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On the existence of complements in a group

to some abelian normal subgroups

Martyn R. Dixon, Leonid A. Kurdachenko, Javier Otal

Abstract. A complement to a proper normal subgroup H
of a group G is a subgroup K such that G = HK and H ∩K = 〈1〉.
Equivalently it is said that Gsplits over H. In this paper we develop

a theory that we call hierarchy of centralizers to obtain sufficient

conditions for a group to split over a certain abelian subgroup.

We apply these results to obtain an entire group-theoretical wide

extension of an important result due to D. J. S. Robinson formerly

shown by cohomological methods.

Introduction

Let G be a group and let H be a proper subgroup of G. A proper subgroup
K < G is called a supplement to H in G if G = HK and a complement
to H in G if G = HK and H ∩K = 〈1〉. If H is a normal subgroup of G
and H has a complement K in G, then it is said that G splits over H and
write this as G = H ⋋K. If all complements to H are conjugate, then it
is said that G conjugately splits over H.

It is well know that the existence of complements to certain subgroups
of a group exerts a big influence on the structure of the group. For example,
if every Sylow p–subgroup of a finite group G has a complement, then G is
soluble ([5]). Also there are many cases known in which a group splits over
several normal subgroups. For example if the nilpotent residual L of a finite
group G is abelian, then G splits conjugately over L ([4, 20]); this result
has been generalized in many instances for infinite groups (see, for example,
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[7, 17, 18, 19, 21, 22, 23, 28, 29, 30, 31, 32]). Moreover the existence of
complements give a possibility to obtain other characterizations of groups.
For example in the paper [14], some splitting results have been used for
the description of certain groups with no proper abnormal subgroups. In
the papers [12, 13], some criteria of existence of supplements to certain
normal subgroups have been obtained, and as corollaries of them, the
description of certain groups with proper contranormal subgroups have
been carried out.

In some sense, this paper is a continuation of the papers [12, 13].
At first, we are able to obtain sufficient conditions for the existence of
complements to certain abelian normal subgroups.

Theorem A (Theorem 1.1) Let G be a group, A be an abelian normal
subgroup of G and let g ∈ G such that gCG(A) ∈ ζ(G/CG(A)) is non-
trivial. Suppose that G satisfies the following conditions:

(i) G/A is nilpotent;

(ii) A = [A, g] 6= 〈1〉; and

(iii) CA(g) = 〈1〉.

Then G conjugately splits over A.

To obtain more splitting theorems we need the following construction.
Let G be a hypercentral group and let A be a semisimple ZG–module.
Suppose that

A =
⊕

λ∈Λ

Aλ,

whereAλ is a simple ZG–module for every λ ∈ Λ. IfH is a normal subgroup
of G, then either [H,Aλ] = Aλ or [H,Aλ] = {0}. Let C0 = CG(A), and
suppose that that G 6= C0. Being a non-identity hypercentral group, G/C0

has a non-identity center. Let C0 6= g0C0 ∈ ζ(G/C0). Thus [Aλ, g0] is a
G–invariant subgroup of Aλ so that either [Aλ, g0] = Aλ or [Aλ, g0] = {0}.
Put

Σ = {λ ∈ Λ | [Aλ, g0] = {0}}, Z1 = CA(g0) =
⊕

λ∈Σ

Aλ and C1 = CG(Z1).

By the election of Z1, g0 ∈ C1 and so C1 > C0. If G 6= C1, then we
continue this process. Pick C1 6= g1C1 ∈ ζ(G/C1) and put Z2 = CA(g1).
Suppose that we have constructed the ascending series

C0 < C1 < · · · < Cβ < · · ·
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for all ordinals β < α (α a given ordinal) and respective set of elements
{gβ | β < α} as above. Let Zα+1 =

⋂
β<αCA(gβ) and Cα+1 = CG(Zα+1).

If G = Cα+1, this process finishes. If not we can continue it by picking a
non-trivial element gα+1Cα+1 ∈ ζ(G/Cα+1). At last, there is an ordinal γ
such that G = Cγ . The family {Cα; gα | α < γ} is called a hierarchy of
centralizers of A

If G is a group, as usual, we denote by Π(G) the set of all primes
occurring as divisors of the order of the periodic elements of G. If A is a
periodic abelian group, let

A = Drp∈Π(A)Ap

be the primary decomposition of A, where Ap is the Sylow p–subgroup of
A. If n ≥ 1, we put

A[n] = Drp∈Π(A)Ωn(Ap),

where Ωn(Ap) = {b ∈ Ap | bp
n

= 1}. In this setting, we have

Theorem B (Theorem 1.8) Let G be a group and let A be a periodic
abelian normal subgroup of G such that G/A is nilpotent. Suppose that
A[1] = S = Drλ∈ΛAλ, where Aλ is a minimal G–invariant subgroup and
[G,Aλ] 6= 〈1〉, for every λ ∈ Λ. If the Z(G/A)–module S has a finite
hierarchy of centralizers, then G conjugately splits over A.

Applying at once Theorem B and [17, Lemma 3], we obtain

Corollary Let G be a group and let A be a periodic abelian normal
subgroup of G. Suppose that G has an ascendant subgroup H ≥ A such
that H/A is nilpotent. Suppose also that A[1] = S = Drλ∈ΛAλ, where Aλ

is a minimal H–invariant subgroup and [H,Aλ] 6= 〈1〉, for every λ ∈ Λ.
If the Z(H/A)–module S has a finite hierarchy of centralizers, then G
conjugately splits over A.

We recall that a group G is called minimax if G has a finite subnormal
series whose factors satisfy either the maximal condition or the minimal
condition on subgroups.

Theorem C (Theorem 1.13) Let G be a group and let A be a periodic
abelian normal subgroup of G. Suppose that G has an ascendant subgroup
H ≥ A such that H/A is nilpotent. Suppose also that A[1] = Drλ∈ΛAλ,
where Aλ is a minimal H–invariant subgroup and [H,Aλ] 6= 〈1〉, for every
λ ∈ Λ. If H/A is minimax, then G conjugately splits over A.

As corollaries we are able to obtain the description of some finitely
generated soluble groups.
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Let G be a group and let L be a normal subgroup of G. We say that
L is G–hyperfinite if L has an ascending series

〈1〉 = L0 ≤ L1 ≤ · · · ≤ Lα ≤ Lα+1 ≤ · · ·Lγ = L

of G–invariant subgroups whose factors are finite.

On the other hand, we recall that the subgroup SocG(L) generated by
all minimal G–invariant subgroups of G is said to be the G–socle of L; we
agree SocG(L) = 〈1〉 provided L has no such subgroups. Starting from the
socle we construct the upper G–socular series of L as the ascending chain

〈1〉 = S0 ≤ S1 ≤ · · · ≤ Sα ≤ Sα+1 ≤ · · ·Sρ,

where S1 = SocG(L) and Sα+1/Sα = SocG(L/Sα) for every ordinal α.
We note that Sµ =

⋃
β<µ Sβ for any limit ordinal µ. By definition, the

least ordinal ρ such that Sρ = Sρ+1 is called the socular height of L. The
normal subgroup L is called G–socular if L is the last term of the upper
G–socular series of L and is called G–socular-finite if L is G–socular and
has finite socular height.

Theorem D (Theorem 3.3) Let G be a finitely generated group and let
S a soluble normal subgroup of G. Suppose that the following conditions
holds:

(i) G contains a normal subgroup L ≥ S such that L/S is a torsion-free
nilpotent minimax group and G/L is abelian - by finite;

(ii) S is G–hyperfinite; and

(iii) every p–factor of S is G–socular-finite for each p ∈ Π(G).

Then the subgroup S is finite.

We mention some application of Theorem D and how we can obtain
it. If p is a prime, we recall that a group G is said to have finite section
p–rank rp(G) = r if every elementary abelian p–section of G is finite of
order at most pr and there is an elementary abelian p–section A/B of
G such that |A/B| = pr. A group G is said to have finite section rank
if rp(G) is finite for each prime p. In a celebrate paper [18] of 1982, D.
J. S. Robinson was able to prove that a finitely generated soluble group
G of finite section rank is minimax. However the proof of this relevant
result was obtained by means of cohomological methods. Therefore it is
interesting to obtain a group-theoretical proof of that theorem, which can
be carried out as an application of the results developed in this paper.
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Actually, a sketch of our proof is the following. Let Tor(G) be the largest
periodic normal subgroup of such a G. The first step of the proof is to
prove that G/TorG) is minimax. The second step is the study of the case
in which the Sylow p–subgroups of Tor(G) are finite for all primes p, a
fact that appears as a corollary of Theorem D. Finally it remains the
consideration of the case when Tor(G) is a divisible abelian subgroup, for
which we also obtain a group-theoretical proof.

1. The hierarchy of centralizers

Our first result (Theorem A) describes some sufficient conditions for a
group to conjugately split over a normal subgroup. Its proof needs an
additional definition. Let G be a group. Given x, g ∈ G, as usually, we put

[x,1 g] = [x, g] and [x,n+1 g] = [[x,n g], g] for all n ≥ 1.

The left n–Engelizer EG,n(g) of an element g ∈ G is the subset of G given
by

EG,n(g) = {x ∈ G | [x,n g] = 1}.

It is worth noting that, in general, EG,n(g) is not a subgroup of G.

Theorem 1.1. Let G be a group, A be an abelian normal subgroup of G
and let g ∈ G such that gCG(A) ∈ ζ(G/CG(A)) is non-trivial. Suppose
that G satisfies the following conditions:

(i) G/A is nilpotent;

(ii) A = [A, g] 6= 〈1〉; and

(iii) CA(g) = 〈1〉.

Then G conjugately splits over A.

Proof. By [13, Proposition 2.4], there is a subgroup L such that G = AL
and L ∩ A ⊆ EG,m(g) for some positive integer m. Let E = 〈EG,m(g)〉.
By [13, Lemma 2.3], there exists a positive integer k such that E ⊆
EG,k(g). Put D = A∩E. We claim that D = 〈1〉. For, otherwise, suppose
that D 6= 〈1〉. Since D ⊆ EG,k(g), we have that [D,k g] = 〈1〉. If t is
the least positive integer such that C = [D,t g] 6= 〈1〉, we have that
[C, g] = [D,t+1 g] = 〈1〉, and therefore C ≤ CA(g) and CA(g) 6= 〈1 >〉,
contradicting (iii). Thus A∩E = 〈1〉 as claimed. Let s be the least positive
integer such that L ⊆ EG,s(g). By [13, Lemma 2.3], there exists a positive
integer r such that R = 〈EG,s(g)〉 ⊂ EG,r(g). Since L ≤ R, R = L(R∩A).
But R ∩A = 〈1〉 and so R = L. Thus G = A⋋ L. Therefore L = EG,s(g).
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Let Y be other complement to A. Since g ∈ AY , we have g = yb, where
y ∈ Y and b ∈ A. Equivalently y = ga, where a = b−1. The subgroups
L and Y are isomorphic to G/A, therefore there is an automorphism
φ : L ↔ Y . We note that φ(g) = y. The equality L = EG,s(g) implies
that [Y,s y] = 〈1〉, that is Y ⊆ EG,s(y). Since A = [A, g] = [g,A], we may
write a = [g, c], where c ∈ A. Then y = gg−1c−1gc = c−1gc. It follows
that EG,s(y) = EG,s(g

c) = EG,s(g)
c. In particular EG,s(y) is a subgroup.

Moreover

EG,s(y) ∩A = EG,s(g
c) ∩A = EG,s(g)

c ∩Ac = (EG,s(g) ∩A)
c = 〈1〉.

Now we have EG,s(y) = Y (EG,s(y)∩A) = Y . In particular, Y = EG,s(y) =
EG,s(g)

c = Lc.

Corollary 1.2. Let G be a group and A be a periodic abelian normal
subgroup of G. Suppose that G/A is nilpotent and A has a finite series of
G–invariant subgroups

〈1〉 = A0 ≤ A1 ≤ · · · ≤ An = A

and there are elements g1, · · · , gn satisfying the following conditions:

(i) gjCG(Aj/Aj−1) ∈ ζ(G/CG(Aj/Aj−1) for every 1 ≤ j ≤ n;

(ii) Aj/Aj−1 = [Aj/Aj−1, gjAj ] for every 1 ≤ j ≤ n; and

(iii) the centralizer of gj in the factor Aj/Aj−1 is identity for every
1 ≤ j ≤ n.

Then G conjugately splits over A.

Proof. We proceed by induction on n. If n = 1, the result follows from
Theorem 1.1. Put B = A1 and suppose that we have already proved that
G/B conjugately splits over A/B. Let L/B be a complement to A/B so
that L/B is nilpotent. If g ∈ G, we have g = xa for some x ∈ L and a ∈ A.
Since L/B ∼= G/A, xCL(B) ∈ ζ(L/CL(B)). Since A is abelian, bx = bg

for each element b B. It follows that CB(x) = 〈1〉 and [B, x] = B. By
Theorem 1.1, L = B ⋋K and every complement to B in L is conjugate
to K. Hence G = AL = A(BK) = AK and

A ∩K = A ∩ (L ∩K) = (A ∩ L) ∩K = B ∩K = 〈1〉.

In other words, K is a complement to A in G.
Let D be another complement to A in G. Then DB/B is a complement

to A/B in G/B. By induction hypothesis, there exists an element v such
that DvB/B = (DB/B)vB = L/B. In particular, Dv ≤ L, and then
L = DvB. Clearly Dv ∩B = 〈1〉, so that Dv is a complement to B in L.
Then there is an element u ∈ L such that K = (Dv)u = Dvu, and the
proof is now complete.
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We start our specific study on hierarchy of centralizers. Roughly
speaking we are going to show that having a certain hierarchy of centralizers
implies conjugately splitting.

Lemma 1.3. Let G be a group and let A be an abelian normal subgroup
of G such that G/A is hypercentral. Let B a G–invariant subgroup of
A and suppose that B = Drλ∈ΛAλ, where Aλ is a minimal G–invariant
subgroup and [G,Aλ] 6= 〈1〉, for every λ ∈ Λ. If B satisfies the minimal
condition on G–invariant centralizers, then the Z(G/A)–module B has a
finite hierarchy of centralizers.

Proof. Put C0 = CG(B); by hypothesis, G 6= C0. Since G/C0 is hy-
percentral, there exists C0 6= g0C0 ∈ ζ(G/C0). Since g0C0 ∈ ζ(G/C0),
[Aλ, g0] is a G–invariant subgroup of Aλ, so that either [Aλ, g0] = Aλ or
[Aλ, g0] = 〈1〉, because of the minimality of Aλ. Let

∆ = {λ ∈ Λ | [Aλ, g0] = Aλ} and Σ = Σ \∆.

Then K1 = Drλ∈∆Aλ = [B, g0] and Z1 = Drλ∈ΣAλ = CB(g0). Clearly K1

and Z1 are G–invariant subgroups of B. Let C1 = CG(Z1). If K1 = B,
then Z1 = 〈1〉 and hence C1 = G and the construction of a hierarchy of
centralizers of B is finished.

Suppose thatZ1 6= 〈1〉. We claim thatC1 6= G. Otherwise [G,Aλ] = 〈1〉
for every λ ∈ Σ, contradicting our conditions. Thus C1 6= G. Clearly
C1 ≥ C0 and, since g0 ∈ C1, C1 > C0. We repeat the above process
picking a non-identity element g1C1 ∈ ζ(G/C1). As above we construct
two G–invariant subgroups of B, namely K2 = [Z1, g1] and Z2 = CZ1

(g1)
and Z1 = K2 × Z2. Again Z1 > Z2. Otherwise K2 = 〈1〉, and then
g1 ∈ CG(Z1) = C1, contradicting the election of g1.

Let C2 = CG(Z2). If K2 = Z1, then Z2 = 〈1〉 and hence C2 = G, and
the construction of a hierarchy of centralizers of B is finished. Otherwise
we construct a descending series of centralizers

Z1 > Z2 > · · · > Zn > · · · .

Since B satisfies the minimal condition on centralizers, this chain has to
break off in finitely many steps and consequently we construct a finite
hierarchy of centralizers of B, as required.

Corollary 1.4. Let G be a group and let A be an abelian normal subgroup
of G such that G/A is hypercentral. Let B a G–invariant subgroup of A
such that B = Drλ∈ΛAλ, where Aλ is a minimal G–invariant subgroup
and [G,Aλ] 6= 〈1〉, for every λ ∈ Λ. If Λ is finite, then the Z(G/A)–module
B has a finite hierarchy of centralizers.
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Lemma 1.5. Let G be a group and let A be an abelian normal subgroup
of G such that G/A is nilpotent group and G/CG(A) is finitely generated.
Let B a G–invariant subgroup of A such that B = Drλ∈ΛAλ, where Aλ

is a minimal G–invariant subgroup and [G,Aλ] 6= 〈1〉, for every λ ∈ Λ.
Then the Z(G/A)–module B has a finite hierarchy of centralizers.

Proof. Since G/A is finitely generated nilpotent,G/A satisfies the maximal
condition on all subgroups. Hence the ascending series

C0 < C1 < · · · < Cn < · · ·

must breaks off after finitely many steps.

Proposition 1.6. Let G be a group and let A be an abelian normal
subgroup of G such that G/A is nilpotent. Suppose that A = Drλ∈ΛAλ,
where Aλ is a minimal G–invariant subgroup and [G,Aλ] 6= 〈1〉, for every
λ ∈ Λ. If the Z(G/A)–module A has a finite hierarchy of centralizers, then
G conjugately splits over A.

Proof. Let {C0, · · · Cn; g0, · · · gn} be a finite hierarchy of centralizers of
A. Since we have C0 = CG(A), the conditions of this proposition show
that G 6= C0. Since g0C0 ∈ ζ(G/C0), [Aλ, g0] is a G–invariant subgroup
of Aλ, and then either [Aλ, g0] = Aλ or [Aλ, g0] = 〈1〉, by the minimality
of Aλ. Let

∆ = {λ ∈ Λ | [Aλ, g0] = Aλ} and Σ = Σ \∆.

Then K1 = Drλ∈∆Aλ = [A, g0] and Z1 = Drλ∈ΣAλ = CA(g0). Clearly K1

and Z1 are G–invariant subgroups of A. Within the factor-group G/Z1 we
have [A/Z1, g0Z1] = K1Z1/Z1 = A/Z1, and moreover [AλZ1/Z1, g0Z1] =
AλZ1/Z1 for all λ ∈ ∆. It follows that CA/Z1

(g0Z1) = 〈1〉, so that all
conditions of Theorem 1.1 are satisfied. Therefore G/Z1 = A/Z1 ⋋ L/Z1,
for some subgroup L. Moreover, every complement to A/Z1 is conjugated
with L/Z1.

Consider now the subgroup L. By construction, we have g0 ∈ L. Since
G = LA, every L–invariant subgroup of Z is also G–invariant. Furthermore

L/Z1 = L/(L ∩A) = LA/A = G/A.

Therefore we may replace G/A by L/Z1. In other words, there is no loss if
suppose that C1 = CL(Z1). By the election of Z1, g0 ∈ C1. In particular,
C1 > C0. Suppose that C1 = L. Then [Aλ, L] = [Aλ, G] = 〈1〉 for every
λ ∈ Σ, contradicting our conditions. This implies that L 6= C1. As in the
proof of the previous results we may express Σ as the disjoint union of two
subsets, which define L–invariant subgroups of A (and hence G–invariant),
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namely K2 = [Z1, g1] and Z2 = CZ1
(g1) such that Z1 = K2Z2. Once more

again Z1 > Z2.
Within the factor-group L/Z2 and with respect to the subgroup Z1/Z2

and the element g1Z2, we see that all conditions of Theorem 1.1 are
satisfied, and then L/Z2 = Z1/Z2⋋L1/Z2, for some subgroup L1. Moreover,
every complement to Z1/Z2 in L/Z2 is conjugated with L1/Z2. This and
G = LA at once give that G = LA = (L1Z1)A = L1A. Moreover,
L1 ∩A = L1 ∩L∩A = L1 ∩Z1 = Z2, so that G/Z2 = A/Z2⋋L1/Z2. Let
S be a subgroup of G such that G/Z2 = A/Z2⋋S/Z2. Then G = SA and
G/Z1 = (SZ1/Z1)(A/Z1). We have

SZ1 ∩A = SZ1 ∩ (Z1 ×K1) = Z1 × (SZ1 ∩K1) = Z1.

This shows that SZ1/Z1 is a complement to A/Z1 in G/Z1. Then there
exists an element x satisfying (SZ1/Z1)

xZ1 = L/Z1. It follows that Sx ≤ L.
The equation G/Z2 = A/Z2 ⋋ S/Z2 implies Gx/Z2 = G/Z2 = A/Z2 ⋋

Sx/Z2. Therefore L/Z2 = (L/Z2 ∩ A/Z2) ⋋ Sx/Z2 = Z1/Z2 ⋋ Sx/Z2.
In other words, Sx/Z2 is a complement to Z/Z2 in L/Z2. Applying the
proved above, there is an element y ∈ L such that Sxy/Z2 = L1/Z2, that is
Sxy = L1. Consequently, every complement to A/Z2 in G/Z2 is conjugated
with L1/Z2.

Proceeding as above and using the fact that A has a finite hierarchy
of centralizers, after finitely many steps we prove the required result.

Corollary 1.7. Let G be a group and let A be an abelian normal subgroup
of G such that G/A is nilpotent. Suppose that A = Drλ∈ΛAλ, where Aλ

is a minimal G–invariant subgroup and [G,Aλ] 6= 〈1〉, for every λ ∈ Λ.
If the Z(G/A)–module A satisfies the minimal condition on G–invariant
centralizers, then G conjugately splits over A.

Proof. Apply Lemma 1.3 and Proposition 1.6 at once.

If C/B is a normal factor of a group G, we recall that C/B is said to
be G–central if CG(C/B) = G and G–eccentric otherwise.

Theorem 1.8. Let G be a group and let A be a periodic abelian normal
subgroup of G such that G/A is nilpotent. Suppose that A[1] = S =
Drλ∈ΛAλ, where Aλ is a minimal G–invariant subgroup and [G,Aλ] 6=
〈1〉, for every λ ∈ Λ. If the Z(G/A)–module S has a finite hierarchy of
centralizers, then G conjugately splits over A.

Proof. Let {C0, · · · , Cn; g0, · · · , gn} be a finite hierarchy of centralizers
of S. We have C0 = CG(S) and then the conditions of this proposition
show that G 6= C0. Since g0C0 ∈ ζ(G/C0), we have that [Aλ, g0] is a
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G–invariant subgroup of Aλ for all λ ∈ Λ, so that either [Aλ, g0] = Aλ or
[Aλ, g0] = 〈1〉, by the minimality of Aλ. Let Let

∆ = {λ ∈ Λ | [Aλ, g0] = Aλ} and Σ = Σ \∆.

Then K1 = Drλ∈∆Aλ = [S, g0] and Z1 = Drλ∈ΣAλ = CS(g0). As the
next step we consider the subgroup C1 = CG(Z1). Since g1C1 ∈ ζ(L/C1),
[Aλ, g1] is an L–invariant (and hence G–invariant) subgroup of Aλ for all
Aλ ∈ Σ. The minimality de Aλ again ensures us that either [Aλ, g1] = Aλ

or [Aλ, g1] = 〈1〉. Once more again, we decompose Σ = Ξ ∪ Ω as the
disjoint union of two subsets, which give rise two G–invariant subgroups
of A, namely K2 = [Z1, g1] and Z2 = CZ1

(g1), which allow us to continue
the process. Proceeding in this way, after finitely many steps we has to
obtain that [Aλ, 〈g0, · · · , gn〉] = Aλ for all λ ∈ Λ. Labeling D1 = K1,
D2 = D1 ×K2, ... we construct a finite series of G–invariant subgroups of
S,

〈1〉 = D0 ≤ D1 ≤ · · · ≤ Dn = S

satisfying the following conditions:

• gjCG(Dj/Dj−1) ∈ ζ(G/CG(Dj/Dj−1) for every 1 ≤ j ≤ n;

• Dj/Dj−1 = [Dj/Dj−1, gjDj ] for every 1 ≤ j ≤ n; and

• the centralizer of gj in the factor Dj/Dj−1 is identity for every
1 ≤ j ≤ n.

Put H = 〈g0, · · · , gn〉 and L = SH. We have D1 = Drλ∈∆Aλ. Since
every subgroup Aλ is minimal G–invariant, ζ(G/CG(Aλ)) is periodic (see
[10, Theorem 3.1]). It follows that gs0 ∈ CG(Aλ) for some positive integer s.
Therefore Aλ includes a finite minimal 〈g0〉–invariant subgroup W . Then
there exists a subset X ⊆ G such that Aλ = Drx∈XW

x (see [11, Lemma
5.4]). If we suppose that [W, g0] = 〈1〉, the latter yields [Aλ, g0] = 〈1〉, and
we get a contradiction. Hence [W, g0] =W . Thus D1 is a direct product of
finite minimal 〈g0〉–invariant subgroups, every of which is 〈g0〉–eccentric.
In the same way we establish similar assertions for the elements gj and
the factors Dj+1/Dj .

SinceH is finitely generated andH/(H∩A) is nilpotent, by [6, Theorem
3] H ∩ A satisfies the maximal condition on H–invariant subgroups. In
particular, there exists a positive integer r such that (H ∩A)[r] = H ∩A.
Put T = L ∩A so that T [r] = T . We have T = Drp∈Π(T )Tp, where Tp is
the Sylow p–subgroup of T . Clearly the mapping φp : a→ ap, a ∈ Ω2(Tp),
is a ZH–homomorphism of Ω2(Tp) in Ω1(Tp). Since Ker φp = Ω1(Tp), we
have that Ω2(Tp)/Ω1(Tp) is isomorphic to some H–invariant subgroup of
Ω1(Tp). Let D1,p = D1 ∩ Ω1(Tp) and let D2,p be the preimage of D1,p by
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φp. Thus D2,p/Ω1(Tp) is isomorphic to some H–invariant subgroup of D1,p.
Being H–invariant, this subgroup is also 〈g0〉–invariant. Since D1 can be
decomposed into a direct product of minimal 〈g0〉–invariant subgroups,
every 〈g0〉–invariant subgroup of D1 is a direct product of minimal 〈g0〉–
invariant subgroups. It follows that D2,p/Ω1(Tp) is a direct product of
minimal 〈g0〉–invariant subgroups. Then [D2,p/Ω1(Tp), g0] = D2,p/Ω1(Tp)
and the centralizer of g0 in D2,p/Ω1(Tp) is identity. Proceeding in this
way, we obtain that T [2] has a finite series of H–invariant subgroups

〈1〉 = D0 ≤ D1 ≤ · · · ≤ Dn ≤ Dn+1 ≤ · · · ≤ D2n = T [2]

satisfying the following conditions:

• gjCG(Dj/Dj−1) ∈ ζ(G/CG(Dj/Dj−1) for every 1 ≤ j ≤ 2n;

• Dj/Dj−1 = [Dj/Dj−1, gjDj ] for every 1 ≤ j ≤ 2n; and

• the centralizer of gj in the factor Dj/Dj−1 is identity for every
1 ≤ j ≤ 2n.

Proceeding in this way we construct a series of H–invariant subgroups of
T satisfying the conditions of Corollary 1.2. Therefore L conjugately splits
over T , that is L = T ⋋K for some subgroup K and every complement
to T in L is conjugated to K. Since K ∩A = 〈1〉, HA = A⋋K.

Put S1 = A[2] and L1 = S1H. We have

A = Drp∈Π(A)Ap,

where Ap is the Sylow p–subgroup of A. Clearly the mapping ψp : a 7→
ap, a ∈ Ω2(Ap) is a ZG–homomorphism of Ω2(Ap) in Ω1(Ap). Since Ker
ψp = Ω1(Ap), it follows that Ω2(Ap)/Ω1(Ap) can be decomposed as a
direct product of minimal G–invariant subgroups, and every direct factor
is H–eccentric. Then the same holds for S1/S. As we showed above, every
complement to S1/S in L1/S is conjugated with KS/S.

Let R be another complement to S1 in L1. Then RS/S is a complement
to S1/S in L1/S and hence conjugated to KS/S in L1/S. Thus, there is
some x ∈ L1 such that Rx ≤ KS = L. We have L1 = Lx

1 = S1 ⋋Rx, and
so

L = L ∩ L1 = (S1 ∩ L)⋋Rx = S ⋋Rx.

We have already proved that Rx and K are conjugated in L, that is
(Rx)y = K for some element y ∈ L. This shows that K is a complement
to S1 in L1 and therefore conjugated to K.

Proceeding in this way and applying induction, we see that K is a
complement to A[n] in A[n]H and moreover every complement to A[n]
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in A[n]H is conjugated with K. Since A =
⋃

n∈NA[n], this implies that
AH = A⋋K. Let Y be another complement to A in AH. Then

Y ∼= Y/(Y ∩A) ∼= Y A/A = HA/A ∼= H/(H ∩A),

which gives that Y is finitely generated. Let Y = 〈y1, · · · , ym〉. Since
AH =

⋃
n∈NA[n]H, there exist a positive integer k such that y1, ...,

ym ∈ A[k]H. In other words, Y ≤ A[k]H. Furthermore H is a finitely
generated abelian–by–nilpotent group, and so we may apply a result due
to P. Hall [6, Theorem 3] to obtain that H satisfies the maximal condition
on normal subgroups. In particular, H ∩A satisfies the maximal condition
for H–invariant subgroups. It follows that there is a number r such that
H ∩A ≤ A[r]. There is no loss if we assume that r = k. Then

A[k]H = A[k]H ∩AH = (A[k]H ∩ (A⋋ Y ) =

= (A[k]H ∩A)⋋ Y = (A[k](H ∩A))⋋ Y = A[k]⋋ Y.

But in this case there is an element z ∈ A[k]H such that Y z = K.
Hence every complement to A in AH is conjugated with K. Since G/A is
hypercentral, HA/A is ascendant in G. By applying [17, Lemma 3], we
deduce that G conjugately splits over A.

Corollary 1.9. Let G be a group and let A be a periodic abelian normal
subgroup of G. Suppose that G has an ascendant subgroup H ≥ A such
that H/A is nilpotent. Suppose also that A[1] = S = Drλ∈ΛAλ, where Aλ

is a minimal H–invariant subgroup and [H,Aλ] 6= 〈1〉, for every λ ∈ Λ.
If the Z(H/A)–module S has a finite hierarchy of centralizers, then G
conjugately splits over A.

Proof. It suffices to apply at once Theorem 1.8 and [17, Lemma 3].

Corollary 1.10. Let G be a group and let A be a periodic abelian normal
subgroup of G such that G/A is nilpotent. Suppose that A[1] = S =
Drλ∈ΛAλ, where Aλ is a minimal G–invariant subgroup and [G,Aλ] 6= 〈1〉,
for every λ ∈ Λ. If the Z(G/A)–module S satisfies the minimal condition
on H–invariant centralizers, then G conjugately splits over A.

Proof. G has a finite hierarchy of centralizers by Lemma 1.3, so it suffices
to apply Theorem 1.8.

Corollary 1.11. Let G be a group and let A be a periodic abelian normal
subgroup of G. Suppose that G has an ascendant subgroup H ≥ A such
that H/A is nilpotent. Suppose also that A[1] = S = Drλ∈ΛAλ, where Aλ

is a minimal H–invariant subgroup and [H,Aλ] 6= 〈1〉, for every λ ∈ Λ.
If the Z(H/A)–module S satisfies the minimal condition on H–invariant
centralizers, then G conjugately splits over A.
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Proof. It suffices to apply at once Corollary 1.10 and [17, Lemma 3].

A group G is said to have finite Hirsch-Zaitsev rank rhz(G) = r if G
has an ascending series whose factors are either infinite cyclic or periodic
and if the number of infinite cyclic factors is exactly r. Otherwise it is said
that G has infinite Hirsch-Zaitsev rank ([2]). It is not hard to show that
rhz(G) is an invariant of the group G. We mention that this definition
is a slightly generalization of a former definition by D. I. Zaitsev, who
considered groups with a finite subnormal series whose factors are either
infinite cyclic or periodic. The latter is known as the torsion-free rank or
0–rank r0(G) of G. This numerical invariant was an important tool in the
study of polycyclic–by–finite groups started in the celebrated paper of K.
A. Hirsch [9], and later on was called the Hirsch number. In the study of
polyrational groups this numerical invariant appeared as the rational rank
of the group, a definition also due to D. I. Zaitsev [24]. In another paper
by D. I. Zaitsev [26] this concept was applied to locally polycyclic–b!
y–finite groups, and in more general form this concept was extended to
arbitrary groups by D. I. Zaitsev in the paper [27].

Proposition 1.12. Let G be a group and let A be a periodic abelian normal
subgroup of G such that G/A is nilpotent. Suppose that G/CG(A[1]) is
minimax and A[1] = S = Drλ∈ΛAλ, where Aλ is a minimal G–invariant
subgroups and [G,Aλ] 6= 〈1〉, for every λ ∈ Λ. Then S has a finite hierarchy
of centralizers.

Proof. Let C0 = CG(S). Since a periodic soluble minimax group is
Chernikov, the torsion subgroup Tor(G/C0) = P/C0 is Chernikov. Let
D/C0 be the divisible part of P/C0. Since A has finite section rank, every
Aλ is finite and so the index |G : CG(Aλ)| is finite too. Since C0 ≤ CG(Aλ)
and D/C0 has no proper subgroups of finite index, D ≤ CG(Aλ). This
holds for all λ ∈ Λ, therefore

D ≤
⋂

λ∈Λ

CG(Aλ) = C.

In other words, the periodic part of G/C0 has to be finite. In particular,
G/C0 is periodic provided it is finite. The finiteness of Tor(G/C0) implies
that ζ(G/C0) cannot be periodic. Therefore we may pick g0C0 ∈ ζ(G/C0)
of infinite order. Let K1 = [A, g0] and Z1 = CA(g0). Clearly K1 and Z1 are
G–invariant subgroups of A. Put C1 = CG(Z1). If K1 = A, then Z1 = 〈1〉
and hence C1 = G. Therefore we have just constructed a finite hierarchy
of centralizers.

Suppose that Z1 6= 〈1〉. We may assume that C1 6= G. Otherwise,
[G,Aλ] = 〈1〉 for some λ ∈ Λ, contradicting our hypothesis. Clearly
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C1 ≥ C0 and, since g0 ∈ C1, we have that C1 > C0. It follows that
rhz(G/C1) < rhz(G/C0). As above, we have that Tor(G/C1) is finite,
which implies that ζ(G/C1) cannot be periodic. Therefore we may pick
g1C1 ∈ ζ(G/C1) of infinite order and construct a second step: K2 =
[Z1, g1], Z2 = CZ1

(g1) and C2 = CG(Z2). Clearly Z1 > Z2 because
g1 /∈ C1. Again, we construct a finite hierarchy of centralizers if Z2 = 〈1〉.

If Z2 6= 〈1〉, and we proceed in this way we eventually construct a
strict descending series

Z1 > Z2 > · · · > Zn > · · · ,

such that if Cα = CG(Zα), then rhz(G/Cα+1) > rhz(G/Cα). Thus the
above chain gives rise to the following sequence of nonnegative numbers

rhz(G/C0) > rhz(G/C1) > · · · > rhz(G/Cn) > ... > rhz(G/Cn) > · · · ,

and thus there is some number t such that G/Ct is periodic. In this case
G/Ct is necessarily finite, which shows that we can construct a finite
hierarchy of centralizers.

Theorem 1.13. Let G be a group and let A be a periodic abelian normal
subgroup of G. Suppose that G has an ascendant subgroup H ≥ A such
that H/A is nilpotent. Suppose also that A[1] = Drλ∈ΛAλ, where Aλ is
a minimal H–invariant subgroup and [H,Aλ] 6= 〈1〉, for every λ ∈ Λ. If
H/A is minimax, then G conjugately splits over A.

Proof. It suffices to apply at once Proposition 1.11, Theorem 1.8 and [17,
Lemma 3].

Corollary 1.14. Let G be a group and let A be an abelian normal subgroup
of G. Suppose that the following conditions holds:

(i) G has a normal subgroup L ≥ A such that L/A is torsion-free
nilpotent minimax; and

(ii) A = Drλ∈ΛAλ and the Aλ are finite minimal G–invariant subgroups
such that [G,Aλ] 6= 〈1〉.

If Z = CA(L), then G/Z conjugately splits over A/Z.

Proof. Since L is a normal subgroup of G, [L,Aλ] is G–invariant, and
then either [L,Aλ] = Aλ or [L,Aλ] = 〈1〉. Let

∆ = {λ ∈ Λ | [L,Aλ] = Aλ},

so that

D = Drλ∈∆Aλ = [L,A] and Z = Drλ∈Λ\∆Aλ = CA(L).
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We remark that the subgroups D and Z are G–invariant. Within the factor-
group G/Z we have that A/Z = DZ/Z and [L/Z,AλZ/Z] = AλZ/Z for
each λ ∈ ∆. By Theorem 1.13, G/Z conjugately splits over A/Z, that is
G/Z = A/Z ⋋K/Z for some subgroup K/Z.

2. Some locally nilpotent groups

This Section is entirely auxiliary. We develop here some results that are
consequence of the splitting criteria obtained in the above Section in order
to obtain some applications in the next Section.

Let G be an abelian group of finite 0–rank. Let M be a maximal
Z–independent subset of G and put A = 〈M〉 so that the factor-group
G/A is periodic. Let

Sp(G) = {p prime | the Sylow p–subgroup of G/A is infinite}.

If B ≤ G is free (abelian) and G/B is periodic, then the factors A/(A∩B)
and B/(A ∩B) are finite, which shows that the set Sp(G) is independent
of A, i.e. Sp(G) is an invariant of G. This set Sp(G) is called the spectrum
of G. If H EG, it is not hard to see that

Sp(G) = Sp(H) ∪ Sp(G/H).

Let G be a soluble group of finite Hirsch-Zaitsev rank. We define Sp(G)
to be the union of the spectrums of the factors of the derived series of
G. It is rather easy to see that Sp(G) can be defined as the union of the
spectrums of the factors of an arbitrary normal series of G with abelian
factors. Clearly, a soluble–by–finite minimax group has a finite spectrum.

For our purposes we need the following auxiliary result. Even though
the result is known, a reference is difficult to find in the literature. For
this reason and for the reader’s convenience we give a proof of the result.
We recall that a group G is said to have finite special rank r(G) = r if
every finitely generated subgroup of G can be generated by r elements
and r is the least positive integer with this property.

Lemma 2.1. If A and B are abelian minimax groups then so is their
tensor product A⊗B.

Proof. Let r = max{r0(A), r0(B)} and s = max{r(A), r(B)}. We recall
that Sp(A) and Sp(B) are finite sets. Being minimax, there exist finitely
generated subgroups H ≤ A and K ≤ B such that

A/H = Drp∈Sp(A)Ap and B/K = Drp∈Sp(A)Bp,
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where Ap and Bp are direct products of finitely many Prüfer p–groups.
Suppose that we have

H = (Z1 × · · · × Zk)× (Drp∈Sp(A)Cp),

where k ≤ r, each Zj is an infinite cyclic group, and each Cp is a direct
product of at most s cyclic p–groups. Now the sequence

〈1〉 −→ H −→ A −→ A/H −→ 〈1〉

is exact. Applying a theorem due to Dieudonné (see, for example, [3,
Theorem 60.6]), we have that the sequence

〈1〉 → H⊗(B/Tor(B)) → A⊗(B/Tor(B)) → A/H⊗(B/Tor(B)) → 〈1〉

is also exact. Standard properties of the tensor product of abelian groups
(see [3, p. 255]) give that

H ⊗ (B/Tor(B)) ∼= (Y1 × · · · × Yk)× (Drp∈Sp(A)Dp),

where each Yj = B/Tor(B), Dp = B/BtpTor(B), where tp = pmp is a
power of p and p ∈ Sp(A). From this, we conclude that H ⊗ (B/Tor(B))
is also minimax. Furthermore,

A/H ⊗ (B/Tor(B)) ∼= (Drp∈Sp(A)Ap)⊗ (B/Tor(B)),

where each Ap is a direct product of finitely many Prüfer p–groups. Let
E = X1 × · · · ×Xu be the p–basic subgroup of B/Tor(B), where each Xj

is an infinite cyclic subgroup (see [3]). By [3, Theorem 61.1],

Cp∞ ⊗ (B/Tor(B)) ∼= Cp∞ ⊗ E ∼=W1 × · · · ×Wu,

where each Wj
∼= Cp∞ . From this it follows that A/H ⊗ (B/Tor(B)) is

also minimax and has spectrum Sp(A). Consequently A⊗ (B/Tor(B)) is
minimax. We have that

〈1〉 → Tor(A) → A→ A/Tor(A) → 〈1〉

is also exact. By [3, Theorem 60.6], so is the sequence

〈1〉 → Tor(A)⊗ (B/Tor(B)) → · · ·

· · · → A⊗ (B/Tor(B)) → (A/Tor(A))⊗ (B/Tor(B)) → 〈1〉.

Since a homomorphic image of an abelian minimax group with spectrum
π is minimax and has spectrum ρ ⊆ π, (A/Tor(A)) ⊗ (B/Tor(B)) is
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minimax with spectrum contained in Sp(A). Applying [3, Theorem 61.5],
we deduce that Tor(A⊗B) is isomorphic to

(Tor(A)⊗ Tor(B))× (Tor(A)⊗B/Tor(B))× ((A/Tor(A))⊗ Tor(B))

and
(A⊗B)/(Tor(A⊗B)) ∼= (A/Tor(A))⊗ (B/Tor(B)).

We have already seen that Tor(A)⊗B/Tor(B) is minimax since it is
a subgroup of A⊗B/Tor(B). Similarly A/Tor(A)⊗ Tor(B) is minimax.
From the above paragraph, we deduce that (A/Tor(A))⊗ (B/Tor(B)) is
also minimax. Thus it remains to show that Tor(A)⊗Tor(B) is minimax.
We note that Tor(A) and Tor(B) satisfy the minimal condition on sub-
groups, and so they are direct products of finitely many Prüfer p–groups
and finitely many finite cyclic groups. Therefore to compute its tensor
product, it will suffice to compute the tensor product of two arbitrary
factors of these mentioned above. Standard properties of tensor products
(see, for example, [3, p. 255]), give that

Cp∞ ⊗ Cp∞ = 〈1〉, Cp∞ ⊗ Cq∞ = Cp∞ ⊗ Cqk = Cpm ⊗ Cqk = 〈1〉 (p 6= q)

and
Cpm ⊗ Cpk = Cpt (t = min{k,m}).

Thus Tor(A)⊗ Tor(B) has to be finite, which finishes the proof.

Let G be a group. It is well-known that the universal property of the
tensor product of two abelian groups allows to define an epimorphism

ϑ : G/[G,G]
⊗

γj(G)/γj+1(G) → γj+1(G)/γj+2(G)

given by ϑ(a[G,G]
⊗
bγj+1(G)) = [a, b]γj+2(G), a ∈ G, b ∈ γj(G), which

is extremely useful for studying nilpotent groups.

Proposition 2.2. Let G be a nilpotent group. If G/[G,G] is minimax,
then G is minimax.

Proof. By Lemma 2.1, the tensor product of two minimax abelian groups
is minimax. It suffices to apply this to all lower central factors of G.

Lemma 2.3. Let G be a finitely generated group that has a bounded
abelian normal subgroup A such that G/A is polycyclic–by–finite. If A is
G–hyperfinite, then A is finite.

Proof. Since G is finitely generated, the normal subgroup A satisfies the
maximal condition on G–invariant subgroups ([6, Theorem 3]). Since A is
G–hyperfinite, A is finite.
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Corollary 2.4. Let G be a finitely generated group that has a bounded
nilpotent normal subgroup H such that G/H is polycyclic–by–finite. If H
is G–hyperfinite, then H is finite.

Proof. Put D = [H,H]. If H is infinite, since H is nilpotent, H/D has
to be also infinite. But H/D is clearly G/D–hyperfinite so that H/D is
finite by Lemma 2.3. This contradiction shows that H is finite.

Corollary 2.5. Let G be a finitely generated group. Suppose that G has
a nilpotent normal subgroup H satisfying the following conditions:

(i) H/Tor(H) is minimax;

(ii) Tor(H) is bounded G–hyperfinite; and

(iii) G/H is polycyclic–by–finite.

Then Tor(H) is finite and hence H is minimax.

Proof. Since T = Tor(H) is bounded, by [8, Proposition 2], H contains a
torsion-free normal subgroup B such that H/B is bounded. Let k be a
positive integer such that (H/B)k = 〈1〉. We put C = Hk so that C ≤ B.
In particular, C is a torsion-free minimax Ginvariant subgroup. Moreover
the subgroup TC/C of the factor-group G/C is clarly G/C–hyperfinite
and the factor H/TC is a bounded nilpotent minimax group, therefore it
is finite. It follows that H/C is bounded G/C–hyperfinite. By Corollary
2.4, H/C is finite. Since C is torsion-free, T ∩C = 〈1〉 and then T is finite,
as required.

Corollary 2.6. Let G be a finitely generated group. Suppose that G has
a nilpotent normal subgroup H satisfying the following conditions:

(i) H/Tor(H) is minimax;

(ii) T = Tor(H) is G–hyperfinite;

(iii) for every p ∈ Π(T ), the Sylow p–subgroup Tp of T is bounded; and

(iv) G/H is polycyclic–by–finite.

Then Tp is finite for every p ∈ Π(T ).

Proof. We have T = Drp∈Π(T )Tp. Given p ∈ Π(T ), we put Qp = Drq 6=pTq
so that Qp is G–invariant and T/Qp

∼= Tp. By Corollary 2.5, T/Qp is finite
and hence Tp is finite, as required.

Lemma 2.7. Let G be a finitely generated group. Suppose that G has an
abelian normal subgroup A satisfying the following conditions:
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(i) A includes a periodic subgroup T such that A/T is minimax;

(ii) for every p ∈ Π(T ), the Sylow p–subgroup Tp of T is finite; and

(iii) G/A is polycyclic–by–finite.

Then T is finite and A is minimax.

Proof. Since G is finitely generated and G/A is polycyclic–by–finite, A
has a free abelian subgroup C such that A/C is periodic and Π(A/C) is
finite (see [10, Corollary 1.8]). The factor-group A/C is an extension of
TC/C ∼= T by the minimax group A/TC. By condition (ii), the Sylow
p–subgroup of A/C is Chernikov for each prime p. Then, the finiteness
of Π(A/C) implies that A/C is Chernikov group. It follows that A is a
minimax group. In particular, Π(T ) is finite, and then T is finite.

Corollary 2.8. Let G be a finitely generated group. Suppose that G has
a nilpotent normal subgroup H satisfying the following conditions:

(i) If T = Tor(H), H/T is minimax;

(ii) for every p ∈ Π(T ), the Sylow p–subgroup Tp of T is finite; and

(iii) G/H is polycyclic–by–finite.

Then T is finite and hence H is minimax.

Proof. Put D = [G,G] so that the factor-group H/D has a subgroup
TD/D, whose Sylow p–subgroups are all finite and H/TD is minimax. By
Lemma 2.7, H/D is minimax. Proposition 2.2 implies that H is minimax
too. Therefore Π(T ) is finite and then T is finite.

Corollary 2.9. Let G be a finitely generated group. Suppose that G has
a nilpotent normal subgroup H satisfying the following conditions:

(i) If T = Tor(H), H/T is minimax;

(ii) T is G–hyperfinite;

(iii) for every p ∈ Π(T ), the Sylow p–subgroup Tp of T is bounded; and

(iv) G/H is polycyclic–by–finite.

Then T is finite and hence H is minimax.

Proof. By Corollary 2.6, the Sylow p–subgroup Tp of T is finite for each
prime p ∈ Π(T ) and it suffices to apply Corollary 2.8.
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Proposition 2.10. Let G be a finitely generated group. If G contains
a torsion-free nilpotent normal subgroup H of finite Hirsch-Zaitsev rank
such that G/H is polycyclic–by–finite, then H is minimax and hence G is
minimax.

Proof. We put D = [H,H ] so that H/D has a free abelian subgroup C/D
such that H/C is periodic and Π(H/C) is finite (see, for example, [10,
Corollary 1.8]). Since rhz(H) is finite, C/D is finitely generated. Similar
reasons ensure us that the Sylow p–subgroups of H/C are Chernikov for
every prime p. Since Π(H/C) is finite, H/C is a Chernikov group and it
follows that H/D is minimax. By Proposition 2.2, H is also minimax.

3. Some applications

Before to show the main result of this Section, we need some auxiliary
results in which we will need to apply results of the above Sections.

Lemma 3.1. Let G be a finitely generated group and let A be an abelian
normal subgroup of G. Suppose that the following conditions holds:

(i) G has a normal subgroup L ≥ A such that L/A is a torsion-free
nilpotent minimax group and G/L is abelian–by–finite; and

(ii) A = Drp∈Π(A)Ap, where Ap is the Sylow p–subgroup of A, and Ap =
Drλ∈Λ(p)Aλ, where Aλ is a finite minimal G–invariant subgroup for
all λ ∈ Λ(p) and p ∈ Π(A).

Then A is finite.

Proof. We note that A is G–hyperfinite. Since L is a normal subgroup of
G, as other times we have that either [L,Aλ] = Aλ or [L,Aλ] = 〈1〉 for
every λ ∈ Λ(p) and p ∈ Π(A). Let

∆ = {λ ∈ ∪p∈Π(A)Λ(p) | [L,Aλ] = Aλ} and Σ = (∪p∈Π(A)Λ(p)) \∆,

so that

D = Drλ∈∆Aλ = [L,A] and Z = Drλ∈ΣAλ = CA(L)

are G–invariant. Since A/D ≤ ζ(L/D), L/D is nilpotent. By Corollary 2.9,
Z ∼= A/D is finite. By Corollary 1.13, G/Z conjugately splits over A/Z,
that is G/Z = A/Z ⋋K/Z, for some subgroup K/Z. Thus G = AK and
A ∩K = Z is finite. In particular, K is minimax. If G = 〈g1, · · · , gm〉,
for each j, we express gj = xjaj where xj ∈ K and aj ∈ A. Then
G = K〈a1, · · · , am〉K . Since A is periodic abelian, 〈a1, · · · , am〉K is
finite, so that G is minimax. In particular, A is finite.
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Proposition 3.2. Let G be a finitely generated group and A be an abelian
normal subgroup of G. Suppose that the following conditions holds:

(i) G has a normal subgroup L ≥ A such that L/A is a torsion-free
nilpotent minimax group and G/L is abelian–by–finite; and

(ii) A is G–hyperfinite; and

(iii) every p–factor of A is G–socular-finite for each p ∈ Π(A).

Then A is finite.

Proof. We have A = Drp∈Π(A)Ap, where Ap is the Sylow p–subgroup of A.
Since Ap is G–invariant, condition (ii) shows that Ap has a finite G–socular
series

〈1〉 = Ap,0 ≤ Ap,1 ≤ · · · ≤ Ap,k(p) = Ap.

For every p ∈ Π(A), we put Bp = Ap,k(p) and B = Drp∈Π(A)Bp. By the
election of Bp we have A/B = SocG(A/B). By Lemma 3.1, A/B is finite.
Since Π(A/B) = Π(A), Π(A) is finite.

Suppose that there exists some prime p such that Ap is infinite. Then
there exists a non-negative integer d such that Ap/Ap,d is finite but
Ap,d/Ap,(d+1) is infinite. PutQ = Drq 6=pAq,D = Q×Ap,d,T = Q×Ap,(d+1),
and consider the factor-group G/T . We have A/D finite, D/T infinite
and D/T = SocG(D/T ). There is a normal subgroup H/D such that
G/H is finite and H ∩ A = D ([24, Lemma 3]). Since G/H is finite, H
is finitely generated too. Let U/V be a G–chief factor of D/T , so that
U/V is finite by condition (i). It follows that U/V includes a minimal
H–invariant subgroup, say W/V . We put Y/V = 〈(W/V )gV | g ∈ G〉 so
that Y/V = SocL/V (Y/V ). Since Y/V is G–invariant, Y/V = U/V and
then U/V = SocL/V (U/V ). Applying Lemma 3.1 to L/T , we deduce that
D/T has to be finite, a contradiction. Therefore Ap is finite for each prime
p and hence A is finite too.

Theorem 3.3. Let G be a finitely generated group and let S a soluble
normal subgroup of G. Suppose that the following conditions holds:

(i) G contains a normal subgroup L ≥ S such that L/S is a torsion-free
nilpotent minimax group and G/L is abelian - by finite;

(ii) S is G–hyperfinite; and

(iii) every p–factor of S is G–socular-finite for each p ∈ Π(G).

Then the subgroup S is finite.
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Proof. Let

S ≥ S1 ≥ · · · ≥ Sd = 〈1〉

be the derived series of S. Suppose that the result is false, that is S is
infinite. Then there is a non-negative integer k such that S/Sk is finite, but
Sk/Sk+1 is infinite. The factor-group G/Sk has a normal subgroup L/Sk
such that G/L is finite and L∩S = Sk ([24, Lemma 3]). Since G/L is finite,
L is finitely generated. The abelian factor-group (L∩ S)/Sk+1 = Sk/Sk+1

is L–hyperfinite. Proceeding as in the proof of Proposition 3.2, we see that
every p–factor of Sk/Sk+1 is L–socular-finite for each prime p ∈ Π(G).
Application of Proposition 3.2 to L/Sk+1 gives rise to a contradiction,
which shows the required result.

As a consequence, we obtain the first part of Robinson’s result [18].

Corollary 3.4. Let G be a finitely generated soluble group of finite section
rank. If the Sylow p–subgroups of G are finite, then G is residually finite
minimax.

Proof. Let U/V be an abelian section of G. Clearly r0(U/V ) is finite.
Applying [16, Theorems 3 and 4], we see that G has a finite series of
normal subgroups

T ≤ L ≤ G,

where T is periodic, L/T is a nilpotent group of finite Hirsch-Zaitsev rank
and G/L is abelian–by–finite. By Proposition 2.10, L/T is minimax and
hence G/T is minimax too. Since the Sylow p–subgroups of T are finite,
G satisfies conditions (ii) and (iii) of Theorem 3.3. Then T is finite and
therefore G is minimax.

With some extra work we can widely generalize the last result.

Theorem 3.5. Let G be a finitely generated radical group of finite section
rank. If the Sylow p–subgroups of G are finite, then G is residually finite
minimax.

Proof. Put T = Tor(G). Then G/T contains a torsion-free nilpotent
normal subgroup L/T such that G/L is a finitely generated abelian–
by–finite group (see, for example, [2, Theorem A]). Since the Sylow p–
subgroups of T are finite, T is hyperabelian. Suppose that T is infinite.
By [2, Theorem A], T has a G–invariant subgroup R such that T/R is
infinite soluble. Since G/T is soluble, G/R is soluble too. Being finitely
generated, G/R is minimax by Corollary 3.4 and thus T/R is finite, a
contradiction. Hence T is finite, G is soluble and it suffices to apply
Corollary 3.4 again.
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