Free normal dibands Anatolii V. Zhuchok

Communicated by V. I. Sushchansky

ABSTRACT. We construct a free normal diband, a free $(\ell n, n)$ -diband, a free (n, rn)-diband and a free $(\ell n, rn)$ -diband. We also describe the structure of free normal dibands and characterize some least congruences on these dibands.

1. Introduction and preliminaries

The notions of a dialgebra and a dimonoid were introduced by J.-L. Loday [1]. For further details and background see [1], [10].

J.-L. Loday constructed a free dimonoid [1]. Pirashvili [3] introduced the notion of a duplex and constructed a free duplex. Dimonoids in the sense of Loday [1] are examples of duplexes. In [6] a free commutative dimonoid was constructed. Free rectangular dimonoids (rectangular dibands) were constructed in [9].

In this paper the research which was started in [6] and [9] is continued. Here we construct a free normal diband, a free $(\ell n, n)$ -diband, a free $(\ell n, rn)$ -diband and a free $(\ell n, rn)$ -diband. It turns out that the operations of a dimonoid with left (right) normal bands coincide and it is a left (right) normal band. We also describe the structure of free normal dibands and, as a consequence, obtain the description of some least congruences on free normal dibands.

We refer to [6] and [9] for the terminology and notations.

²⁰¹⁰ Mathematics Subject Classification: 08B20, 20M10, 20M50, 17A30, 17A32.

Key words and phrases: normal diband, free normal diband, diband of subdimonoids, dimonoid, semigroup.

Recall that an idempotent semigroup S is called a normal band, if axya = ayxa for all $a, x, y \in S$. It is well-known that a normal band satisfies any identity of the form

$$ax_1x_2...x_nb = ax_{1\pi}x_{2\pi}...x_{n\pi}b,$$
 (1)

where π is a permutation of $\{1, 2, ..., n\}$.

A dimonoid (D, \dashv, \vdash) will be called a normal diband, if both semigroups (D, \dashv) and (D, \vdash) are normal bands.

Lemma 1. ([11], Sect. 3.5, Lemma) Let (D, \dashv, \vdash) be an arbitrary dimonoid, $x, a_i \in D, 1 \leq i \leq n, n \in N, n > 1$. Then

(i)
$$(a_n \dashv ... \dashv a_i \dashv ... \dashv a_1) \vdash x = a_n \vdash ... \vdash a_i \vdash ... \vdash a_1 \vdash x;$$

(ii)
$$x \dashv (a_1 \vdash \ldots \vdash a_i \vdash \ldots \vdash a_n) = x \dashv a_1 \dashv \ldots \dashv a_i \dashv \ldots \dashv a_n$$
.

Lemma 2. Let (D, \dashv, \vdash) be an idempotent dimonoid. Then (D, \dashv) is a normal band if and only if (D, \vdash) is a normal band.

Proof. If (D, \dashv) is a normal band, $a, x, y \in D$, then

$$a\dashv x\dashv y\dashv a=a\dashv y\dashv x\dashv a.$$

Multiplying both parts of the last equality on the right by a concerning the operation \vdash , we obtain

$$(a\dashv x\dashv y\dashv a)\vdash a=a\vdash x\vdash y\vdash a\vdash a=a\vdash x\vdash y\vdash a,$$

$$(a \dashv y \dashv x \dashv a) \vdash a = a \vdash y \vdash x \vdash a \vdash a = a \vdash y \vdash x \vdash a$$

according to Lemma 1 (i) and the idempotent property of the operation \vdash . So, (D, \vdash) is a normal band.

Conversely, let (D,\vdash) be a normal band. Then

$$a \vdash x \vdash y \vdash a = a \vdash y \vdash x \vdash a$$

for all $a, x, y \in D$. Multiplying both parts of the last equality on the left by a concerning the operation \dashv , we obtain

$$a \dashv (a \vdash x \vdash y \vdash a) = a \dashv a \dashv x \dashv y \dashv a = a \dashv x \dashv y \dashv a,$$

$$a\dashv (a\vdash y\vdash x\vdash a)=a\dashv a\dashv y\dashv x\dashv a=a\dashv y\dashv x\dashv a$$

according to Lemma 1 (ii) and the idempotent property of the operation \dashv . So, (D, \dashv) is a normal band.

For an arbitrary nonempty set X denote the set of all nonempty finite subsets of X by B[X].

Let (D, \dashv, \vdash) be an arbitrary dimonoid and D be a totally ordered set. For every $A = \{x_1, x_2, ..., x_n\} \in B[D]$ assume

$$\overrightarrow{A} = x_1 \vdash x_2 \vdash \dots \vdash x_n,$$

$$\overleftarrow{A} = x_1 \dashv x_2 \dashv \dots \dashv x_n,$$

where $x_1 < x_2 < ... < x_n$ in the total order.

Using the identity (1), the idempotent property of the operations of a normal diband and Lemma 1, we can prove the following lemma.

Lemma 3. Let (D, \dashv, \vdash) be a normal diband, D be a totally ordered set and $A, B, C \in B[D], C \subseteq B, a \in A, x, y \in D$. Then

(i)
$$x \vdash a \vdash \overrightarrow{A} = x \vdash \overrightarrow{A}$$
;

(ii)
$$\overleftarrow{A} \dashv a \dashv x = \overleftarrow{A} \dashv x;$$

(iii)
$$\overrightarrow{A} \vdash a \vdash x = \overrightarrow{A} \vdash x = \overleftarrow{A} \vdash x;$$

(iv)
$$x \dashv a \dashv \overleftarrow{A} = x \dashv \overleftarrow{A} = x \dashv \overrightarrow{A}$$
;

$$(v) \ x \vdash \overrightarrow{A \cup B} \vdash y = x \vdash \overrightarrow{A} \vdash \overrightarrow{B} \vdash y = x \vdash \overrightarrow{A \cup B} \vdash y;$$

$$(vi) \ x \dashv \overrightarrow{A \cup B} \dashv y = x \dashv \overrightarrow{A} \dashv \overrightarrow{B} \dashv y = x \dashv \overrightarrow{A \cup B} \dashv y;$$

(vi)
$$x \dashv \overline{A \cup B} \dashv y = x \dashv \overline{A} \dashv \overline{B} \dashv y = x \dashv \overline{A \cup B} \dashv y$$

(vii)
$$x \vdash \overrightarrow{B} \vdash \overrightarrow{C} \vdash y = x \vdash \overrightarrow{C} \vdash \overrightarrow{B} \vdash y = x \vdash \overrightarrow{B} \vdash y;$$

(viii)
$$x + \overline{B} + \overline{C} + y = x + \overline{C} + \overline{B} + y = x + \overline{B} + y$$
.

Note that the class of normal dibands is a subclass of the variety of all dimonoids which is closed under the taking of homomorphic images, subdimonoids and Cartesian products. Therefore it is a subvariety of the variety of all dimonoids. A dimonoid which is free in the variety of normal dibands will be called a free normal diband.

The necessary information about varieties of dimonoids can be found in [6].

Now we consider a free rectangular dimonoid [9].

Let $I_n = \{1, 2, ..., n\}, n > 1$ and let $\{X_i\}_{i \in I_n}$ be a family of arbitrary nonempty sets X_i , $i \in I_n$. Define the operations \dashv and \vdash on $\prod_{i \in I_n} X_i$ by

$$(x_1,...,x_n) \dashv (y_1,...,y_n) = (x_1,...,x_{n-1},y_n),$$

$$(x_1,...,x_n) \vdash (y_1,...,y_n) = (x_1,y_2,...,y_n)$$

for all $(x_1, ..., x_n), (y_1, ..., y_n) \in \prod_{i \in I_n} X_i$.

Lemma 4. ([9], Lemma 4) For any n > 1, $(\prod_{i \in I_n} X_i, \dashv, \vdash)$ is a rectangular dimonoid.

Obviously, for any n > 1, $(\prod_{i \in I_n} X_i, \dashv, \vdash)$ is a normal diband. Let X be an arbitrary nonempty set and $X^3 = X \times X \times X$. We denote the dimonoid (X^3, \dashv, \vdash) by FRct(X).

Theorem 1. ([9], Theorem 1) FRct(X) is a free rectangular dimonoid.

If $f: D_1 \to D_2$ is a homomorphism of dimonoids, then the corresponding congruence on D_1 will be denoted by Δ_f .

2. Free normal dibands

In this section we construct a free normal diband.

Let $\{D_i\}_{i\in I}$ be a family of arbitrary dimonoids D_i , $i \in I$ and let $\overline{\prod}_{i\in I}D_i$ be a set of all functions $f:I\to\bigcup_{i\in I}D_i$ such that $if\in D_i$ for any $i\in I$. It easy to check that $\overline{\prod}_{i\in I}D_i$ with multiplications defined by

$$i(f\dashv g)=if\dashv ig,\ i(f\vdash g)=if\vdash ig,$$

where $i \in I$, $f, g \in \overline{\prod}_{i \in I} D_i$, is a dimonoid. It is called the Cartesian product of dimonoids D_i , $i \in I$. Observe that if I is finite, then the Cartesian product and the direct product coincide. The Cartesian product of a finite number of dimonoids $D_1, D_2, ..., D_n$ is denoted by $D_1 \times D_2 \times ... \times D_n$.

Let FRct(X) be the free rectangular dimonoid (see Sect. 1), B(X) be the semilattice of all nonempty finite subsets of X with respect to the operation of the set theoretical union and let

$$FND(X) = \{((x,y,z),A) \in FRct(X) \times B(X) \,|\, x,y,z \in A\}.$$

The main result of this section is the following.

Theorem 2. FND(X) is a free normal diband.

Proof. Clearly, $FRct(X) \times B(X)$ is a dimonoid (see above). It is not difficult to see that FND(X) is a subdimonoid of $FRct(X) \times B(X)$. It is clear that the operations \dashv and \vdash of FND(X) are idempotent. For all $((x,y,z),A), ((a,b,c),B), ((s,c,t),C) \in FND(X)$ we have

$$((x,y,z),A)\dashv((a,b,c),B)\dashv((s,c,t),C)\dashv((x,y,z),A) =\\ = ((x,y,c),A\cup B)\dashv((s,c,t),C)\dashv((x,y,z),A) =\\ = ((x,y,t),A\cup B\cup C)\dashv((x,y,z),A) = ((x,y,z),A\cup B\cup C),\\ ((x,y,z),A)\dashv((s,c,t),C)\dashv((a,b,c),B)\dashv((x,y,z),A) =\\ = ((x,y,t),A\cup C)\dashv((a,b,c),B)\dashv((x,y,z),A) =\\$$

$$= ((x, y, c), A \cup C \cup B) \dashv ((x, y, z), A) = ((x, y, z), A \cup C \cup B).$$

Hence FND(X) is a normal band concerning the operation \dashv . By Lemma 2 FND(X) is a normal band concerning the operation \vdash . So, FND(X) is a normal diband.

Let us show that FND(X) is free.

Let (T, \dashv', \vdash') be an arbitrary normal diband, T be a totally ordered set and let $\gamma: X \to T$ be an arbitrary map. For every $A = \{x_1, x_2, ..., x_n\} \in B[X]$ assume $A_{\gamma} = \{x_i \gamma \mid 1 \leq i \leq n\}$ and define a map

$$\mu: FND(X) \to (T, \exists', \vdash') : ((x, y, z), A) \mapsto ((x, y, z), A)\mu,$$

assuming

$$((x,y,z),A)\mu = x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' z\gamma$$

for all $((x, y, z), A) \in FND(X)$.

We show that μ is a homomorphism. We will use the axioms of a dimonoid, Lemma 3 and the idempotent property of the operations.

For arbitrary elements $((x, y, z), A), ((a, b, c), B) \in FND(X)$ we have

$$((x,y,z),A)\mu = x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' z\gamma,$$

$$((a,b,c),B)\mu = a\gamma \vdash' \overrightarrow{B_{\gamma}} \vdash' b\gamma \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma,$$

$$(((x,y,z),A) \dashv ((a,b,c),B))\mu = ((x,y,c),A \cup B)\mu =$$

$$= x\gamma \vdash' (\overrightarrow{A \cup B})_{\gamma} \vdash' y\gamma \dashv' (\overrightarrow{A \cup B})_{\gamma} \dashv' c\gamma,$$

$$((x,y,z),A)\mu \dashv' ((a,b,c),B)\mu =$$

$$= (x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' z\gamma) \dashv' (a\gamma \vdash' \overrightarrow{B_{\gamma}} \vdash' b\gamma \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma) =$$

$$= x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' z\gamma \dashv' a\gamma \dashv' \overrightarrow{B_{\gamma}} \dashv' b\gamma \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma =$$

$$= x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' z\gamma \dashv' a\gamma \dashv' \overleftarrow{B_{\gamma}} \dashv' b\gamma \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma =$$

$$= x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' z\gamma \dashv' a\gamma \dashv' \overleftarrow{B_{\gamma}} \dashv' b\gamma \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma =$$

$$= x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma =$$

$$= x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overleftarrow{B_{\gamma}} \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma =$$

$$= x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma =$$

$$= x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overleftarrow{B_{\gamma}} \dashv' c\gamma =$$

$$= (x\gamma \vdash' \overrightarrow{A_{\gamma}}) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overrightarrow{B_{\gamma}} \dashv' c\gamma) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' c\gamma) =$$

$$= (x\gamma \vdash' \overrightarrow{A_{\gamma}}) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overrightarrow{B_{\gamma}} \dashv' c\gamma) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' c\gamma) =$$

$$= (x\gamma \vdash' \overrightarrow{A_{\gamma}}) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overrightarrow{B_{\gamma}} \dashv' c\gamma) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' c\gamma) =$$

$$= (x\gamma \vdash' \overrightarrow{A_{\gamma}}) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overrightarrow{B_{\gamma}} \dashv' c\gamma) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' c\gamma) =$$

$$= (x\gamma \vdash' \overrightarrow{A_{\gamma}}) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overrightarrow{B_{\gamma}} \dashv' c\gamma) \vdash' (y\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' \overrightarrow{B_{\gamma}} \dashv' c\gamma) =$$

$$= x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' (\overrightarrow{A \cup B)_{\gamma}} \vdash' c\gamma \vdash' (y\gamma \dashv' (\overrightarrow{A \cup B)_{\gamma}} \dashv' c\gamma) =$$

$$= x\gamma \vdash' (\overrightarrow{A \cup B)_{\gamma}} \vdash' c\gamma \vdash' (y\gamma \dashv' (\overrightarrow{A \cup B)_{\gamma}} \dashv' c\gamma) =$$

$$= x\gamma \vdash' (\overrightarrow{A \cup B)_{\gamma}} \vdash' (y\gamma \dashv' (\overrightarrow{A \cup B)_{\gamma}} \dashv' c\gamma) =$$

$$= x\gamma \vdash' (\overrightarrow{A \cup B)_{\gamma}} \vdash' y\gamma \dashv' (\overrightarrow{A \cup B)_{\gamma}} \dashv' c\gamma.$$

Thus,

$$(((x,y,z),A) \dashv ((a,b,c),B))\mu = ((x,y,z),A)\mu \dashv' ((a,b,c),B)\mu$$

for all ((x, y, z), A), $((a, b, c), B) \in FND(X)$. Analogously, we can prove that

$$(((x, y, z), A) \vdash ((a, b, c), B))\mu = ((x, y, z), A)\mu \vdash' ((a, b, c), B)\mu$$

for all ((x, y, z), A), $((a, b, c), B) \in FND(X)$. This completes the proof of Theorem 2.

Obviously, the free normal diband FND(X) generated by a finite set X is finite. Specifically, $|FND(X)| = \sum_{A \in B[X]} |A|^3$.

3. Dimonoids and (left, right) normal bands

In this section we show that the operations of a dimonoid (D, \dashv, \vdash) with a left (respectively, right) normal band (D, \vdash) (respectively, (D, \dashv)) coincide and construct a free $(\ell n, n)$ -diband, a free (n, rn)-diband and a free $(\ell n, rn)$ -diband.

Recall that an idempotent semigroup S is called a left normal band, if

$$axy = ayx (2)$$

for all $a, x, y \in S$. If instead of (2) the identity

$$xya = yxa \tag{3}$$

holds, then S is a right normal band. It is well-known that a left normal band satisfies any identity of the form

$$ax_1x_2...x_n = ax_{1\pi}x_{2\pi}...x_{n\pi},$$
 (4)

where π is a permutation of $\{1, 2, ..., n\}$. Dually, a right normal band satisfies any identity of the form

$$x_1 x_2 ... x_n a = x_{1\pi} x_{2\pi} ... x_{n\pi} a, (5)$$

where π is a permutation of $\{1, 2, ..., n\}$.

Lemma 5. The operations of a dimonoid (D, \dashv, \vdash) coincide, if one of the following conditions holds:

- (i) (D, \vdash) is a left normal band;
- (ii) (D, \dashv) is a right normal band.

Proof. (i) For all $x, y, z \in D$ we have

$$x \vdash (y \dashv z) = x \vdash (y \dashv z) \vdash (y \dashv z) =$$

$$= x \vdash (y \vdash z) \vdash (y \dashv z) = x \vdash (y \dashv z) \vdash (y \vdash z) =$$

$$= x \vdash (y \vdash z) \vdash (y \vdash z) = x \vdash (y \vdash z) =$$

$$= (x \vdash y) \vdash z = (x \vdash y) \dashv z$$

according to the idempotent property of the operation \vdash , the axioms of a dimonoid and the identity (2). Substituting y = x in the last equality and using the idempotent property of the operation \vdash , we obtain $x \vdash z = x \dashv z$.

(ii) For all $x, y, z \in D$ we have

$$(x \vdash y) \dashv z = (x \vdash y) \dashv (x \vdash y) \dashv z =$$

$$= (x \vdash y) \dashv (x \dashv y) \dashv z = (x \dashv y) \dashv (x \vdash y) \dashv z =$$

$$= (x \dashv y) \dashv (x \dashv y) \dashv z = (x \dashv y) \dashv z =$$

$$= x \dashv (y \dashv z) = x \vdash (y \dashv z)$$

according to the idempotent property of the operation \dashv , the axioms of a dimonoid and the identity (3). Substituting z=y in the last equality and using the idempotent property of the operation \dashv , we obtain $x \dashv y = x \vdash y$.

From Lemma 5 (i) (respectively, Lemma 5 (ii)) it follows that a dimonoid (D, \dashv, \vdash) with left (respectively, right) normal bands (D, \dashv) and (D, \vdash) is a left (respectively, right) normal band.

Consider the semigroups $X_{\ell z}$, X_{rz} , X_{rb} and the dimonoids $X_{\ell z,rz}$, $X_{rb,rz}$, $X_{\ell z,rb}$ which were defined in [9]. It is easy to see that $X_{\ell z}$, X_{rz} , X_{rb} are normal bands and $X_{\ell z,rz}$, $X_{rb,rz}$, $X_{\ell z,rb}$ are normal dibands.

Let

$$B_{rb}(X) = \{((x,y), A) \in X_{rb} \times B(X) \mid x, y \in A\},$$

$$B_{\ell z}(X) = \{(x, A) \in X_{\ell z} \times B(X) \mid x \in A\},$$

$$B_{rz}(X) = \{(x, A) \in X_{rz} \times B(X) \mid x \in A\},$$

$$B_{\ell z,rb}(X) = \{((x, y), A) \in X_{\ell z,rb} \times B(X) \mid x, y \in A\},$$

$$B_{rb,rz}(X) = \{((x, y), A) \in X_{rb,rz} \times B(X) \mid x, y \in A\},$$

$$B_{\ell z, rz}(X) = \{(x, A) \in X_{\ell z, rz} \times B(X) \mid x \in A\}.$$

It is clear that $B_{rb}(X)$, $B_{\ell z}(X)$, $B_{rz}(X)$ are subsemigroups of $X_{rb} \times B(X)$, $X_{\ell z} \times B(X)$, $X_{rz} \times B(X)$ respectively, and $B_{\ell z,rb}(X)$, $B_{rb,rz}(X)$, $B_{\ell z,rz}(X)$ are subdimonoids of $X_{\ell z,rb} \times B(X)$, $X_{rb,rz} \times B(X)$, $X_{\ell z,rz} \times B(X)$ respectively. By [2] $B_{rb}(X)$, $B_{\ell z}(X)$ and $B_{rz}(X)$ are the free normal band, the free left normal band and the free right normal band respectively.

A dimonoid (D, \dashv, \vdash) will be called a $(\ell n, n)$ -diband, if (D, \dashv) is a left normal band and (D, \vdash) is a normal band. A dimonoid (D, \dashv, \vdash) will be called a (n, rn)-diband, if (D, \dashv) is a normal band and (D, \vdash) is a right normal band. A dimonoid (D, \dashv, \vdash) will be called a $(\ell n, rn)$ -diband, if (D, \dashv) is a left normal band and (D, \vdash) is a right normal band.

Note that every left (right) normal band is normal and the class of $(\ell n, n)$ -dibands ((n, rn)-dibands, $(\ell n, rn)$ -dibands) is a subvariety of the variety of all normal dibands. A dimonoid which is free in the variety of $(\ell n, n)$ -dibands (respectively, (n, rn)-dibands, $(\ell n, rn)$ -dibands) will be called a free $(\ell n, n)$ -diband (respectively, free (n, rn)-diband, free $(\ell n, rn)$ -diband).

For the proofs of the following three lemmas we will use the notations from Sect. 1 and from the proof of Theorem 2.

Lemma 6. $B_{\ell z,rb}(X)$ is a free $(\ell n, n)$ -diband.

Proof. Clearly, $B_{\ell z,rb}(X)$ is a $(\ell n,n)$ -diband. Let us show that $B_{\ell z,rb}(X)$ is free.

Let (T, \dashv', \vdash') be an arbitrary $(\ell n, n)$ -diband, T be a totally ordered set and let $\gamma: X \to T$ be an arbitrary map. Define the map

$$\phi_{\ell n,n}: B_{\ell z,rb}(X) \to (T, \dashv', \vdash'):$$

$$((x,y),A) \mapsto ((x,y),A)\phi_{\ell n,n} = x\gamma \vdash' \overrightarrow{A_{\gamma}} \vdash' y\gamma \dashv' \overleftarrow{A_{\gamma}}.$$

Similarly to the proof of Theorem 2, we can show that $\phi_{\ell n,n}$ is a homomorphism. For this, we also use (4).

Lemma 7. $B_{rb,rz}(X)$ is a free (n,rn)-diband.

Proof. Obviously, $B_{rb,rz}(X)$ is a (n,rn)-diband. Show that $B_{rb,rz}(X)$ is free

Let (T, \dashv', \vdash') be an arbitrary (n, rn)-diband, T be a totally ordered set and let $\gamma: X \to T$ be an arbitrary map. Define the map

$$\phi_{n,rn}: B_{rb,rz}(X) \to (T, \dashv', \vdash'):$$

$$((x,y),A) \mapsto ((x,y),A)\phi_{n,rn} = \overrightarrow{A_{\gamma}} \vdash' x\gamma \dashv' \overleftarrow{A_{\gamma}} \dashv' y\gamma.$$

Analysis similar to that in the proof of Theorem 2 shows that $\phi_{n,rn}$ is a homomorphism. Our proof also uses (5).

Lemma 8. $B_{\ell z,rz}(X)$ is a free $(\ell n,rn)$ -diband.

Proof. It is evident that $B_{\ell z,rz}(X)$ is a $(\ell n,rn)$ -diband. Let (T,\dashv',\vdash') be an arbitrary $(\ell n,rn)$ -diband, T be a totally ordered set and let $\gamma:X\to T$ be an arbitrary map. Define the map

$$\phi_{\ell n,rn}: B_{\ell z,rz}(X) \to (T, \dashv', \vdash'):$$
$$(x,A) \mapsto (x,A)\phi_{\ell n,rn} = \overrightarrow{A_{\gamma}} \vdash' x\gamma \dashv' \overleftarrow{A_{\gamma}}.$$

Similarly to the proof of Theorem 2, the fact that $\phi_{\ell n,rn}$ is a homomorphism can be proved. To do this, also use (4) and (5).

4. Decompositions of FND(X)

In this section we describe the structure of free normal dibands and characterize some least congruences on these dibands.

Let

$$B_{(i,j,k)}(X) = \{A \in B(X) \mid i, j, k \in A\},$$

$$B_{rb}^{(i)}(X) = \{((x,y), A) \in B_{rb}(X) \mid i \in A\},$$

$$B_{\ell z}^{(i,j)}(X) = \{(x,A) \in B_{\ell z}(X) \mid i, j \in A\},$$

$$B_{rz}^{(i,j)}(X) = \{(x,A) \in B_{rz}(X) \mid i, j \in A\},$$

$$B_{\ell z,rb}^{(i)}(X) = \{((x,y), A) \in B_{\ell z,rb}(X) \mid i \in A\},$$

$$B_{rb,rz}^{(i)}(X) = \{((x,y), A) \in B_{rb,rz}(X) \mid i \in A\},$$

$$B_{\ell z,rz}^{(i,j)}(X) = \{(x,A) \in B_{\ell z,rz}(X) \mid i, j \in A\}$$

for all $i, j, k \in X$. It is evident that $B_{(i,j,k)}(X), B_{rb}^{(i)}(X), B_{\ell z}^{(i,j)}(X), B_{rz}^{(i,j)}(X)$ are subsemigroups of $B(X), B_{rb}(X), B_{\ell z}(X), B_{rz}(X)$ respectively, and $B_{\ell z,rb}^{(i)}(X), B_{rb,rz}^{(i)}(X), B_{\ell z,rz}^{(i,j)}(X)$ are subdimonoids of $B_{\ell z,rb}(X), B_{rb,rz}(X), B_{\ell z,rz}(X)$ respectively.

For all $i, j, k \in X$ put

$$\begin{split} M_{(i,j,k)} &= \{ ((x,y,z),A) \in FND(X) \, | \, (x,y,z) = (i,j,k) \}, \\ M_{(i,j)} &= \{ ((x,y,z),A) \in FND(X) \, | \, (x,y) = (i,j) \}, \\ M_{(i,j]} &= \{ ((x,y,z),A) \in FND(X) \, | \, (y,z) = (i,j) \}, \\ M_{[i,j]} &= \{ ((x,y,z),A) \in FND(X) \, | \, (x,z) = (i,j) \}, \\ M_{(i)} &= \{ ((x,y,z),A) \in FND(X) \, | \, (x=i) \}, \end{split}$$

$$M_{[i]} = \{((x,y,z),A) \in FND(X) \mid y = i\},$$

$$M_{[i]} = \{((x,y,z),A) \in FND(X) \mid z = i\};$$
 for all $i,j \in X, Y \in B(X)$ such that $i,j \in Y$ put
$$M_{(i,j)}^Y = \{((x,y,z),A) \in FND(X) \mid ((x,y),A) = ((i,j),Y)\},$$

$$M_{(i,j)}^Y = \{((x,y,z),A) \in FND(X) \mid ((y,z),A) = ((i,j),Y)\},$$

$$M_{[i,j]}^Y = \{((x,y,z),A) \in FND(X) \mid ((x,z),A) = ((i,j),Y)\};$$
 for all $i \in X, Y \in B(X)$ such that $i \in Y$ put
$$M_{(i)}^Y = \{((x,y,z),A) \in FND(X) \mid (x,A) = (i,Y)\},$$

$$M_{(i)}^Y = \{((x,y,z),A) \in FND(X) \mid (y,A) = (i,Y)\},$$

$$M_{[i]}^Y = \{((x,y,z),A) \in FND(X) \mid (x,A) = (i,Y)\};$$
 for all $Y \in B(X)$ put

$$M^Y = \{ ((x, y, z), A) \in FND(X) \, | \, A = Y \}.$$

The notion of a diband of subdimonoids was introduced in [4] and investigated in [5] (see also [9]).

Subsequently, we will deal with diband decompositions and band decompositions of free normal dibands.

The following structure theorem gives decompositions of free normal dibands into dibands of subsemigroups.

Theorem 3. Let FND(X) be the free normal diband. Then

- (i) FND(X) is a rectangular diband FRct(X) of subsemigroups $M_{(i,j,k)}$, $(i,j,k) \in FRct(X)$ such that $M_{(i,j,k)} \cong B_{(i,j,k)}(X)$ for every $(i,j,k) \in$ FRct(X);
- (ii) FND(X) is a diband $X_{\ell z,rb}$ of subsemigroups $M_{(i,j)}, (i,j) \in X_{\ell z,rb}$ such that $M_{(i,j)} \cong B_{rz}^{(i,j)}(X)$ for every $(i,j) \in X_{\ell z,rb}$; (iii) FND(X) is a diband $X_{rb,rz}$ of subsemigroups $M_{(i,j]}$, $(i,j) \in$
- $X_{rb,rz}$ such that $M_{(i,j]} \cong B_{\ell z}^{(i,j)}(X)$ for every $(i,j) \in X_{rb,rz}$; (iv) FND(X) is a left and right diband $X_{\ell z,rz}$ of subsemigroups
- $M_{(i]}, i \in X_{\ell z,rz} \text{ such that } M_{(i]} \cong B_{rb}^{(i)}(X) \text{ for every } i \in X_{\ell z,rz};$
- (v) FND(X) is a diband $B_{\ell z,rb}(X)$ of subsemigroups $M_{(i,j)}^Y$, $((i,j),Y) \in$ $B_{\ell z,rb}(X)$ such that $M_{(i,j)}^Y \cong Y_{rz}$ for every $((i,j),Y) \in B_{\ell z,rb}(X)$;
- (vi) FND(X) is a diband $B_{rb,rz}(X)$ of subsemigroups $M_{(i,j)}^Y$, $((i,j),Y) \in$ $B_{rb,rz}(X)$ such that $M_{(i,j]}^Y \cong Y_{\ell z}$ for every $((i,j),Y) \in B_{rb,rz}(X)$;
- (vii) FND(X) is a diband $B_{\ell z,rz}(X)$ of subsemigroups $M_{(i)}^Y$, $(i,Y) \in$ $B_{\ell z,rz}(X)$ such that $M_{(i)}^Y \cong Y_{rb}$ for every $(i,Y) \in B_{\ell z,rz}(X)$.

Proof. (i) By Theorem 2 the map

$$\mu_{FRct}: FND(X) \to FRct(X):$$

$$((x, y, z), A) \mapsto ((x, y, z), A)\mu_{FRct} = (x, y, z)$$

is a homomorphism. It is clear that $M_{(i,j,k)}, (i,j,k) \in FRct(X)$ is a class of $\Delta_{\mu_{FRct}}$ which is a subdimonoid of FND(X). If ((x,y,z),A), $((a,b,c),B) \in M_{(i,j,k)}$, then $x=a=i,\ y=b=j,\ z=c=k$ and

$$((x, y, z), A) \dashv ((a, b, c), B) = ((x, y, c), A \cup B) = ((i, j, k), A \cup B),$$

$$((x, y, z), A) \vdash ((a, b, c), B) = ((x, b, c), A \cup B) = ((i, j, k), A \cup B).$$

Hence the operations of $M_{(i,j,k)}$ coincide and so, it is a semigroup. It is not difficult to show that for every $(i,j,k) \in FRet(X)$ the map

$$M_{(i,j,k)} \to B_{(i,j,k)}(X) : ((i,j,k),A) \mapsto A$$

is an isomorphism.

(ii) By Theorem 2 the map

$$\mu_{\ell z, rb} : FND(X) \to X_{\ell z, rb} : ((x, y, z), A) \mapsto ((x, y, z), A)\mu_{\ell z, rb} = (x, y)$$

is a homomorphism. It is evident that $M_{(i,j)}$, $(i,j) \in X_{\ell z,rb}$ is a class of $\Delta_{\mu_{\ell z,rb}}$ which is a subdimonoid of FND(X). If ((x,y,z),A), $((a,b,c),B) \in M_{(i,j)}$, then $x=a=i,\ y=b=j$. Similarly to (i), the operations of $M_{(i,j)}$ coincide and so, it is a semigroup. It is easy to check that for every $(i,j) \in X_{\ell z,rb}$ the map

$$M_{(i,j)} \to B_{rz}^{(i,j)}(X) : ((i,j,z),A) \mapsto (z,A)$$

is an isomorphism.

(iii) By Theorem 2 the map

$$\mu_{rb,rz}: FND(X) \to X_{rb,rz}: ((x,y,z),A) \mapsto ((x,y,z),A)\mu_{rb,rz} = (y,z)$$

is a homomorphism. Similarly to (ii), $M_{(i,j]}$, $(i,j) \in X_{rb,rz}$ is a class of $\Delta_{\mu_{rb,rz}}$ which is a semigroup isomorphic to $B_{\ell z}^{(i,j)}(X)$.

(iv) By Theorem 2 the map

$$\mu_{\ell z,rz}: FND(X) \to X_{\ell z,rz}: ((x,y,z),A) \mapsto ((x,y,z),A)\mu_{\ell z,rz} = y$$

is a homomorphism. Then $M_{(i]}$, $i \in X_{\ell z,rz}$ is a class of $\Delta_{\mu_{\ell z,rz}}$ which is a subdimonoid of FND(X). If ((x,y,z),A), $((a,b,c),B) \in M_{(i]}$, then

y=b=i. Similarly to (i), the operations of $M_{(i)}$ coincide and so, it is a semigroup. It is easily seen that for every $i \in X_{\ell z,rz}$ the map

$$M_{(i)} \to B_{rb}^{(i)}(X) : ((x, i, z), A) \mapsto ((x, z), A)$$

is an isomorphism.

(v) By Theorem 2 the map

$$\mu_{\ell z,rb}^*: FND(X) \to B_{\ell z,rb}(X):$$

$$((x, y, z), A) \mapsto ((x, y, z), A)\mu_{\ell z, rb}^* = ((x, y), A)$$

is a homomorphism. Then $M_{(i,j)}^Y$, $((i,j),Y) \in B_{\ell z,rb}(X)$ is a class of $\Delta_{\mu_{\ell z,rb}^*}$ which is a subdimonoid of FND(X). If ((x,y,z),A), $((a,b,c),B) \in M_{(i,j)}^Y$, then $x=a=i,\ y=b=j,\ A=B=Y$. Similarly to (i), the operations of $M_{(i,j)}^Y$ coincide and so, it is a semigroup. It is immediate to check that for every $((i,j),Y) \in B_{\ell z,rb}(X)$ the map

$$M_{(i,j)}^Y \to Y_{rz} : ((i,j,z),Y) \mapsto z$$

is an isomorphism.

(vi) By Theorem 2 the map

$$\mu_{rb,rz}^*: FND(X) \to B_{rb,rz}(X):$$

$$((x,y,z),A)\mapsto ((x,y,z),A)\mu_{rb,rz}^*=((y,z),A)$$

is a homomorphism. Similarly to (v), $M_{(i,j]}^Y$, $((i,j),Y) \in B_{rb,rz}(X)$ is a class of $\Delta_{\mu_{rb,rz}^*}$ which is a semigroup isomorphic to $Y_{\ell z}$.

(vii) By Theorem 2 the map

$$\mu_{\ell z,rz}^*: FND(X) \to B_{\ell z,rz}(X):$$

$$((x,y,z),A)\mapsto ((x,y,z),A)\mu_{\ell z,rz}^*=(y,A)$$

is a homomorphism. Similarly to (iv), $M_{(i)}^Y$, $(i, Y) \in B_{\ell z, rz}(X)$ is a class of $\Delta_{\mu_{\ell z, rz}^*}$ which is a semigroup isomorphic to Y_{rb} .

If ρ is a congruence on a dimonoid (D, \dashv, \vdash) such that $(D, \dashv, \vdash)/\rho$ is a $(\ell n, n)$ -diband (respectively, (n, rn)-diband, $(\ell n, rn)$ -diband), then we say that ρ is a $(\ell n, n)$ -congruence (respectively, (n, rn)-congruence, $(\ell n, rn)$ -congruence).

Using the terminology of [9], from Theorem 3 we obtain

Corollary 1. Let FND(X) be the free normal diband. Then

- (i) $\Delta_{\mu_{ERct}}$ is the least rectangular diband congruence on FND(X);
- (ii) $\Delta_{\mu_{\ell z,rb}}$ is the least $(\ell z,rb)$ -congruence on FND(X);
- (iii) $\Delta_{\mu_{rh,rz}}$ is the least (rb,rz)-congruence on FND(X);
- (iv) $\Delta_{\mu_{\ell z,rz}}$ is the least left zero and right zero congruence on FND(X);
- (v) $\Delta_{\mu_{\ell_z,rh}^*}$ is the least $(\ell n, n)$ -congruence on FND(X);
- (vi) $\Delta_{\mu_{rb,rz}^*}$ is the least (n,rn)-congruence on FND(X);
- (vii) $\Delta_{\mu_{\ell z,rz}^*}$ is the least $(\ell n, rn)$ -congruence on FND(X).
- *Proof.* (i) By Theorem 1 FRct(X) is the free rectangular dimonoid. According to Theorem 3 (i) we obtain (i).
- (ii) By Lemma 7 from $|9| X_{\ell z,rb}$ is the free $(\ell z,rb)$ -dimonoid. According to Theorem 3 (ii) we obtain (ii).

The proof of (iii) is similar.

- (iv) By Lemma 5 from [9] $X_{\ell z,rz}$ is the free left zero and right zero dimonoid. According to Theorem 3 (iv) we obtain (iv).
- (v) By Lemma 6 $B_{\ell z,rb}(X)$ is the free $(\ell n,n)$ -diband. According to Theorem 3 (v) we obtain (v).

The proof of (vi) is similar.

(vii) By Lemma 8 $B_{\ell z,rz}(X)$ is the free $(\ell n,rn)$ -diband. According to Theorem 3 (vii) we obtain (vii).

The following structure theorem gives decompositions of free normal dibands into bands of subdimonoids.

Theorem 4. Let FND(X) be the free normal diband. Then

- (i) FND(X) is a rectangular band X_{rb} of subdimonoids $M_{[i,j]}$, $(i,j) \in$ X_{rb} such that $M_{[i,j]} \cong B_{\ell z,rz}^{(i,j)}(X)$ for every $(i,j) \in X_{rb}$; (ii) FND(X) is a left band $X_{\ell z}$ of subdimonoids $M_{(i)}$, $i \in X_{\ell z}$ such
- that $M_{(i)} \cong B^{(i)}_{rb,rz}(X)$ for every $i \in X_{\ell z}$; (iii) FND(X) is a right band X_{rz} of subdimonoids $M_{[i]}$, $i \in X_{rz}$ such
- that $M_{[i]} \cong B_{\ell z,rb}^{(i)}(X)$ for every $i \in X_{rz}$;
- (iv) FND(X) is a normal band $B_{rb}(X)$ of subdimonoids $M_{[i,j]}^Y$, $((i,j),Y) \in$ $B_{rb}(X)$ such that $M_{[i,j]}^Y \cong Y_{\ell z,rz}$ for every $((i,j),Y) \in B_{rb}(X)$;
- (v) FND(X) is a left normal band $B_{\ell z}(X)$ of subdimonoids $M_{(i)}^{Y}$, $(i,Y) \in B_{\ell z}(X)$ such that $M_{(i)}^Y \cong Y_{rb,rz}$ for every $(i,Y) \in B_{\ell z}(X)$;
- (vi) FND(X) is a right normal band $B_{rz}(X)$ of subdimonoids $M_{[i]}^{Y}$, $(i,Y) \in B_{rz}(X)$ such that $M_{[i]}^Y \cong Y_{\ell z,rb}$ for every $(i,Y) \in B_{rz}(X)$;
- (vii) FND(X) is a semilattice B(X) of subdimonoids M^Y , $Y \in B(X)$ such that $M^Y \cong FRct(Y)$ for every $Y \in B(X)$.

Proof. (i) By Theorem 2 the map

$$\mu_{rb}: FND(X) \to X_{rb}: ((x, y, z), A) \mapsto ((x, y, z), A)\mu_{rb} = (x, z)$$

is a homomorphism. It is clear that $M_{[i,j]}$, $(i,j) \in X_{rb}$ is a class of $\Delta_{\mu_{rb}}$ which is a subdimonoid of FND(X). It can be shown that for every $(i,j) \in X_{rb}$ the map

$$M_{[i,j]} \to B_{\ell z,rz}^{(i,j)}(X) : ((i,y,j),A) \mapsto (y,A)$$

is an isomorphism.

(ii) By Theorem 2 the map

$$\mu_{\ell z}: FND(X) \to X_{\ell z}: ((x, y, z), A) \mapsto ((x, y, z), A)\mu_{\ell z} = x$$

is a homomorphism. It is evident that $M_{(i)}$, $i \in X_{\ell z}$ is a class of $\Delta_{\mu_{\ell z}}$ which is a subdimonoid of FND(X). It is easy to check that for every $i \in X_{\ell z}$ the map

$$M_{(i)} \to B_{rb,rz}^{(i)}(X) : ((i, y, z), A) \mapsto ((y, z), A)$$

is an isomorphism.

(iii) By Theorem 2 the map

$$\mu_{rz} : FND(X) \to X_{rz} : ((x, y, z), A) \mapsto ((x, y, z), A)\mu_{rz} = z$$

is a homomorphism. Similarly to (ii), $M_{[i]}$, $i \in X_{rz}$ is a class of $\Delta_{\mu_{rz}}$ which is a dimonoid isomorphic to $B_{\ell z,rb}^{(i)}(X)$.

(iv) By Theorem 2 the map

$$\mu_{rb}^* : FND(X) \to B_{rb}(X) : ((x, y, z), A) \mapsto ((x, y, z), A)\mu_{rb}^* = ((x, z), A)$$

is a homomorphism. Similarly to (i), $M_{[i,j]}^Y$, $((i,j),Y) \in B_{rb}(X)$ is a class of $\Delta_{\mu_{rb}^*}$ which is a dimonoid isomorphic to $Y_{\ell z,rz}$.

(v) By Theorem 2 the map

$$\mu_{\ell z}^* : FND(X) \to B_{\ell z}(X) : ((x, y, z), A) \mapsto ((x, y, z), A)\mu_{\ell z}^* = (x, A)$$

is a homomorphism. It is clear that $M_{(i)}^Y$, $(i,Y) \in B_{\ell z}(X)$ is a class of $\Delta_{\mu_{\ell z}^*}$ which is a subdimonoid of FND(X). It can be shown that for every $(i,Y) \in B_{\ell z}(X)$ the map

$$M_{(i)}^{Y} \to Y_{rb,rz} : ((i, y, z), Y) \mapsto (y, z)$$

is an isomorphism.

(vi) By Theorem 2 the map

$$\mu_{rz}^* : FND(X) \to B_{rz}(X) : ((x, y, z), A) \mapsto ((x, y, z), A)\mu_{rz}^* = (z, A)$$

is a homomorphism. Similarly to (v), $M_{[i]}^Y$, $(i,Y) \in B_{rz}(X)$ is a class of $\Delta_{\mu_{rz}^*}$ which is a dimonoid isomorphic to $Y_{\ell z,rb}$.

(vii) By Theorem 2 the map

$$\mu^* : FND(X) \to B(X) : ((x, y, z), A) \mapsto ((x, y, z), A)\mu^* = A$$

is a homomorphism. Clearly, M^Y , $Y \in B(X)$ is a class of Δ_{μ^*} which is a subdimonoid of FND(X). One can show that for every $Y \in B(X)$ the map

$$M^Y \to FRct(Y) : ((x, y, z), Y) \mapsto (x, y, z)$$

is an isomorphism.

If ρ is a congruence on a dimonoid (D, \dashv, \vdash) such that the operations of $(D, \dashv, \vdash)/\rho$ coincide and it is a (left, right) normal band, then we say that ρ is a (left, right) normal band congruence.

Using the terminology of [9], from Theorem 4 we obtain

Corollary 2. Let FND(X) be the free normal diband. Then

- (i) $\Delta_{\mu_{rb}}$ is the least rectangular band congruence on FND(X);
- (ii) $\Delta_{\mu_{\ell z}}$ is the least left zero congruence on FND(X);
- (iii) $\Delta_{\mu_{rz}}$ is the least right zero congruence on FND(X);
- (iv) $\Delta_{\mu_{rb}^*}$ is the least normal band congruence on FND(X);
- (v) $\Delta_{\mu_{\ell z}^*}$ is the least left normal band congruence on FND(X);
- (vi) $\Delta_{\mu_{rz}^*}$ is the least right normal band congruence on FND(X);
- (vii) Δ_{μ^*} is the least semilattice congruence on FND(X).

Proof. (i) X_{rb} is the free rectangular band (see Sect. 3 of [9]). By Theorem 4 (i) we obtain (i).

(ii) It is well-known that $X_{\ell z}$ is the free left zero semigroup. By Theorem 4 (ii) we obtain (ii).

The proof of (iii) is similar.

- (iv) $B_{rb}(X)$ is the free normal band (see Sect. 3). By Theorem 4 (iv) we obtain (iv).
- (v) $B_{\ell z}(X)$ is the free left normal band (see Sect. 3). By Theorem 4 (v) we obtain (v).

The proof of (vi) is similar.

(vii) It is well-known that B(X) is the free semilattice. By Theorem 4 (vii) we obtain (vii).

Note that the least congruences on dimonoids and the corresponding decompositions of these dimonoids were also described in [4] and [6–9].

References

- J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lect. Notes Math. 1763, Springer-Verlag, Berlin, 2001, 7–66.
- [2] M. Petrich, P.V. Silva, Structure of relatively free bands, Commun. Algebra 30 (2002), no. 9, 4165–4187.
- [3] T. Pirashvili, Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169–183.
- [4] A.V. Zhuchok, Commutative dimonoids, Algebra and Discrete Math. 2 (2009), 116–127.
- [5] A.V. Zhuchok, Dibands of subdimonoids, Mat. Stud. 33 (2010), no. 2, 120–124.
- [6] A.V. Zhuchok, Free commutative dimonoids, Algebra and Discrete Math. 9 (2010), no. 1, 109–119.
- [7] A.V. Zhuchok, Free dimonoids, Ukr. Math. J. 63 (2011), no. 2, 165–175 (in Ukrainian).
- [8] A.V. Zhuchok, Semilattices of subdimonoids, Asian-Eur. J. Math. 4 (2011), no. 2, 359-371.
- [9] A.V. Zhuchok, Free rectangular dibands and free dimonoids, Algebra and Discrete Math. 11 (2011), no. 2, 92–111.
- [10] A.V. Zhuchok, *Dimonoids*, Algebra i Logika **50** (2011), no. 4, 471–496 (in Russian).
- [11] A.V. Zhuchok, *Dimonoids with an idempotent operation*, Proc. Inst. Applied Math. and Mech. **22** (2011), 99–107 (in Ukrainian).

Contact information

A. V. Zhuchok

Department of Mechanics and Mathematics, Kyiv National Taras Shevchenko University, Volodymyrska str., 64, Kyiv, 01033, Ukraine E-Mail: zhuchok_a@mail.ru

Received by the editors: 25.10.2011 and in final form 05.12.2011.