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Integrability by guadratures for systems
of involutive vector fields '

Hurerpuposanue B KBaJpaTypax HHBOJIOTHBHBIX CHCTEM
BEKTOPHBIX INOJeH

Starting from results and ideas of S. Lie anb E. Cartan, we give a systematic and geometric

. treatment of integrability dy quadratures of involutive systems of vector filds, showing how.-

a.generalization of the usual multiplier can-de constructed with the aid of closed differential
forms and enough symmetry vector fields. This leads us to explicit formulas for the indepen-
dent integrals. These results allow us to identify symmetries with integral invariants in the
sense of Poincaré and Cartan. A further (new) result gives the equivalence of integrability by
quadratures and the existence of solvable structures, these latter being gencralizations of so-
Ivable algebras.

Hcxons na peaynwsraros ¥ unei C. JIu u E. Kaprada npaBofiluM CHCTEMATH3ANHIO H TeOMeTpHYec-
KOe TPAKTOBAHHE HHTeTPHPOBAHHA B KBaJpaTypax HHBOJIOTHBHEIX CHCTEM BEeKTOPHHIX UOJed,
NoKasas Kak o0Go6mente OGEIYHOIO HHTEPHPYIOMEr0 MHOMHTENS MOMKeT GbiTh MOCTPOEHO C MO~
MOIIBIO 3aMEHYTHX IH(Q(QepeHnHansHLX GOpM H IOCTATOYHO CHMMETDHHHBIX BEKTOPHEIX NOJNeH.
ST0 UPUBOIHT X ABHEM QOpPMYNaM HeSABHCHMELX HHTerpajos. [loJgyueHHBIE peayJbLTATH [O3BO-
JIHITH OTOXIECTBHTH -CHMMETDHH C HHTeIDaJbHEIMH HHBADHAHTAMH B cMbicie ITyankape — Kap-
Taga. Ilocnenylomu#t (HOBEIH) peaysbTaT NaeT SKBHBAJeHTHOCTh HHTEIDHDYEMOCTH B KBalpaTy-
pax 61—1 CYIIECTBOBAHHE DASPEIIAMBIX CTPYKTYD, KOTOpHIE HBJIAIOTCH 000OMIEHHEM DaspelldMBIR
anre6p.

Buxonsun is peayusratie ta ineft C. JIi Ta E. Kaprana naBomHMO CHCTeMATA3aIiI0 Ta TeOMETpHY-
He TPaKTYBaHHS iHTerpyBaHHfA B KBaJApaTypaX iHBOAIOTHBHHX CHCTEM BEKTOPHMX MOJiB. TMOKa--
3aBIIH SIK y3arajJbHeHHS SBHYafHOrO 1HTErpYBaJbHOIO MHOMHHKE Moxe GyTH mofynosare sa
ZOTOMOTOI0 3aMKHeHHX AndepeHianenux GOPM T2 NOCTATHBO CHMeTPIHHMX BEKTOPHMX noaiB.
Ile IpHBOMATE 10 ABHEX (POPMYJ HesaJeXHHX inTerpanis. Onepmxani pesyabTaTh NO3BOJIHAR OTO-
TOXHHTH cHMeTpil 8 inTerpanbuuMu imBapianTamu B posyminni Ilyankape — Kaprana. Hactyn-
HHil (HOBHI) peayJeTaT Jae exBiBaJeHTHICTL iHTerpoBHOCTI B KBajpaTypax Ta iCHYBaHHA DO3-
B'3YBaHAX CTPYKTYD, AKi € y3araJbHeHHSM PO3B’S3yBaHHX ajre6p.

1. Introduction. This note has its root in an article by S. Lie concer-
ning the group-theoretical foundations of Jacobi’s last multiplier, and a ge-
neralization of this multiplier to involutive systems of vector fields [1]. Sub-
sequently, Cartan discussed the integration of a Piaffian equation
in which the multiplier appeared as an integrating factor-that is, it made
artain exterior form closed [2, p. 93]. Howevér, the séurces [1, 2] are some-
what difficult to follow, and, indeed, a workable definition of the multi-
plier is not given in [1] (however, in Chapter 15, section 5 of [3] such
a definition is given for the case of one linear partial differential equa-
lion of the first grder). Moreover, a geometrical treatment of ;Lie’s gene--
ralization has not been given previously. This is one reason for this note.
A further motivation is that recent work on the integrability by quadra-
tures of linear first-order partial differential equations '[4] leads one to-
consider systematic methods which can give explicit formulas for the
first integrals of invelutive systems of vector fields. These are also of
interest in control theory, where exact linearization of non-linear systems gives
rise to a system of partial differential equations whose solution is sought
through Frobenius’ theorem [5]. Furthermore, one is led to consider symmet-

ries of systems of vector fields in the theory of conditional symmetries [6].-

Here we give a systematic account of the construction of integrals of motion
for such systems. ;

. We use the notation of modern differential geometry, for which we refer.
the reader to [7]. In particular,-wxo denotes the interior product of a differen-
tial form o by a vector field X. This praoduct has the following properties:

%0 = 0,
l'x (0)1 /\ 032) = L0y /\ @, + (_' l)p W, /\ Ly Ty, (1)
Uy oy @ == L, L0
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for all forms w, w, and p-forms ©, and all vector fields X, Y. Furthermore
\.Xf t— D,

vedf = XF, @)

b A AX, O = © (Xys oo s Xp)
for all functions f, p-forms ® and vector fields Xj, ..., Xp. TheLie derivative
Lx with respect to the vector field X can be defined as (71

Ly = dv, + Lyd.

We use the summation convention.
2. Closedforms and Jacobi’s last multiplier.
+ Suppose that we are given a system A = {4, ..., A,—p} of vector fields om
R", which are in involution and independent over the ring of C* functions.
Then Frobenius theorem [7] tells us that in the neighbourhood of a regular
point (that is, one where the vector fields are independent) there exists a coor-
dinate system u?, ..., u" so that

d
span{A4, ... , Awm—p} = span y e s
pan {4, (n—p)} P P 0" }
and hence that «!, ..., w? are p common integrals of A, namely
A =0 i=1,..,n—p; j=1,..,p- (3»

However, Frobenius’ theorem does not tell us how to construct such a system
of coordinates. If we do know this change of coordinates, then we have solved,.
at least locally, the problem of integrability by quadratures. The existence
of enough symmetries is helpful in this problem, as was noted by Lie [8].

Definition 1. A system X={X,, ... , X;} of independent vector fields is
said to be af system of symmetries of the involutive system A ={A,, ...
e s Atn—ny} @

D {4, ..., A(”—D)r X‘J.! et Xp}
are independent

2) IXI' AJ‘] = C?J.Ak i = 1: s P j: k = 1: ey — P

I

Now, suppose that f, ..., f’ are p independent, locally defined com-
mon integrals of A. From Definition 1 (2), it follows that
Xiff e Fr‘.j (fi: sy fp)! i‘:! f =1, .. » 7y (4)

where (Fy;) is a p X p matrix of C* functions, as any integral of A is &
function of a given set of p common, independent integrals.

Lemma 1. The matrix F = (F;;) defined by eguation (4) is invertible
if and only if the{X,; : i = 1, ..., p} is a system of symmelriesof A.

Proof. If the gEXi} are a system of symmetries of A, then F can not have
rank less than p. If its rank were less than p, then (at least) one row, say (X;f’,
X2, ..., Xif?) would be a linear combination of the other rows. This would
imply that a linear combination of the vector fields X, ..., X, would have
each of the f%, ..., f? as a common integral. It follows then that tﬁe system {4,
X} could not be linearly independent, because a linear combination of the
X,, would belong to A. However, the system {A, X} is a linearly independent
system of n vector fields on R, and therefore the rows of F are independemt..
Hence, F is invertible. On the other hand, the matrix elements F;; depend
only on the integrals fy, ..., f, if and only if the} X} are symmetries of A.
If the matrix (F;;) is invertible, then the system {A, X} must be linearly in~
dependent, from the previous argument. Therefore the {X;} must be a systeis
of symmetries of the system A. . .

Definition 2. If {x% ..., x"} is a local coordinate system on a neigh-
bourhood in R" on which none of the A;, X; vanish, define
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1) Q=dxt Adx® A ... /\ dxn.
2) Wl = Y. NA(n_p) YA¢p A(n~:'—1) o LA:I. i

3) Lar xQ = fl AeeeNA AKX A K
Lemma 2. The pform

v, @
GJ=——-A o)
Laax
is closed.
Proof. It follows from equations (1) and Definition 2(2) thal e AR =
=0, i=1, ..., n— p. Furthermore, if a vector field ¥ satisfies 11,2 =0

then Y is a linear combination of the A;: if not, then A A ¥ 50 and so
tany 27 0. These statements are also true of the p-form df* A\ ... A dfr.
It then follows that ,Q and df* A ... A df* are proportional, namely there
éxists a function Q so that

LQ = QAP A... A df.

Then we have:

l:gme = g, Q = QI’XI/\‘..AX’J @t A - Adff)=

= QMU' A\ .. Ndf") (Xy, ..., Xp) = Qdet (Xf') = Qdet F£0

by Lemma 1. Therefore,
: 1

- 1 P
0= ————dP A\ . \ 4.

The right-handside of this last equation is a closed p-form, since F, and hence
det F, depend only on the functions f?, ..., f°.
"~ This means that, when we know enough symmetries, we are able to con-
struct a closed p-form, rather than merely know of its existence. The above
construction s 1mportant in calculating the integrals. Let wus re-
mark that the formula for ® gives us a way of constructing a quasi-
invariant measure on the quotient group of a Lie group by its normal subgroup,
usmg left- or right-invariant vector lields.

Lemma 3. The p-form o is invariant under the system A and quasi-
mmr:ant under the system X.

Proof{. For each Ay, apply the Lie derwatwe.

Lyo=d,o+v,do=0

since @ is closed and LAfmz{), as mnoted above. To prove quasi-invariance
with respect to the X;, we apply the Lie derivative Lx, to o. As w is
clo_sed!" iheri_ '

B e i
-_Ii.e CLxo=diy 0 =dy (d F art A .. /\dfp)—P;

wheré p; is a function of the integrals f%, ..., f*, the last line following

from: 1hg: fact 'that the matrix F depends only on the f* and that X,/ is a
furlc]cw,n of these_ integrals. '

IRemaxk The_connection with the usual theory of Jacobi’s last mul-
tlphe;man e seen from the following:

|
s 1 o B
‘Az\xg = LAIA...AA(n_p}AxxA“.AXp dxt A .. N\ dx7) =

= (@R coor A\ 02" (B s Apamgry Ky oon s Xp) =
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An Am
—det | Aoy 0 Aw—an |1
Xll e Xln M
L Xpl = Xpn

The expression M appears in Lie’s article [1], and in Chapter 15, section 5
of [3] for the case of one vector field. In the case of one vector field A, the
function M is just Jacobi’s last multiplier. One easily calculates then that

Q=Y (— D A4det A o Adst A L A de®
i=l

1 it
where A, is the ith component of the vector field A, and dx denotes
omission of dx!. Furthermore, M..,Q is closed, by Lemma 2. Hence we
have: :

L] . aAM —~
0=d(M,Q) = Z = R ———= ( ) KN cdet )\ ANAEEN A\ dx” =
d (4, M A
(R, . o Bl )Q
0x
Since Q=£0, it follows that
a(MA a(MA,
(Txli-f- +% -

and this shows that M is Jacobi’s multiplier. Thus in the case of one vector
field 4, the knowledge of n — 1 independent symmetries allows us to give an
explicit formula for Jacobi’s last multiplier. Let us note that in Section 8
of [4] another explicit formula for it is obtained in terms.of n — 1 functional-
ly independent first integrals of the vector field A. Moreover, we see that

M = is a generalization to systems of vector fields of Jacobi’s multi-
5,\/\}{9

plier (and, of course, of the integrating factor in the case of first order ordi-
nary differential equations).

3. Solvable structures and integrability by
quadratures. Definition 3. Putf

LAI/\-../\A(n____p);:\XIA,..f\fcx\...f\Xp
ﬁi = L 9
AnX
where X; denotes omission of X;, i =1, ..., p.
Proposition 1.
1) The B;, i =1, ..., p, are independent;

9) IT the B; are closed, then the functions ¢; = Sﬁi are p independent,

local common integrals of the system A;

3) The B; are either absolute or relative integral invariants (locally) of tha
system A .

Proof. Suppose that there are non-zero functions Ay, ..., Ap such that
APy + .. + ApPp =0 then apply v, to the left-handside of the ‘above exp-
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ression fo cLliin A; =0 sirce (, f; = (— 1)“7"8;;, on using equations (1).
¥
This establishes independence (at least locally).
If the B; are closed, the by Poincaré's lemma [4], there exist (locally)
functions ¢; such that f; = d¢;. The @; are functionally independent, since
the B; are independent. Moreover, they :re integrals of the system A be-

cause
Ajp; = LAJ. (doy) = "Ajﬁi =0
for every j and each i.
To establish the last statement, we remark that either B; is closed or
df; == 0. In the first case, B; is an absolute integral invariant of A. In the

second case we have for each £ =1, ... ,n—p and every vector field Z¢€
E{AJ.! “on A(H—P): 1y e- XP} )

agbB (D) = Ly B (2) = Ly, (81 (2) — By (1Ay, Z) = 0

since P; (Z) is either 0 or 1 by construction, and the commutator [A4,, Z] is
always in the system A, as Z is a symmetry of the system. Now the vector
fields {A,, X} are locally independent, so they form a lccal basis for vector
fields. This implies that 14, dB; = O locally, which is the condition that f;
be a (local) relative integral invariant [7, p. 166—172].

. Proposition 2. The form B; is closed if and only if the system {A,

Xyy ooos Xiy oo Xp} is closed and X; is a symmetry of it. "

Prool. If X;isasymmetry of the closed system {A, X;, ..., Xi, ..., Xp},
then f; is'closed by Lemma 2. Converseley, if f; is closed, we hawe for all
vector fields Z,, Z, € {A, X, ..., Xp}:

0= Lzldﬁi (22) = Lz,IBi (Zs} = LZ; (ﬁi (ZE)) = ﬁi ([Zl: ZED T, Bi (Izll Z'ZD
Since B; (Z,) = 0 or 1 by construction. Now, B; ([Z;, Z,]) = 0 if and only if

(z, Zzl €{A, Xy, ..., X4, ..., Xp}. This proves the contention.
Corollary. All the l3: are closed if only if the symmetries {X} are
such that [X;, X;0€ A for i, j =1, ..., p. In particular, if the {X} are in in-
volution, then the B; are all closed if and only if the X} commute.
The above results imply that symmetries are in one to one correspondence
with integral invariants. Moreover, if the symmetries are in involution, the
kernel in X of those B; which are closed is an ideal. This follows from an ar-
gument using the calculation in Proposition 2.
Definition 4. We say that the system {A, X} is a solvable structure
with respect to A if
1) A is in involution;
2) §; ={A, Xy, ..., X5} =1, ..., p is in involution,
3) X, is a symmetry of A and X4, is asymmetry of S;forf=1, ..., p —
In other words, S; is an ideal, of codimension 1, in Sji, for each j =
="'l, ..., p — 1. This is the weakest generalization of a solvable algebra.
Proposition 3. If the system {A, X} is a solvable structure with res-
pect to A, then one can find, at least locally, the integrals of A by quadratures
alone.
Proof. By definition, X, is a symmetry of S(—1, so by Lemma 2,
the I-form

Lsm—n
5(p~1)f\XpQ
is closed. Proposition 1 (2) then gives us that

ch“jﬂp

is one integral. Now define the change of coordinates (x*, ..., x™) — (x%, ...
, x(n—1) @p). Now, a vector field

d
V="V; ~C.E-1-+ eV,

Pp =

d
ax"
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becomes, in the new system,

= d d
(n—1) f =
= V(Vl) 2 + .o+ Vix ) 021 + V (@p) dop

., @ . a
r— VlW"}— e + V{ﬂ—l} W

whenever Vo, =0, and where V; is just V; expressed in the new coordi-
pates. Thus the vector fields A,, ..., Au—py, Xq, ooy Xp—1y In S(p—yy are

reduced to vector fields on R, on suppressing the dependence on @p.
.Keeping ¢, constant, we find that the (new) vector field X,—; is a sym-

metry of the (new) system S;—p in R“7". Then we construct the 1-form

L Q
S(p—2)
L

Bio—y = Q
S(p—1)

which is closed, by Lemma 2. Again, by Proposition 1 (2), it follows that

Po—ny = S_ﬁ(p—l)
Is another integral. Then change coordinates again:

{xll lxm_”l CPP)_’"(xl: bl x(ﬂ_-ml! q)(p_”! EPIJ)

and proceed as before. At each stage we have the same situation, until we
arrive at S, and this is the last step to perform,-as above. In this way we con-
struct the full number of independent integrals of A. The above method of
proof goes back to Lie [3]. One can also find the same procedure in [9], in the

reduction of order of differential equations using groups and differential in-
variants.

As a converse to this result, one has the following:

Proposition 4. [f the p independent integrals of A are known,
then one can construct a local coordinate system in which there exist p inde-
pendent, commuting symmetnes of the system A.

Proof. If /4, ..,[? are these integrals, then change coordinates:
(6, ooy €Y > (2, L X P)

., From the considerations in the proof of Proposition 3, the vector fields 4,, ...
weey A(n—p are expressed solely in terms of the d/dx‘. We can then take X; =
= 0/df as the independent commuting symmetries, using Lemma 1.

We can apply the above to n — ¢h order ordinary differential equatlons
Each such equation

¥ =gy g ")

“where g is a C% function and gy = d’ya’dx’.', for j=1, ..., n, is associated
with the vector field

) ) 0 4 __
— 3 @ m, i3
A=+ 90 5+ g o+ 8 g gD )

defined on some open subset of R™!. Then a symmetry of the equation is
a vector field

d a d
¥ =&k Xrb—é? $ i +X(n—-l)W

defined on some open subset of R™' such that (X, A] =pA4 for some fun-
ction p. Our results then give us:

Proposition 5. The n — th order ordinary differential equation, above,
is ntegrable by quadratures, at least locally, if there exist n independent sym-
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metries Xy, ..., Xn Of the associated vector field A such that {A, Xy .--; X}
forms a solvable structure.

If the-equation. is-integrable by quadratures, then one can construct, by qu-
adratures alone, a local coordinate system in which there are n independent, com-
muting symmelries of the equation.

The proof of this is an elementary combination of Propositions 3 and 4.

The above reasoning and results lead us to the following:

) Proposition 6. The involutive system A is locally integrable by
quadratures if and only if there exists a solvable structure with respect to A.

The proof is a combination of Propositions 38 and 4. It is not difficult
to see that a special case of this situation arises when a system of dimensidn
p in R has a solvable symmetry group of dimension n — p. The above results
give a one to one correspondence between integrability by. quadratures and
solvable structures. This generalizes the usual result concerning solvable
groups and integrability by quadratures (Theorem 2.64 in [9]).

4. An example We now apply the above theory to the integration
of the vector field

d d a
X =(xz—%)§ + (Ayz + yx) 7‘5_:,7_1_ (Bxz +2zy) ——

where 4, B = 0. X corresponds to the Lotka —-Volterra system with the con-
stants A, B, C satisfying ABC + 1 = 0. See [4]. X is in involution with the
vector fields '

0 d d
Y1=2W+Ayw+(y+32)-§;,
3} d

YS =X E—ABZE

as can be verified (after some calculation). Furthermore, the vector field Z
given by '
0 d d
L=xgrtigytig

is a symmetry of X and commutes with ¥, and ¥,. Thus Z is a symmetry of
the two involutive systems {X, Y.} and {X, Y,}, and therefore we can calcu-
late the two corresponding integrals @, and o, of the vector field X. Indeed,
- we find that ©;/M; is a closed I-form, for i = 1, 2, where ®; = vxay, Q and
M; =,0; and Q is a 3-form. Then we put -

i
%= 7
For i=1, we take Q =dx A dy )\ dz and a routine calculation gives:

0, = — (ABdx + dy — Ade)

where
A = (ABz — y)y — Byz (Az + x).

Also,

A
Ml = E‘ \AB)C +y—AZ).

Tkus we obtain the closed form

wy - (ABd:+ dy — Adz)
M; — (ABx 4+ y — Az)

=dIn|ABx +y— 4z|.
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From this we obtain the in‘egial ¢, = ABx 4y — Az. The case i =2 gives:

w, = AByz (Az + x)dx — Bxz (Az + x) dy I+ xy (Az+ x) dz
and
M, = xyz(Az+ x) (AB—B + 1).
From this we obtain .
w, AB dx B dy dz

M, - AB—BF1) = W@B—BFD ¢ T @F—B¥Dz "

! lef_s_lﬂ)
(AB—B+ 1) d('” |y T2

and this then gives us the integral @, = |x]48 |y |=2|z]|. It is easy verify that
the integrals ¢;, ¢, are independent: indeed, y,; is not an integral of Y, since
X A\ Y1 A Y,5%50 as can be verified. We have therefore been able to calcu-
late two independent integrals of the Lotka — Volterra equations, in the case
where ABC + 1 = 0. For a thorough study of integrals of these equations,
see |4]. We merely remark that our method is equivalent to the use of Jaco-
bi’s last multiplier in [4].

Conclusion. We have given a geometrical description of Lie’s ge-
neralization of Jacobi’s multiplier, and shown how it generalizes the usual
integrating factor. This was previously thought not to exist [9, p. 140]. Ho-
wever, the method of differential invariants as expounded in [9] is equivalent
to the use of the integrating factor. The advantage of the method presented
here is that one can see the connection between symmetries and conserved qu-
antities, which are either absolute or relative integral invariants. Moreover,
we have given explicit formulas for the integrals of involutive systems of vec-
tor fields admitting symmetries. We have also shown by an example, how the
theory is used to obtain integrals of motion. This example shows also how sym-
metries and compatible (in the sense of [4]) vector fields can be combined to

. obtain solutions. Our example also shows how conditional symmetries in the
sense of [6] help us with integration by quadratures. " '
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