, it suffices to prove that M_1 is generalized \oplus -supplemented. Let U be any submodule of M_1 . Since M is generalized \oplus -supplemented, there exist submodules V and V' of M such that M = U + V, $U \cap V \subseteq$ Rad (V) and $M = V \oplus V'$. By [6, Lemma 4.47], there exists a submodule V_1 of V such that $M = M_1 \oplus V_1$. Then $V = (M_1 \cap V) \oplus V_1$ and so $M_1 \cap V$ is a direct summand of M_1 . Now $U \cap (M_1 \cap V) = U \cap V \subseteq$ Rad (V) and thus $U \cap V \subseteq$ Rad ($M_1 \cap V$) because $M_1 \cap V$ is a direct summand of V. Hence M_1 is generalized \oplus -supplemented. \Box

Let R be a ring and M be an R-module. We consider the following condition.

(D3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M (see [6, p. 57]).

Proposition 3.8. Let M be a generalized \oplus -supplemented module with (D3). Then every direct summand of M is generalized \oplus -supplemented.

Proof. Let N be a direct summand of M and U be a submodule of N. Then there exists a direct summand V of M such that M = U + V and $U \cap V \subseteq \text{Rad}(V)$. It follows that $N = U + (N \cap V)$. Since M has (D3) $N \cap V$ is a direct summand of M and so it is also a direct summand of N. Note that $U \cap (N \cap V) = U \cap V \subseteq \text{Rad}(V)$. Since $N \cap V$ is a direct summand of M, it follows that $U \cap V \subseteq \text{Rad}(N \cap V)$. Hence N is generalized \oplus -supplemented. \Box

Proposition 3.9 (see [2, Proposition 2.10]). Let M be $a \oplus$ -supplemented module. Then $M = M_1 \oplus M_2$, where M_1 is a module with $\text{Rad}(M_1)$ small in M_1 and M_2 is a module with $\text{Rad}(M_2) = M_2$.

We give an analogous characterization of this fact for generalized \oplus -supplemented modules.

Proposition 3.10. Let M be a generalized \oplus -supplemented module. Then $M = M_1 \oplus M_2$, where M_1 is a module with $\operatorname{Rad}(M_1) = M_1 \bigcap \operatorname{Rad}(M)$ and M_2 is a module with $\operatorname{Rad}(M_2) = M_2$.

Proof. Since M is generalized \oplus -supplemented, there exist submodules M_1 and M_2 of M such that $M = \operatorname{Rad}(M) + M_1$, $\operatorname{Rad}(M) \bigcap M_1 \subseteq \operatorname{Rad}(M_1)$ and $M = M_1 \oplus M_2$. Then $\operatorname{Rad}(M_1) = M_1 \bigcap \operatorname{Rad}(M)$ and $M = M_1 \oplus \operatorname{Rad}(M_2)$. It follows that $M_2 = \operatorname{Rad}(M_2)$.

Now we give some examples of module, which is generalized \oplus -supplemented, but not \oplus -supplemented.

Example 3.11. Let M be a non-torsion \mathbb{Z} -module with $\operatorname{Rad}(M) = M$. It is clear that $M = \operatorname{Rad}(M)$ is a generalized supplement of every submodule of M. Hence M is generalized \oplus -supplemented, but M is not supplemented by [10].

Consider the \mathbb{Z} -module $M = \mathbb{Q} \oplus \frac{\mathbb{Z}}{p\mathbb{Z}}$, for any prime p. Note that M has a unique maximal submodule, i.e. $\operatorname{Rad}(M) \neq M$. By Theorem 3.3, M is generalized \oplus -supplemented. If M is \oplus -supplemented, then \mathbb{Q} is supplemented. It is a contradiction by [10].

Theorem 3.12. Let M be a module with (D3). Then the following statements are equivalent.

- (1) M is generalized \oplus -supplemented.
- (2) Every direct summand of M is generalized \oplus -supplemented.
- (3) There exists decomposition $M = M_1 \oplus M_2$ such that M_1 is semisimple and M_2 is a generalized \oplus -supplemented module with Rad (M_2) essential in M_2 .

(4) There exists a decomposition M = M₁ ⊕ M₂ of M such that M₁ is a generalized ⊕-supplemented module and M₂ is a module with Rad (M₂) = M₂.

Proof. $(1) \Rightarrow (2)$ It follows from Proposition 3.8.

(2) \Rightarrow (3) By [7, Proposition 2.3], $M = M_1 \oplus M_2$, where M_1 is semisimple and M_2 is a module with Rad (M_2) essential in M_2 . By (2), M_2 is a generalized \oplus -supplemented.

 $(3) \Rightarrow (1)$ By Theorem 3.3, M is generalized \oplus -supplemented.

(1) \Rightarrow (4) By Proposition 3.10, there exist submodules M_1 and M_2 of M such that $M = M_1 \oplus M_2$ and Rad $(M_2) = M_2$. Since M has (D3), by Proposition 3.8, M_1 is generalized \oplus -supplemented.

(4) \Rightarrow (1) Since Rad $(M_2) = M_2$, M_2 is generalized \oplus -supplemented. By (4) and Theorem 3.3, M is generalized \oplus -supplemented. \Box

A ring R is semiperfect if $\frac{R}{\text{Rad}(R)}$ is semisimple and idempotents can be lifted modulo Rad(R). It is known that a ring R is semiperfect if and only if every simple left R-module has a projective cover (see [8, 42.6]). Therefore it is shown in [4, Theorem 2.1] that R is semiperfect if and only if every finitely generated free R-module is \oplus -supplemented.

Remark 3.13. For a ring R if every finitely generated free R-module is generalized \oplus -supplemented, then R is semiperfect. If $_RR$ is generalized \oplus -supplemented, $_RR$ is \oplus -supplemented because $_RR$ is a finitely generated R-module. It follows from [4, Theorem 2.1] that R is semiperfect.

References

- G. Azumaya, A characterization of semiperfect rings and modules, in "Ring Theory" edited by S. K. Jain and S. T. Rizvi, Proc. Biennial Ohio- Denison Conf., May 1992, World Scientific Publ., Singapore, 1993, pp. 28-40.
- [2] A. Harmancı, D. Keskin and P. F. Smith, On ⊕-supplemented modules, Acta Math. Hungar. 83 (1-2) (1999), 161-169.
- [3] A. Idelhadj and R. Tribak, On some properties of ⊕-supplemented modules, Int. J. Math. Math. Sci., 2003, (69) (2003), 4373-4387.
- [4] D. Keskin, P. F. Smith and W. Xue, Rings whose modules are ⊕-supplemented, J. Algebra 218 (1999), 161-169.
- [5] C. Lomp, Semilocal modules and rings, Comm. Algebra 27 (4) (1999), 1921-1935.
- [6] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge Univ. Press (Cambridge, 1990).
- [7] Y. Wang and N. Ding, Generalized supplemented modules, Taiwan J. Math. 10 (6) (2006), 1589-1601.
- [8] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach (Philadelphia, 1991).

- [9] W. Xue, Characterizations of semiperfect and perfect rings, Publ. Mat. 40 (1996), 115-125.
- [10] H. Zöschinger, Komplementierte moduln über dedekindringen, J. Algebra 29(1974), 42-56.

CONTACT INFORMATION

- Hamza ÇalışıcıDepartment of Mathematics, Faculty of Education, Sakarya University, 54300, Sakarya,
TURKEY
E-Mail: hcalisici@sakarya.edu.tr
- Ergül TürkmenDepartment of Mathematics, Faculty of Arts
and Science, Ondokuz Mayıs University,
55139, Samsun, TURKEY
E-Mail: ergulturkmen@hotmail.com

Received by the editors: 14.02.2010 and in final form 03.03.2011.