Free normal dibands

Anatolii V. Zhuchok

Communicated by V. I. Sushchansky

Abstract

We construct a free normal diband, a free ($\ell n, n$)diband, a free $(n, r n)$-diband and a free $(\ell n, r n)$-diband. We also describe the structure of free normal dibands and characterize some least congruences on these dibands.

1. Introduction and preliminaries

The notions of a dialgebra and a dimonoid were introduced by J.-L. Loday [1]. For further details and background see [1], [10].
J.-L. Loday constructed a free dimonoid [1]. Pirashvili [3] introduced the notion of a duplex and constructed a free duplex. Dimonoids in the sense of Loday [1] are examples of duplexes. In [6] a free commutative dimonoid was constructed. Free rectangular dimonoids (rectangular dibands) were construcred in [9].

In this paper the research which was started in [6] and [9] is continued. Here we construct a free normal diband, a free ($\ell n, n$)-diband, a free $(n, r n)$-diband and a free ($\ell n, r n$)-diband. It turns out that the operations of a dimonoid with left (right) normal bands coincide and it is a left (right) normal band. We also describe the structure of free normal dibands and, as a consequence, obtain the description of some least congruences on free normal dibands.

We refer to [6] and [9] for the terminology and notations.

[^0]Recall that an idempotent semigroup S is called a normal band, if axya $=a y x a$ for all $a, x, y \in S$. It is well-known that a normal band satisfies any identity of the form

$$
\begin{equation*}
a x_{1} x_{2} \ldots x_{n} b=a x_{1 \pi} x_{2 \pi} \ldots x_{n \pi} b \tag{1}
\end{equation*}
$$

where π is a permutation of $\{1,2, \ldots, n\}$.
A dimonoid (D, \dashv, \vdash) will be called a normal diband, if both semigroups (D, \dashv) and (D, \vdash) are normal bands.

Lemma 1. ([11], Sect. 3.5, Lemma) Let (D, \dashv, \vdash) be an arbitrary dimonoid, $x, a_{i} \in D, 1 \leq i \leq n, n \in N, n>1$. Then
(i) $\left(a_{n} \dashv \ldots \dashv a_{i} \dashv \ldots \dashv a_{1}\right) \vdash x=a_{n} \vdash \ldots \vdash a_{i} \vdash \ldots \vdash a_{1} \vdash x$;
(ii) $x \dashv\left(a_{1} \vdash \ldots \vdash a_{i} \vdash \ldots \vdash a_{n}\right)=x \dashv a_{1} \dashv \ldots \dashv a_{i} \dashv \ldots \dashv a_{n}$.

Lemma 2. Let (D, \dashv, \vdash) be an idempotent dimonoid. Then (D, \dashv) is a normal band if and only if (D, \vdash) is a normal band.

Proof. If (D, \dashv) is a normal band, $a, x, y \in D$, then

$$
a \dashv x \dashv y \dashv a=a \dashv y \dashv x \dashv a
$$

Multiplying both parts of the last equality on the right by a concerning the operation \vdash, we obtain

$$
\begin{aligned}
& (a \dashv x \dashv y \dashv a) \vdash a=a \vdash x \vdash y \vdash a \vdash a=a \vdash x \vdash y \vdash a, \\
& (a \dashv y \dashv x \dashv a) \vdash a=a \vdash y \vdash x \vdash a \vdash a=a \vdash y \vdash x \vdash a
\end{aligned}
$$

according to Lemma 1 (i) and the idempotent property of the operation \vdash. So, (D, \vdash) is a normal band.

Conversely, let (D, \vdash) be a normal band. Then

$$
a \vdash x \vdash y \vdash a=a \vdash y \vdash x \vdash a
$$

for all $a, x, y \in D$. Multiplying both parts of the last equality on the left by a concerning the operation \dashv, we obtain

$$
\begin{aligned}
& a \dashv(a \vdash x \vdash y \vdash a)=a \dashv a \dashv x \dashv y \dashv a=a \dashv x \dashv y \dashv a, \\
& a \dashv(a \vdash y \vdash x \vdash a)=a \dashv a \dashv y \dashv x \dashv a=a \dashv y \dashv x \dashv a
\end{aligned}
$$

according to Lemma 1 (ii) and the idempotent property of the operation \dashv. So, (D, \dashv) is a normal band.

For an arbitrary nonempty set X denote the set of all nonempty finite subsets of X by $B[X]$.

Let (D, \dashv, \vdash) be an arbitrary dimonoid and D be a totally ordered set. For every $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in B[D]$ assume

$$
\begin{aligned}
& \vec{A}=x_{1} \vdash x_{2} \vdash \ldots \vdash x_{n} \\
& \overleftarrow{A}=x_{1} \dashv x_{2} \dashv \ldots \dashv x_{n}
\end{aligned}
$$

where $x_{1}<x_{2}<\ldots<x_{n}$ in the total order.
Using the identity (1), the idempotent property of the operations of a normal diband and Lemma 1, we can prove the following lemma.

Lemma 3. Let (D, \dashv, \vdash) be a normal diband, D be a totally ordered set and $A, B, C \in B[D], C \subseteq B, a \in A, x, y \in D$. Then
(i) $x \vdash a \vdash \vec{A}=x \vdash \vec{A}$;
(ii) $\overleftarrow{A} \dashv a \dashv x=\overleftarrow{A} \dashv x$
(iii) $\vec{A} \vdash a \vdash x=\vec{A} \vdash x=\overleftarrow{A} \vdash x$;
(iv) $x \dashv a \dashv \overleftarrow{A}=x \dashv \overleftarrow{A}=x \dashv \vec{A}$;
(v) $x \vdash \overrightarrow{A \cup B} \vdash y=x \vdash \vec{A} \vdash \vec{B} \vdash y=x \vdash \overleftarrow{A \cup B} \vdash y$;
(vi) $x \dashv \overleftarrow{A \cup B} \dashv y=x \dashv \overleftarrow{A} \dashv \overleftarrow{B} \dashv y=x \dashv \overrightarrow{A \cup B} \dashv y$;
(vii) $x \vdash \vec{B} \vdash \vec{C} \vdash y=x \vdash \vec{C} \vdash \vec{B} \vdash y=x \vdash \vec{B} \vdash y$;
(viii) $x \dashv \overleftarrow{B} \dashv \overleftarrow{C} \dashv y=x \dashv \overleftarrow{C} \dashv \overleftarrow{B} \dashv y=x \dashv \overleftarrow{B} \dashv y$

Note that the class of normal dibands is a subclass of the variety of all dimonoids which is closed under the taking of homomorphic images, subdimonoids and Cartesian products. Therefore it is a subvariety of the variety of all dimonoids. A dimonoid which is free in the variety of normal dibands will be called a free normal diband.

The necessary information about varieties of dimonoids can be found in [6].

Now we consider a free rectangular dimonoid [9].
Let $I_{n}=\{1,2, \ldots, n\}, n>1$ and let $\left\{X_{i}\right\}_{i \in I_{n}}$ be a family of arbitrary nonempty sets $X_{i}, i \in I_{n}$. Define the operations \dashv and \vdash on $\prod_{i \in I_{n}} X_{i}$ by

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right) \dashv\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}, \ldots, x_{n-1}, y_{n}\right), \\
\left(x_{1}, \ldots, x_{n}\right) \vdash\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}, y_{2}, \ldots, y_{n}\right)
\end{gathered}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \prod_{i \in I_{n}} X_{i}$.
Lemma 4. ([9], Lemma 4) For any $n>1,\left(\prod_{i \in I_{n}} X_{i}, \dashv, \vdash\right)$ is a rectangular dimonoid.

Obviously, for any $n>1,\left(\prod_{i \in I_{n}} X_{i}, \dashv, \vdash\right)$ is a normal diband. Let X be an arbitrary nonempty set and $X^{3}=X \times X \times X$. We denote the dimonoid $\left(X^{3}, \dashv, \vdash\right)$ by $F R c t(X)$.

Theorem 1. ([9], Theorem 1) $F \operatorname{Rct}(X)$ is a free rectangular dimonoid.
If $f: D_{1} \rightarrow D_{2}$ is a homomorphism of dimonoids, then the corresponding congruence on D_{1} will be denoted by Δ_{f}.

2. Free normal dibands

In this section we construct a free normal diband.
Let $\left\{D_{i}\right\}_{i \in I}$ be a family of arbitrary dimonoids $D_{i}, i \in I$ and let $\bar{\Pi}_{i \in I} D_{i}$ be a set of all functions $f: I \rightarrow \bigcup_{i \in I} D_{i}$ such that if $\in D_{i}$ for any $i \in I$. It easy to check that $\prod_{i \in I} D_{i}$ with multiplications defined by

$$
i(f \dashv g)=i f \dashv i g, \quad i(f \vdash g)=i f \vdash i g
$$

where $i \in I, f, g \in \bar{\prod}_{i \in I} D_{i}$, is a dimonoid. It is called the Cartesian product of dimonoids $D_{i}, i \in I$. Observe that if I is finite, then the Cartesian product and the direct product coincide. The Cartesian product of a finite number of dimonoids $D_{1}, D_{2}, \ldots, D_{n}$ is denoted by $D_{1} \times D_{2} \times \ldots \times D_{n}$.

Let $F \operatorname{Rct}(X)$ be the free rectangular dimonoid (see Sect. 1), $B(X)$ be the semilattice of all nonempty finite subsets of X with respect to the operation of the set theoretical union and let

$$
F N D(X)=\{((x, y, z), A) \in F R c t(X) \times B(X) \mid x, y, z \in A\} .
$$

The main result of this section is the following.
Theorem 2. $F N D(X)$ is a free normal diband.
Proof. Clearly, $F \operatorname{Rct}(X) \times B(X)$ is a dimonoid (see above). It is not difficult to see that $F N D(X)$ is a subdimonoid of $F R c t(X) \times B(X)$. It is clear that the operations \dashv and \vdash of $F N D(X)$ are idempotent. For all $((x, y, z), A),((a, b, c), B),((s, c, t), C) \in F N D(X)$ we have

$$
\begin{gathered}
((x, y, z), A) \dashv((a, b, c), B) \dashv((s, c, t), C) \dashv((x, y, z), A)= \\
=((x, y, c), A \cup B) \dashv((s, c, t), C) \dashv((x, y, z), A)= \\
=((x, y, t), A \cup B \cup C) \dashv((x, y, z), A)=((x, y, z), A \cup B \cup C), \\
((x, y, z), A) \dashv((s, c, t), C) \dashv((a, b, c), B) \dashv((x, y, z), A)= \\
=((x, y, t), A \cup C) \dashv((a, b, c), B) \dashv((x, y, z), A)=
\end{gathered}
$$

$$
=((x, y, c), A \cup C \cup B) \dashv((x, y, z), A)=((x, y, z), A \cup C \cup B) .
$$

Hence $F N D(X)$ is a normal band concerning the operation \dashv. By Lemma $2 F N D(X)$ is a normal band concerning the operation \vdash. So, $F N D(X)$ is a normal diband.

Let us show that $F N D(X)$ is free.
Let $\left(T, \dashv^{\prime}, \vdash^{\prime}\right)$ be an arbitrary normal diband, T be a totally ordered set and let $\gamma: X \rightarrow T$ be an arbitrary map. For every $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in$ $B[X]$ assume $A_{\gamma}=\left\{x_{i} \gamma \mid 1 \leq i \leq n\right\}$ and define a map

$$
\mu: F N D(X) \rightarrow\left(T, \dashv^{\prime}, \vdash^{\prime}\right):((x, y, z), A) \mapsto((x, y, z), A) \mu
$$

assuming

$$
((x, y, z), A) \mu=x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} z \gamma
$$

for all $((x, y, z), A) \in F N D(X)$.
We show that μ is a homomorphism. We will use the axioms of a dimonoid, Lemma 3 and the idempotent property of the operations.

For arbitrary elements $((x, y, z), A),((a, b, c), B) \in F N D(X)$ we have

$$
\begin{aligned}
& ((x, y, z), A) \mu=x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} z \gamma, \\
& ((a, b, c), B) \mu=a \gamma \vdash^{\prime} \overrightarrow{B_{\gamma}} \vdash^{\prime} b \gamma \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} c \gamma, \\
& (((x, y, z), A) \dashv((a, b, c), B)) \mu=((x, y, c), A \cup B) \mu= \\
& =x \gamma \vdash^{\prime} \overrightarrow{(A \cup B)}_{\gamma} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma, \\
& ((x, y, z), A) \mu \dashv^{\prime}((a, b, c), B) \mu= \\
& =\left(x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} z \gamma\right) \dashv^{\prime}\left(a \gamma \vdash^{\prime} \overrightarrow{B_{\gamma}} \vdash^{\prime} b \gamma \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} c \gamma\right)= \\
& =x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} z \gamma \dashv^{\prime} a \gamma \dashv^{\prime} \overrightarrow{B_{\gamma}} \dashv^{\prime} b \gamma \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} c \gamma= \\
& =x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} z \gamma \dashv^{\prime} \text { a } \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} b \gamma \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} c \gamma= \\
& =x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} b \gamma \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} c \gamma= \\
& =x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} c \gamma= \\
& =x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} \overleftarrow{B_{\gamma}} \dashv^{\prime} c \gamma= \\
& =x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma= \\
& =\left(x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}}\right) \vdash^{\prime}\left(y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma\right) \vdash^{\prime}\left(y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma\right)= \\
& =\left(x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}}\right) \vdash^{\prime}\left(y \gamma \dashv^{\prime} \overrightarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma\right) \vdash^{\prime}\left(y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma\right)= \\
& =\left(x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}}\right) \vdash^{\prime}\left(y \gamma \vdash^{\prime} \overrightarrow{(A \cup B)_{\gamma}} \vdash^{\prime} c \gamma\right) \vdash^{\prime}\left(y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma\right)=
\end{aligned}
$$

$$
\begin{gathered}
=x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} \overrightarrow{(A \cup B)_{\gamma}} \vdash^{\prime} c \gamma \vdash^{\prime}\left(y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma\right)= \\
=x \gamma \vdash^{\prime} \overrightarrow{(A \cup B)_{\gamma}} \vdash^{\prime} c \gamma \vdash^{\prime}\left(y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma\right)= \\
=x \gamma \vdash^{\prime} \overrightarrow{(A \cup B)_{\gamma}} \vdash^{\prime}\left(y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma\right)= \\
=x \gamma \vdash^{\prime} \overrightarrow{(A \cup B)_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{(A \cup B)_{\gamma}} \dashv^{\prime} c \gamma .
\end{gathered}
$$

Thus,

$$
(((x, y, z), A) \dashv((a, b, c), B)) \mu=((x, y, z), A) \mu \dashv^{\prime}((a, b, c), B) \mu
$$

for all $((x, y, z), A), \quad((a, b, c), B) \in F N D(X)$. Analogously, we can prove that

$$
(((x, y, z), A) \vdash((a, b, c), B)) \mu=((x, y, z), A) \mu \vdash^{\prime}((a, b, c), B) \mu
$$

for all $((x, y, z), A),((a, b, c), B) \in F N D(X)$. This completes the proof of Theorem 2 .

Obviously, the free normal diband $F N D(X)$ generated by a finite set X is finite. Specifically, $|F N D(X)|=\sum_{A \in B[X]}|A|^{3}$.

3. Dimonoids and (left, right) normal bands

In this section we show that the operations of a dimonoid (D, \dashv, \vdash) with a left (respectively, right) normal band (D, \vdash) (respectively, (D, \dashv)) coincide and construct a free ($\ell n, n$)-diband, a free ($n, r n$)-diband and a free ($\ell n, r n$)-diband.

Recall that an idempotent semigroup S is called a left normal band, if

$$
\begin{equation*}
a x y=a y x \tag{2}
\end{equation*}
$$

for all $a, x, y \in S$. If instead of (2) the identity

$$
\begin{equation*}
x y a=y x a \tag{3}
\end{equation*}
$$

holds, then S is a right normal band. It is well-known that a left normal band satisfies any identity of the form

$$
\begin{equation*}
a x_{1} x_{2} \ldots x_{n}=a x_{1 \pi} x_{2 \pi} \ldots x_{n \pi} \tag{4}
\end{equation*}
$$

where π is a permutation of $\{1,2, \ldots, n\}$. Dually, a right normal band satisfies any identity of the form

$$
\begin{equation*}
x_{1} x_{2} \ldots x_{n} a=x_{1 \pi} x_{2 \pi} \ldots x_{n \pi} a, \tag{5}
\end{equation*}
$$

where π is a permutation of $\{1,2, \ldots, n\}$.

Lemma 5. The operations of a dimonoid (D, \dashv, \vdash) coincide, if one of the following conditions holds:
(i) (D, \vdash) is a left normal band;
(ii) (D, \dashv) is a right normal band.

Proof. (i) For all $x, y, z \in D$ we have

$$
\begin{gathered}
x \vdash(y \dashv z)=x \vdash(y \dashv z) \vdash(y \dashv z)= \\
=x \vdash(y \vdash z) \vdash(y \dashv z)=x \vdash(y \dashv z) \vdash(y \vdash z)= \\
=x \vdash(y \vdash z) \vdash(y \vdash z)=x \vdash(y \vdash z)= \\
=(x \vdash y) \vdash z=(x \vdash y) \dashv z
\end{gathered}
$$

according to the idempotent property of the operation \vdash, the axioms of a dimonoid and the identity (2). Substituting $y=x$ in the last equality and using the idempotent property of the operation \vdash, we obtain $x \vdash z=x \dashv z$.
(ii) For all $x, y, z \in D$ we have

$$
\begin{gathered}
(x \vdash y) \dashv z=(x \vdash y) \dashv(x \vdash y) \dashv z= \\
=(x \vdash y) \dashv(x \dashv y) \dashv z=(x \dashv y) \dashv(x \vdash y) \dashv z= \\
=(x \dashv y) \dashv(x \dashv y) \dashv z=(x \dashv y) \dashv z= \\
=x \dashv(y \dashv z)=x \vdash(y \dashv z)
\end{gathered}
$$

according to the idempotent property of the operation \dashv, the axioms of a dimonoid and the identity (3). Substituting $z=y$ in the last equality and using the idempotent property of the operation \dashv, we obtain $x \dashv y=x \vdash$ y.

From Lemma 5 (i) (respectively, Lemma 5 (ii)) it follows that a dimonoid (D, \dashv, \vdash) with left (respectively, right) normal bands (D, \dashv) and (D, \vdash) is a left (respectively, right) normal band.

Consider the semigroups $X_{\ell z}, X_{r z}, X_{r b}$ and the dimonoids $X_{\ell z, r z}$, $X_{r b, r z}, X_{\ell z, r b}$ which were defined in [9]. It is easy to see that $X_{\ell z}, X_{r z}$, $X_{r b}$ are normal bands and $X_{\ell z, r z}, X_{r b, r z}, X_{\ell z, r b}$ are normal dibands.

Let

$$
\begin{gathered}
B_{r b}(X)=\left\{((x, y), A) \in X_{r b} \times B(X) \mid x, y \in A\right\}, \\
B_{\ell z}(X)=\left\{(x, A) \in X_{\ell z} \times B(X) \mid x \in A\right\}, \\
B_{r z}(X)=\left\{(x, A) \in X_{r z} \times B(X) \mid x \in A\right\}, \\
B_{\ell z, r b}(X)=\left\{((x, y), A) \in X_{\ell z, r b} \times B(X) \mid x, y \in A\right\}, \\
B_{r b, r z}(X)=\left\{((x, y), A) \in X_{r b, r z} \times B(X) \mid x, y \in A\right\},
\end{gathered}
$$

$$
B_{\ell z, r z}(X)=\left\{(x, A) \in X_{\ell z, r z} \times B(X) \mid x \in A\right\}
$$

It is clear that $B_{r b}(X), B_{\ell z}(X), B_{r z}(X)$ are subsemigroups of $X_{r b} \times$ $B(X), X_{\ell z} \times B(X), X_{r z} \times B(X)$ respectively, and $B_{\ell z, r b}(X), B_{r b, r z}(X)$, $B_{\ell z, r z}(X)$ are subdimonoids of $X_{\ell z, r b} \times B(X), X_{r b, r z} \times B(X), X_{\ell z, r z} \times B(X)$ respectively. By [2] $B_{r b}(X), B_{\ell z}(X)$ and $B_{r z}(X)$ are the free normal band, the free left normal band and the free right normal band respectively.

A dimonoid (D, \dashv, \vdash) will be called a $(\ell n, n)$-diband, if (D, \dashv) is a left normal band and (D, \vdash) is a normal band. A dimonoid (D, \dashv, \vdash) will be called a $(n, r n)$-diband, if (D, \dashv) is a normal band and (D, \vdash) is a right normal band. A dimonoid (D, \dashv, \vdash) will be called a $(\ell n, r n)$-diband, if (D, \dashv) is a left normal band and (D, \vdash) is a right normal band.

Note that every left (right) normal band is normal and the class of ($\ell n, n$)-dibands ($(n, r n)$-dibands, $(\ell n, r n)$-dibands) is a subvariety of the variety of all normal dibands. A dimonoid which is free in the variety of ($\ell n, n$)-dibands (respectively, $(n, r n)$-dibands, ($\ell n, r n)$-dibands) will be called a free ($\ell n, n$)-diband (respectively, free ($n, r n$)-diband, free ($\ell n, r n$)diband).

For the proofs of the following three lemmas we will use the notations from Sect. 1 and from the proof of Theorem 2.

Lemma 6. $B_{\ell z, r b}(X)$ is a free ($\left.\ell n, n\right)$-diband.
Proof. Clearly, $B_{\ell z, r b}(X)$ is a $(\ell n, n)$-diband. Let us show that $B_{\ell z, r b}(X)$ is free.

Let $\left(T, \dashv^{\prime}, \vdash^{\prime}\right)$ be an arbitrary ($\left.\ell n, n\right)$-diband, T be a totally ordered set and let $\gamma: X \rightarrow T$ be an arbitrary map. Define the map

$$
\begin{gathered}
\phi_{\ell n, n}: B_{\ell z, r b}(X) \rightarrow\left(T, \dashv^{\prime}, \vdash^{\prime}\right): \\
((x, y), A) \mapsto((x, y), A) \phi_{\ell n, n}=x \gamma \vdash^{\prime} \overrightarrow{A_{\gamma}} \vdash^{\prime} y \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}}
\end{gathered}
$$

Similarly to the proof of Theorem 2, we can show that $\phi_{\ell n, n}$ is a homomorphism. For this, we also use (4).

Lemma 7. $B_{r b, r z}(X)$ is a free ($n, r n$)-diband.
Proof. Obviously, $B_{r b, r z}(X)$ is a $(n, r n)$-diband. Show that $B_{r b, r z}(X)$ is free.

Let $\left(T, \dashv^{\prime}, \vdash^{\prime}\right)$ be an arbitrary $(n, r n)$-diband, T be a totally ordered set and let $\gamma: X \rightarrow T$ be an arbitrary map. Define the map

$$
\begin{gathered}
\phi_{n, r n}: B_{r b, r z}(X) \rightarrow\left(T, \dashv^{\prime}, \vdash^{\prime}\right): \\
((x, y), A) \mapsto((x, y), A) \phi_{n, r n}=\overrightarrow{A_{\gamma}} \vdash^{\prime} x \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}} \dashv^{\prime} y \gamma
\end{gathered}
$$

Analysis similar to that in the proof of Theorem 2 shows that $\phi_{n, r n}$ is a homomorphism. Our proof also uses (5).

Lemma 8. $B_{\ell z, r z}(X)$ is a free (ln,rn)-diband.
Proof. It is evident that $B_{\ell z, r z}(X)$ is a $(\ell n, r n)$-diband. Let $\left(T, \dashv^{\prime}, \vdash^{\prime}\right)$ be an arbitrary ($\ell n, r n$)-diband, T be a totally ordered set and let $\gamma: X \rightarrow T$ be an arbitrary map. Define the map

$$
\begin{gathered}
\phi_{\ell n, r n}: B_{\ell z, r z}(X) \rightarrow\left(T, \dashv^{\prime}, \vdash^{\prime}\right): \\
(x, A) \mapsto(x, A) \phi_{\ell n, r n}=\overrightarrow{A_{\gamma}} \vdash^{\prime} x \gamma \dashv^{\prime} \overleftarrow{A_{\gamma}}
\end{gathered}
$$

Similarly to the proof of Theorem 2 , the fact that $\phi_{\ell n, r n}$ is a homomorphism can be proved. To do this, also use (4) and (5).

4. Decompositions of $F N D(X)$

In this section we describe the structure of free normal dibands and characterize some least congruences on these dibands.

Let

$$
\begin{gathered}
B_{(i, j, k)}(X)=\{A \in B(X) \mid i, j, k \in A\}, \\
B_{r b}^{(i)}(X)=\left\{((x, y), A) \in B_{r b}(X) \mid i \in A\right\}, \\
B_{\ell z}^{(i, j)}(X)=\left\{(x, A) \in B_{\ell z}(X) \mid i, j \in A\right\}, \\
B_{r z}^{(i, j)}(X)=\left\{(x, A) \in B_{r z}(X) \mid i, j \in A\right\}, \\
B_{\ell z, r b}^{(i)}(X)=\left\{((x, y), A) \in B_{\ell z, r b}(X) \mid i \in A\right\}, \\
B_{r b, r z}^{(i)}(X)=\left\{((x, y), A) \in B_{r b, r z}(X) \mid i \in A\right\}, \\
B_{\ell z, r z}^{(i, j)}(X)=\left\{(x, A) \in B_{\ell z, r z}(X) \mid i, j \in A\right\}
\end{gathered}
$$

for all $i, j, k \in X$. It is evident that $B_{(i, j, k)}(X), B_{r b}^{(i)}(X), B_{\ell z}^{(i, j)}(X), B_{r z}^{(i, j)}(X)$ are subsemigroups of $B(X), B_{r b}(X), B_{\ell z}(X), B_{r z}(X)$ respectively, and $B_{\ell z, r b}^{(i)}(X), B_{r b, r z}^{(i)}(X), B_{\ell z, r z}^{(i, j)}(X)$ are subdimonoids of $B_{\ell z, r b}(X), B_{r b, r z}(X)$, $B_{\ell z, r z}(X)$ respectively.

For all $i, j, k \in X$ put

$$
\begin{gathered}
M_{(i, j, k)}=\{((x, y, z), A) \in F N D(X) \mid(x, y, z)=(i, j, k)\}, \\
M_{(i, j)}=\{((x, y, z), A) \in F N D(X) \mid(x, y)=(i, j)\}, \\
M_{(i, j]}=\{((x, y, z), A) \in F N D(X) \mid(y, z)=(i, j)\}, \\
M_{[i, j]}=\{((x, y, z), A) \in F N D(X) \mid(x, z)=(i, j)\}, \\
M_{(i)}=\{((x, y, z), A) \in F N D(X) \mid x=i\}
\end{gathered}
$$

$$
\begin{aligned}
& M_{(i]}=\{((x, y, z), A) \in F N D(X) \mid y=i\}, \\
& M_{[i]}=\{((x, y, z), A) \in F N D(X) \mid z=i\}
\end{aligned}
$$

for all $i, j \in X, Y \in B(X)$ such that $i, j \in Y$ put

$$
\begin{aligned}
M_{(i, j)}^{Y} & =\{((x, y, z), A) \in F N D(X) \mid((x, y), A)=((i, j), Y)\}, \\
M_{(i, j]}^{Y} & =\{((x, y, z), A) \in F N D(X) \mid((y, z), A)=((i, j), Y)\}, \\
M_{[i, j]}^{Y} & =\{((x, y, z), A) \in F N D(X) \mid((x, z), A)=((i, j), Y)\} ;
\end{aligned}
$$

for all $i \in X, Y \in B(X)$ such that $i \in Y$ put

$$
\begin{aligned}
& M_{(i)}^{Y}=\{((x, y, z), A) \in F N D(X) \mid(x, A)=(i, Y)\}, \\
& M_{(i]}^{Y}=\{((x, y, z), A) \in F N D(X) \mid(y, A)=(i, Y)\}, \\
& M_{[i]}^{Y}=\{((x, y, z), A) \in F N D(X) \mid(z, A)=(i, Y)\}
\end{aligned}
$$

for all $Y \in B(X)$ put

$$
M^{Y}=\{((x, y, z), A) \in F N D(X) \mid A=Y\}
$$

The notion of a diband of subdimonoids was introduced in [4] and investigated in [5] (see also [9]).

Subsequently, we will deal with diband decompositions and band decompositions of free normal dibands.

The following structure theorem gives decompositions of free normal dibands into dibands of subsemigroups.

Theorem 3. Let $F N D(X)$ be the free normal diband. Then
(i) $F N D(X)$ is a rectangular diband $F R c t(X)$ of subsemigroups $M_{(i, j, k)}$, $(i, j, k) \in F R c t(X)$ such that $M_{(i, j, k)} \cong B_{(i, j, k)}(X)$ for every $(i, j, k) \in$ $F \operatorname{Rct}(X)$;
(ii) $F N D(X)$ is a diband $X_{\ell z, r b}$ of subsemigroups $M_{(i, j)},(i, j) \in X_{\ell z, r b}$ such that $M_{(i, j)} \cong B_{r z}^{(i, j)}(X)$ for every $(i, j) \in X_{\ell z, r b}$;
(iii) $F N D(X)$ is a diband $X_{r b, r z}$ of subsemigroups $M_{(i, j]},(i, j) \in$ $X_{r b, r z}$ such that $M_{(i, j]} \cong B_{\ell z}^{(i, j)}(X)$ for every $(i, j) \in X_{r b, r z}$;
(iv) $F N D(X)$ is a left and right diband $X_{\ell z, r z}$ of subsemigroups $M_{(i]}, i \in X_{\ell z, r z}$ such that $M_{(i]} \cong B_{r b}^{(i)}(X)$ for every $i \in X_{\ell z, r z}$;
(v) $F N D(X)$ is a diband $B_{\ell z, r b}(X)$ of subsemigroups $M_{(i, j)}^{Y},((i, j), Y) \in$ $B_{\ell z, r b}(X)$ such that $M_{(i, j)}^{Y} \cong Y_{r z}$ for every $((i, j), Y) \in B_{\ell z, r b}(X)$;
(vi) $F N D(X)$ is a diband $B_{r b, r z}(X)$ of subsemigroups $M_{(i, j]}^{Y},((i, j), Y) \in$ $B_{r b, r z}(X)$ such that $M_{(i, j]}^{Y} \cong Y_{\ell z}$ for every $((i, j), Y) \in B_{r b, r z}(X)$;
(vii) $F N D(X)$ is a diband $B_{\ell z, r z}(X)$ of subsemigroups $M_{(i)}^{Y},(i, Y) \in$ $B_{\ell z, r z}(X)$ such that $M_{(i]}^{Y} \cong Y_{r b}$ for every $(i, Y) \in B_{\ell z, r z}(X)$.

Proof. (i) By Theorem 2 the map

$$
\begin{aligned}
\mu_{F R c t} & : F N D(X) \rightarrow F R c t(X): \\
((x, y, z), A) & \mapsto((x, y, z), A) \mu_{F R c t}=(x, y, z)
\end{aligned}
$$

is a homomorphism. It is clear that $M_{(i, j, k)},(i, j, k) \in F \operatorname{Rct}(X)$ is a class of $\Delta_{\mu_{F R c t}}$ which is a subdimonoid of $F N D(X)$. If $((x, y, z), A)$, $((a, b, c), B) \in M_{(i, j, k)}$, then $x=a=i, y=b=j, z=c=k$ and

$$
\begin{aligned}
& ((x, y, z), A) \dashv((a, b, c), B)=((x, y, c), A \cup B)=((i, j, k), A \cup B), \\
& ((x, y, z), A) \vdash((a, b, c), B)=((x, b, c), A \cup B)=((i, j, k), A \cup B) .
\end{aligned}
$$

Hence the operations of $M_{(i, j, k)}$ coincide and so, it is a semigroup. It is not difficult to show that for every $(i, j, k) \in F R c t(X)$ the map

$$
M_{(i, j, k)} \rightarrow B_{(i, j, k)}(X):((i, j, k), A) \mapsto A
$$

is an isomorphism.
(ii) By Theorem 2 the map

$$
\mu_{\ell z, r b}: F N D(X) \rightarrow X_{\ell z, r b}:((x, y, z), A) \mapsto((x, y, z), A) \mu_{\ell z, r b}=(x, y)
$$

is a homomorphism. It is evident that $M_{(i, j)},(i, j) \in X_{\ell z, r b}$ is a class of $\Delta_{\mu_{\ell z, r b}}$ which is a subdimonoid of $F N D(X)$. If $((x, y, z), A),((a, b, c), B) \in$ $M_{(i, j)}$, then $x=a=i, y=b=j$. Similarly to (i), the operations of $M_{(i, j)}$ coincide and so, it is a semigroup. It is easy to check that for every $(i, j) \in X_{\ell z, r b}$ the map

$$
M_{(i, j)} \rightarrow B_{r z}^{(i, j)}(X):((i, j, z), A) \mapsto(z, A)
$$

is an isomorphism.
(iii) By Theorem 2 the map

$$
\mu_{r b, r z}: F N D(X) \rightarrow X_{r b, r z}:((x, y, z), A) \mapsto((x, y, z), A) \mu_{r b, r z}=(y, z)
$$

is a homomorphism. Similarly to (ii), $M_{(i, j]},(i, j) \in X_{r b, r z}$ is a class of $\Delta_{\mu_{r b, r z}}$ which is a semigroup isomorphic to $B_{\ell z}^{(i, j)}(X)$.
(iv) By Theorem 2 the map

$$
\mu_{\ell z, r z}: F N D(X) \rightarrow X_{\ell z, r z}:((x, y, z), A) \mapsto((x, y, z), A) \mu_{\ell z, r z}=y
$$

is a homomorphism. Then $M_{(i]}, i \in X_{\ell z, r z}$ is a class of $\Delta_{\mu_{\ell z, r z}}$ which is a subdimonoid of $F N D(X)$. If $((x, y, z), A),((a, b, c), B) \in M_{(i]}$, then
$y=b=i$. Similarly to (i), the operations of $M_{(i]}$ coincide and so, it is a semigroup. It is easily seen that for every $i \in X_{\ell z, r z}$ the map

$$
M_{(i]} \rightarrow B_{r b}^{(i)}(X):((x, i, z), A) \mapsto((x, z), A)
$$

is an isomorphism.
(v) By Theorem 2 the map

$$
\begin{gathered}
\mu_{\ell z, r b}^{*}: F N D(X) \rightarrow B_{\ell z, r b}(X): \\
((x, y, z), A) \mapsto((x, y, z), A) \mu_{\ell z, r b}^{*}=((x, y), A)
\end{gathered}
$$

is a homomorphism. Then $M_{(i, j)}^{Y},((i, j), Y) \in B_{\ell z, r b}(X)$ is a class of $\Delta_{\mu_{\ell z, r b}^{*}}$ which is a subdimonoid of $F N D(X)$. If $((x, y, z), A),((a, b, c), B) \in M_{(i, j)}^{Y}$, then $x=a=i, y=b=j, A=B=Y$. Similarly to (i), the operations of $M_{(i, j)}^{Y}$ coincide and so, it is a semigroup. It is immediate to check that for every $((i, j), Y) \in B_{\ell z, r b}(X)$ the map

$$
M_{(i, j)}^{Y} \rightarrow Y_{r z}:((i, j, z), Y) \mapsto z
$$

is an isomorphism.
(vi) By Theorem 2 the map

$$
\begin{gathered}
\mu_{r b, r z}^{*}: F N D(X) \rightarrow B_{r b, r z}(X): \\
((x, y, z), A) \mapsto((x, y, z), A) \mu_{r b, r z}^{*}=((y, z), A)
\end{gathered}
$$

is a homomorphism. Similarly to (v), $M_{(i, j]}^{Y},((i, j), Y) \in B_{r b, r z}(X)$ is a class of $\Delta_{\mu_{r b, r z}^{*}}$ which is a semigroup isomorphic to $Y_{\ell z}$.
(vii) By Theorem 2 the map

$$
\begin{gathered}
\mu_{\ell z, r z}^{*}: F N D(X) \rightarrow B_{\ell z, r z}(X): \\
((x, y, z), A) \mapsto((x, y, z), A) \mu_{\ell z, r z}^{*}=(y, A)
\end{gathered}
$$

is a homomorphism. Similarly to (iv), $M_{(i]}^{Y},(i, Y) \in B_{\ell z, r z}(X)$ is a class of $\Delta_{\mu_{\ell z, r z}^{*}}$ which is a semigroup isomorphic to $Y_{r b}$.

If ρ is a congruence on a dimonoid (D, \dashv, \vdash) such that $(D, \dashv, \vdash) / \rho$ is a $(\ell n, n)$-diband (respectively, $(n, r n)$-diband, $(\ell n, r n)$-diband), then we say that ρ is a ($\ell n, n$)-congruence (respectively, ($n, r n$)-congruence, ($\ell n, r n$)-congruence).

Using the terminology of [9], from Theorem 3 we obtain

Corollary 1. Let $F N D(X)$ be the free normal diband. Then
(i) $\Delta_{\mu_{F R c t}}$ is the least rectangular diband congruence on $F N D(X)$;
(ii) $\Delta_{\mu_{\ell z, r b}}$ is the least $(\ell z, r b)$-congruence on $F N D(X)$;
(iii) $\Delta_{\mu_{r b, r z}}$ is the least $(r b, r z)$-congruence on $F N D(X)$;
(iv) $\Delta_{\mu_{\ell z, r z}}$ is the least left zero and right zero congruence on $F N D(X)$;
(v) $\Delta_{\mu_{\ell, r b}^{*}}$ is the least ($\left.\ell n, n\right)$-congruence on $F N D(X)$;
(vi) $\Delta_{\mu_{r b, r z}^{*}}$ is the least $(n, r n)$-congruence on $F N D(X)$;
(vii) $\Delta_{\mu_{\ell,, r z}^{*}}^{*}$ is the least ($\left.\ell n, r n\right)$-congruence on $F N D(X)$.

Proof. (i) By Theorem $1 F \operatorname{Rct}(X)$ is the free rectangular dimonoid. According to Theorem 3 (i) we obtain (i).
(ii) By Lemma 7 from [9] $X_{\ell z, r b}$ is the free $(\ell z, r b)$-dimonoid. According to Theorem 3 (ii) we obtain (ii).

The proof of (iii) is similar.
(iv) By Lemma 5 from [9] $X_{\ell z, r z}$ is the free left zero and right zero dimonoid. According to Theorem 3 (iv) we obtain (iv).
(v) By Lemma $6 B_{\ell z, r b}(X)$ is the free ($\left.\ell n, n\right)$-diband. According to Theorem 3 (v) we obtain (v).

The proof of (vi) is similar.
(vii) By Lemma $8 B_{\ell z, r z}(X)$ is the free ($\left.\ell n, r n\right)$-diband. According to Theorem 3 (vii) we obtain (vii).

The following structure theorem gives decompositions of free normal dibands into bands of subdimonoids.

Theorem 4. Let $F N D(X)$ be the free normal diband. Then
(i) $F N D(X)$ is a rectangular band $X_{r b}$ of subdimonoids $M_{[i, j]},(i, j) \in$ $X_{r b}$ such that $M_{[i, j]} \cong B_{\ell z, r z}^{(i, j)}(X)$ for every $(i, j) \in X_{r b}$;
(ii) $F N D(X)$ is a left band $X_{\ell z}$ of subdimonoids $M_{(i)}, i \in X_{\ell z}$ such that $M_{(i)} \cong B_{r b, r z}^{(i)}(X)$ for every $i \in X_{\ell z}$;
(iii) $F N D(X)$ is a right band $X_{r z}$ of subdimonoids $M_{[i]}, i \in X_{r z}$ such that $M_{[i]} \cong B_{\ell z, r b}^{(i)}(X)$ for every $i \in X_{r z}$;
(iv) $F N D(X)$ is a normal band $B_{r b}(X)$ of subdimonoids $M_{[i, j]}^{Y}, \quad((i, j), Y) \in$ $B_{r b}(X)$ such that $M_{[i, j]}^{Y} \cong Y_{\ell z, r z}$ for every $((i, j), Y) \in B_{r b}(X)$;
(v) $F N D(X)$ is a left normal band $B_{\ell z}(X)$ of subdimonoids $M_{(i)}^{Y}$, $(i, Y) \in B_{\ell z}(X)$ such that $M_{(i)}^{Y} \cong Y_{r b, r z}$ for every $(i, Y) \in B_{\ell z}(X)$;
(vi) $F N D(X)$ is a right normal band $B_{r z}(X)$ of subdimonoids $M_{[i]}^{Y}$, $(i, Y) \in B_{r z}(X)$ such that $M_{[i]}^{Y} \cong Y_{\ell z, r b}$ for every $(i, Y) \in B_{r z}(X)$;
(vii) $F N D(X)$ is a semilattice $B(X)$ of subdimonoids $M^{Y}, Y \in B(X)$ such that $M^{Y} \cong F R c t(Y)$ for every $Y \in B(X)$.

Proof. (i) By Theorem 2 the map

$$
\mu_{r b}: F N D(X) \rightarrow X_{r b}:((x, y, z), A) \mapsto((x, y, z), A) \mu_{r b}=(x, z)
$$

is a homomorphism. It is clear that $M_{[i, j]},(i, j) \in X_{r b}$ is a class of $\Delta_{\mu_{r b}}$ which is a subdimonoid of $F N D(X)$. It can be shown that for every $(i, j) \in X_{r b}$ the map

$$
M_{[i, j]} \rightarrow B_{\ell z, r z}^{(i, j)}(X):((i, y, j), A) \mapsto(y, A)
$$

is an isomorphism.
(ii) By Theorem 2 the map

$$
\mu_{\ell z}: F N D(X) \rightarrow X_{\ell z}:((x, y, z), A) \mapsto((x, y, z), A) \mu_{\ell z}=x
$$

is a homomorphism. It is evident that $M_{(i)}, i \in X_{\ell z}$ is a class of $\Delta_{\mu_{\ell z}}$ which is a subdimonoid of $F N D(X)$. It is easy to check that for every $i \in X_{\ell z}$ the map

$$
M_{(i)} \rightarrow B_{r b, r z}^{(i)}(X):((i, y, z), A) \mapsto((y, z), A)
$$

is an isomorphism.
(iii) By Theorem 2 the map

$$
\mu_{r z}: F N D(X) \rightarrow X_{r z}:((x, y, z), A) \mapsto((x, y, z), A) \mu_{r z}=z
$$

is a homomorphism. Similarly to (ii), $M_{[i]}, i \in X_{r z}$ is a class of $\Delta_{\mu_{r z}}$ which is a dimonoid isomorphic to $B_{\ell z, r b}^{(i)}(X)$.
(iv) By Theorem 2 the map

$$
\mu_{r b}^{*}: F N D(X) \rightarrow B_{r b}(X):((x, y, z), A) \mapsto((x, y, z), A) \mu_{r b}^{*}=((x, z), A)
$$

is a homomorphism. Similarly to (i), $M_{[i, j]}^{Y},((i, j), Y) \in B_{r b}(X)$ is a class of $\Delta_{\mu_{r b}^{*}}$ which is a dimonoid isomorphic to $Y_{\ell z, r z}$.
(v) By Theorem 2 the map

$$
\mu_{\ell z}^{*}: F N D(X) \rightarrow B_{\ell z}(X):((x, y, z), A) \mapsto((x, y, z), A) \mu_{\ell z}^{*}=(x, A)
$$

is a homomorphism. It is clear that $M_{(i)}^{Y},(i, Y) \in B_{\ell z}(X)$ is a class of $\Delta_{\mu_{\ell z}^{*}}$ which is a subdimonoid of $F N D(X)$. It can be shown that for every $(i, Y) \in B_{\ell z}(X)$ the map

$$
M_{(i)}^{Y} \rightarrow Y_{r b, r z}:((i, y, z), Y) \mapsto(y, z)
$$

is an isomorphism.
(vi) By Theorem 2 the map

$$
\mu_{r z}^{*}: F N D(X) \rightarrow B_{r z}(X):((x, y, z), A) \mapsto((x, y, z), A) \mu_{r z}^{*}=(z, A)
$$

is a homomorphism. Similarly to $(\mathrm{v}), M_{[i]}^{Y},(i, Y) \in B_{r z}(X)$ is a class of $\Delta_{\mu_{r z}^{*}}$ which is a dimonoid isomorphic to $Y_{\ell z, r b}$.
(vii) By Theorem 2 the map

$$
\mu^{*}: F N D(X) \rightarrow B(X):((x, y, z), A) \mapsto((x, y, z), A) \mu^{*}=A
$$

is a homomorphism. Clearly, $M^{Y}, Y \in B(X)$ is a class of $\Delta_{\mu^{*}}$ which is a subdimonoid of $F N D(X)$. One can show that for every $Y \in B(X)$ the map

$$
M^{Y} \rightarrow F \operatorname{Rct}(Y):((x, y, z), Y) \mapsto(x, y, z)
$$

is an isomorphism.
If ρ is a congruence on a dimonoid (D, \dashv, \vdash) such that the operations of $(D, \dashv, \vdash) / \rho$ coincide and it is a (left, right) normal band, then we say that ρ is a (left, right) normal band congruence.

Using the terminology of [9], from Theorem 4 we obtain
Corollary 2. Let $F N D(X)$ be the free normal diband. Then
(i) $\Delta_{\mu_{r b}}$ is the least rectangular band congruence on $F N D(X)$;
(ii) $\Delta_{\mu_{\ell z}}$ is the least left zero congruence on $F N D(X)$;
(iii) $\Delta_{\mu_{r z}}$ is the least right zero congruence on $F N D(X)$;
(iv) $\Delta_{\mu_{r b}^{*}}$ is the least normal band congruence on $F N D(X)$;
(v) $\Delta_{\mu_{\ell z}^{*}}$ is the least left normal band congruence on $F N D(X)$;
(vi) $\Delta_{\mu_{r z}^{*}}$ is the least right normal band congruence on $F N D(X)$;
(vii) $\Delta_{\mu^{*}}$ is the least semilattice congruence on $F N D(X)$.

Proof. (i) $X_{r b}$ is the free rectangular band (see Sect. 3 of [9]). By Theorem 4 (i) we obtain (i).
(ii) It is well-known that $X_{\ell z}$ is the free left zero semigroup. By Theorem 4 (ii) we obtain (ii).

The proof of (iii) is similar.
(iv) $B_{r b}(X)$ is the free normal band (see Sect. 3). By Theorem 4 (iv) we obtain (iv).
(v) $B_{\ell z}(X)$ is the free left normal band (see Sect. 3). By Theorem 4 (v) we obtain (v).

The proof of (vi) is similar.
(vii) It is well-known that $B(X)$ is the free semilattice. By Theorem 4 (vii) we obtain (vii).

Note that the least congruences on dimonoids and the corresponding decompositions of these dimonoids were also described in [4] and [6-9].

References

[1] J.-L. Loday, Dialgebras, In: Dialgebras and related operads, Lect. Notes Math. 1763, Springer-Verlag, Berlin, 2001, 7-66.
[2] M. Petrich, P.V. Silva, Structure of relatively free bands, Commun. Algebra 30 (2002), no. 9, 4165-4187.
[3] T. Pirashvili, Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169-183.
[4] A.V. Zhuchok, Commutative dimonoids, Algebra and Discrete Math. 2 (2009), 116-127.
[5] A.V. Zhuchok, Dibands of subdimonoids, Mat. Stud. 33 (2010), no. 2, 120-124.
[6] A.V. Zhuchok, Free commutative dimonoids, Algebra and Discrete Math. 9 (2010), no. 1, 109-119.
[7] A.V. Zhuchok, Free dimonoids, Ukr. Math. J. 63 (2011), no. 2, 165-175 (in Ukrainian).
[8] A.V. Zhuchok, Semilattices of subdimonoids, Asian-Eur. J. Math. 4 (2011), no. 2, 359-371.
[9] A.V. Zhuchok, Free rectangular dibands and free dimonoids, Algebra and Discrete Math. 11 (2011), no. 2, 92-111.
[10] A.V. Zhuchok, Dimonoids, Algebra i Logika 50 (2011), no. 4, 471-496 (in Russian).
[11] A.V. Zhuchok, Dimonoids with an idempotent operation, Proc. Inst. Applied Math. and Mech. 22 (2011), 99-107 (in Ukrainian).

Contact information

A. V. Zhuchok Department of Mechanics and Mathematics, Kyiv National Taras Shevchenko University, Volodymyrska str., 64, Kyiv, 01033, Ukraine E-Mail: zhuchok_a@mail.ru

Received by the editors: 25.10.2011
and in final form 05.12.2011.

[^0]: 2010 Mathematics Subject Classification: 08B20, 20M10, 20M50, 17A30, 17A32.

 Key words and phrases: normal diband, free normal diband, diband of subdimonoids, dimonoid, semigroup.

