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The electronic energy band spectra of the alkali metal chalcogenides M2A (M: Li, Na, K, Rb; A: O, S, Se, Te) have

been evaluated within the projector augmented waves (PAW) approach by means of the ABINIT code. The Kohn-

Sham single-particle states have been found in the GGA (the generalized gradient approximation) framework.

Further, on the basis of these results the quasiparticle energies of electrons as well as the dielectric constants

were obtained in the GW approximation. The calculations based on the Green’s function have been originally

done for all the considered M2A crystals, except Li2O.
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1. Introduction

The alkali metal chalcogenides M2A (M: Li, Na, K, Rb; A: O, S, Se, Te) are found to crystallize in the

cubic anti-fluorite (anti-CaF2-type) structure at ambient conditions. They draw considerable attention of

researchers due to their possible applications in power sources, fuel cells, gas-detectors and ultraviolet

space technology devices [1].

The properties of the crystals M2O have been extensively studied experimentally [2], whereas the sul-

fides, selenides and tellurides of alkali metal have received less experimental attention. The electronic en-

ergy band spectra of the M2A crystals have been evaluated using the full potential linearized augmented

plane waves plus local orbitals (FP APW+lo) method based on DFT [1]. However, it is well known that

the resulting band gap values in this approach are much underestimated. A proper way of calculating

single-particle excitation energies or quasiparticle energies is provided by the Green’s function theory.

Here, the GW approximation (GWA) is used, which is the simplest working approximation beyond the

Hartree-Fock approach taking screening into account [3].

Calculations of the electron energy spectrum beyond the local (LDA) or quasilocal (GGA) approxima-

tions were made only for the crystal Li2O [4]. The Kohn-Sham ground-state data have been evaluated [4]

on the norm-conserving pseudopotential basis. On this basis there were obtained quasiparticle correc-

tions to the eigenenergies using the GWA.

Then, the Bethe-Salpeter equation, which includes the screened electron-hole interaction as well as

the unscreened electron-hole exchange term [4], was solved and the lowest exciton eigenvalue at 6.6 eV

was found. This value is well compared with the optical absorption energy at about 6.6 eV. The GW cor-

rections open the gap at the Γ point by 2.1 eV yielding a minimum direct gap of 7.4 eV. Therefore, the

difference between the GW energy and the excitonic energy gives the exciton binding energy of 0.8 eV.

The above listed applications of the alkali metal chalcogenides do not exhaust the potential capabili-

ties of these crystals. In fact, the recently registered patents suggest a possible use of these crystals, doped

with d - or f -transition elements, in spintronics [5]. Finally, it is worth to mention an interesting theoreti-

cal prediction of the occurrence of a ferromagnetic half-metallic ordering in these crystals caused by the

doping with nonmagnetic elements C, Si, Ge, Sn and Pb [6].
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The compounds considered here have large lattice constants. As a result, the hybridization between

respective orbitals of an impurity and a parent atom would be weak. Thus, the alkali metal atom, such as

K, Na, Li or Rb can be substituted with each of the 3d , 4d and 5d transition metal elements and the rare-

earth 4 f elements [5]. The transition metal element is incorporated in the alkali chalcogenide compound

in the form of a solid solution. The substitution of the alkali metal with the d or f transition element is

performed at up to about 25% through a non-equilibrium crystal growth process at a low temperature to

provide a ferromagnetic characteristic thereto.

Taking into account the importance of these materials due to their practical application, we reach the

conclusion that a more precise calculation of the parameters of the electron energy spectra for them is

an actual problem. And now let us turn to the solution.

2. Calculation

The first stage is to calculate the electron energy spectrum and eigenfunction in the generalized gradi-

ent approximation (GGA). For this purpose, the Kohn-Sham equations (2.1) are solved in a self-consistent

way [7, 8]:
(

−∇
2
+Vext +VH +Vxc

)

ψGGA
nk (r)= εGGA

nk ψGGA
nk (r), (2.1)

where −∇2 is the kinetic energy operator, Vext denotes the ionic pseudopotential, VH and Vxc are the

Hartree and exchange-correlation potential, respectively. The quasiparticle energies ε
qp

nk
and eigenfunc-

tions ψ
qp

nk
(r) can be obtained from the quasiparticle equation [9, 10]:

(

−∇
2
+Vext(r)+VH(r)

)

ψ
qp

nk
(r)+

∫

Σ

(

r,r′,ε
qp

nk

)

ψ
qp

nk
(r′)dr′ = ε

qp

nk
ψ

qp

nk
(r), (2.2)

where Σ(r,r′,ε
qp

nk
) is the non-local self-energy operator. The wave functions can be expanded as follows:

|ψ
qp

nk
〉 =

∑

n′

an
n′ |ψ

GGA
nk 〉. (2.3)

From equations (2.2) and (2.3) the perturbative quasiparticle Hamiltonian is obtained in the form

H
qp

nn′ (E )= εGGA
nk δnn′ +

〈

ψGGA
nk |Σ(E )−Vxc|ψ

GGA
n′k

〉

, (2.4)

where the perturbation is written as Σ(E )−Vxc.

We have generated the PAW functions for the following valence basis states: 1s22s12p0 for Li,

2s22p63s13p0 for Na, 3s23p64s14p0 for K, 4s24p65s15p0 for Rb, 2s22p4 for O, 2s22p63s23p4 for S,

3s23p64s24p4 for Se, and 4s24p65s25p4 for Te. All the PAW basis functions were obtained using the

program atompaw [11]. The radii of the augmentation spheres are 1.6, 1.65, 2.3, 2.6, 1.45, 1.4, 1.8, and

2.4 a.u. for Li, N, K, Rb, O, S, Se, and Te, respectively. The values of the experimental lattice constants of

the crystals A2B used in calculations equal [1] 8.642, 10.488, 12.170, and 12.741 a.u. for Li2O, Na2O, K2O,

and Rb2O, respectively; 10.790, 12.332, 13.967, and 14.456 a.u. for Li2S, Na2S, K2S, and Rb2S, respectively;

11.342, 12.894, 14.967, and 15.154 a.u. for Li2Se, Na2Se, K2Se, and Rb2Se, respectively; 12.315, 13.850,

15.435, and 16.044 a.u. for Li2Te, Na2Te, K2Te, and Rb2Te, respectively.

The electronic energy bands and DOS have been evaluated by means of the ABINIT code [12]. Inte-

gration over the Brillouin zone was performed on the Monkhorst-Pack [13] grid of 6×6×6 and 8×8×8

in the GWA and GGA calculation, respectively. The iterations were performed to ensure the calculation of

the total energy of the crystal with an accuracy of 10−8 Ha. The symmetry of the considered M2A crystals

is described by the space group Fm3̄m (number 225), and the Bravais lattice is cF (face-centered cubic).

3. Electronic properties

Total density of electronic states (DOS) of Li2Se crystal is shown in figure 1. As can be seen, the wave

functions of electrons in all energy bands are hybridized. This is indicated by the mark appearing next
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Figure 1. The total DOS of Li2Se obtained in the

GGA.

Figure 2. The band structure of Li2Se obtained in

the GWA.
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Figure 3. The total DOS of Na2Se obtained in the

GGA.

Figure 4. The band structure of Na2Se obtained in

the GWA.
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to the peaks on the DOS curves. For example, in the bottom of the valence band of the Li2Se crystal, the

s-states of Se dominate and the contributions to the DOS of p and s electrons of Li are less significant. The

dispersion curves, shown in figure 2, indicate that the crystal Li2Se is a semiconductor with an indirect

gap Γ-X. Figure 1 shows the electronic DOS of the Li2Se crystal, evaluated within the GGA on the PAW

basis. As can be seen, the bottom of the valence band is characterized by a small dispersion, and the

corresponding curve is localized in a narrow strip about 0.53 eV wide. The value of the corresponding

parameter obtained within GWA (see figure 2) is slightly greater and equals 0.72 eV. The widths of the

upper parts of the valence bands are characterized by the values of 2.91 and 3.49 eV obtained in the

GGA and GWA, respectively. The width of the valence band found in the GGA equal 10.90 eV, and the

corresponding value obtained in the GWA is 10.53 eV.

Now, let us analyze the results of the calculation obtained for the Na2Se crystal. Let us consider the

DOS in figure 3 and the dispersion curves in figure 4. They show that this crystal is characterized by a

direct gap at the point Γ. As can be seen from figure 3 (GGA), the bottom of the valence band is character-

ized by a small dispersion and the corresponding curve is localized in a narrow strip about 0.29 eV wide.

Analogous parameter obtained in the GWA (figure 4) is a little greater and equals 0.44 eV. The values of

the widths of the upper part of the valence band obtained within the GGA and GWA, are equal to 1.71

and 2.18 eV, respectively. The total width of the valence band found in the GGA equals 10.04 eV, and the

corresponding value obtained in the GWA is 11.13 eV.

Figures 5 and 6 show the electronic energy bands of the K2Se crystal evaluated within the GGA and

GWA, respectively. As can be seen, the crystal has an indirect gap Γ-X. The lowest bands calculated within

the GGA and GWA are localized in very narrow strips of 0.27 and 0.34 eV, respectively. They consist of

the core states of the K atom. The bottom of the valence band corresponding to the GGA and GWA is

localized within a very narrow strip of about 0.14 and 0.19 eV wide, respectively. The strips containing

the upper parts of the valence band calculated by means of the GGA and GWA are 0.66 and 0.90 eV

wide, respectively. The total width of the valence band obtained in the GGA and GWA is 9.41 and 9.49 eV,

respectively.

At last, let us turn to the analysis of the results found for the crystal Rb2Se represented in figures 7

and 8. As can be seen from figures 7 and 8, the Rb2Se crystal has an indirect gap Γ-X. In the lowest bands,

the core p-states of Rb dominate. They lie in a strip of the width of 0.80 and 0.92 eV, respectively. The

bottom of the valence band is created by s-states of selenium. It is located just above the core p-states

of rubidium. The widths of the bottoms of the valence bands are 0.407 and 0.413 eV obtained within the

GGA and GWA, respectively. The top of the valence band consists mainly of s- and p-states of selenium.

The widths of the corresponding bands are equal to 0.75 and 1.00 eV, respectively. Finally, the full width

of the valence band, obtained in the GGA and GWA, equals 9.52 and 9.64 eV, respectively.

Now, consider the results of the calculation presented in table 1. The values of the band energies

obtained in the FP APW [1] approach by means of the WIEN2K code, and evaluated here in the PBE PAW

framework with ABINIT code, are substantially underestimated. Let us first consider the properties of

the Li2O crystal for which the experimental value of the energy of the optical absorption is known [4].

The value of the X−Γ gap, found in [1] within the DFT is 4.96 eV, and our value equals 5.07 eV. And the

value of this parameter, calculated here within the GWA equals 7.55 eV. However, the experimental value

of the optical absorption energy is equal to 6.6 eV. Now it is possible to estimate the binding energy of an

exciton, which is simply equal to the difference of the last two values of the energy that is 0.95 eV. The

corresponding value found recently from the Bethe-Salpeter equation is 0.98 eV [14].

Table 1 shows that all the Li2A, K2A and Rb2A crystals have an indirect band gap X−Γ, and Na2A

crystals are characterized by a direct gap Γ−Γ. Table 1 shows that the values of the direct and indirect

gaps in the Li2A crystals monotonously decrease with the replacement of the second element O → S →

Se →Te. A similar behavior is also shown by the direct gap X−X in the crystals Na2A.

Now, consider the results of the calculation presented in table 2. As can be seen, the most significant

changes in the energy gaps ∆E are obtained for the crystal Li2O. We pay attention to the fact that the

values of all the changes in the energy gaps ∆E obtained for each crystal are different. The greatest value

of the ∆E change for the direct gap Γ−Γ is obtained for the Li2O crystal and the smallest value is found

for the Li2Te crystal.

The macroscopic dielectric function εLF
M

(ω), including local field effects, is related to the inverse of
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Figure 5. The total DOS of K2Se obtained in the

GGA.

Figure 6. The band structure of K2Se obtained in

the GWA.
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the microscopic dielectric matrix [12]: εLF
M

(ω) = lim
q→0

1

ε−1
00 (q,ω)

. If local fields are neglected (no local fields,

NLF), the irreducible polarizability is computed in the independent particle approximation. In this case,

εNLF
M

(ω) = lim
q→0

ε00

(

q,ω
)

. The value εM(0) is the static dielectric constant ε∞ presented in table 3. The

value of the dielectric constant for the Li2O crystal obtained here is 2.65, and the one evaluated in work

[16] is 2.62. The corresponding experimental result equals 2.68 [4]. The convergence of the values of

dielectric constants listed in table 3 served as an additional criterion of the choice of the plane wave basis

in the Kohn-Sham problem, and in the calculation of the exchange Σx and correlation Σc parts [12] of the

self-energy.

Table 1. The calculated electronic band gaps of the crystals M2A, in eV.

PBE FP APW [1] EGGA EGWA

Li2A O S Se Te O S Se Te O S Se Te

Γ−Γ 5.15 4.19 3.45 3.19 5.52 4.26 3.67 3.79 8.46 6.03 5.32 4.05

X−Γ 4.96 3.36 2.93 2.46 5.07 3.47 3.04 2.59 7.55 4.73 4.36 3.59

X−X 6.31 4.77 4.36 3.69 6.48 4.88 4.48 4.05 9.35 6.54 6.12 5.35

Na2A

Γ−Γ 1.83 2.40 2.09 2.11 2.00 2.56 2.25 2.51 3.93 4.24 3.90 4.00

X−Γ 4.61 2.85 2.58 2.72 4.74 3.93 3.55 3.13 6.48 5.24 4.94 4.28

X−X 4.86 4.27 3.96 3.93 4.98 4.37 4.06 3.72 6.81 5.82 5.59 5.02

K2A

Γ−Γ 5.14 2.40 2.32 2.28 2.34 2.68 2.19 2.60 3.73 4.10 3.65 4.02

X−Γ 1.71 2.24 2.03 2.02 1.86 2.47 2.11 2.57 3.09 3.82 3.58 4.00

X−X 3.23 3.41 3.22 2.94 3.22 3.54 3.36 3.22 4.59 4.83 4.78 4.54

Rb2A

Γ−Γ 1.88 2.28 2.21 2.18 2.40 2.73 2.42 2.56 3.59 4.03 3.85 3.93

X−Γ 1.31 1.94 1.88 1.96 1.78 2.37 2.08 2.33 2.62 3.50 3.40 3.62

X−X 2.69 3.11 3.15 3.02 2.97 3.40 3.14 3.04 3.59 4.45 4.42 4.24

Table 2. The differences between the energy gaps of the crystals M2A evaluated within the GWA and GGA

approaches.

∆E = EGWA −EGGA,eV ∆E/EGWA

Li2A O S Se Te O S Se Te

Γ−Γ 2.94 1.77 1.65 0.26 0.35 0.29 0.31 0.06

X−Γ 2.48 1.26 1.32 1.00 0.33 0.27 0.30 0.28

X−X 2.87 1.66 1.64 1.30 0.31 0.25 0.27 0.24

Na2A

Γ−Γ 1.93 1.68 1.65 1.49 0.49 0.40 0.42 0.37

X−Γ 1.74 1.31 1.39 1.15 0.27 0.25 0.28 0.27

X−X 1.83 1.45 1.53 1.30 0.27 0.25 0.27 0.26

K2A

Γ−Γ 1.39 1.42 1.46 1.42 0.37 0.35 0.40 0.35

X−Γ 1.23 1.35 1.47 1.43 0.40 0.35 0.41 0.36

X−X 1.37 1.29 1.42 1.32 0.30 0.27 0.30 0.29

Rb2A

Γ−Γ 1.19 1.30 1.43 1.37 0.33 0.32 0.37 0.35

X−Γ 0.84 1.13 1.32 1.29 0.32 0.32 0.39 0.36

X−X 0.62 1.05 1.28 1.20 0.17 0.24 0.29 0.28
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Table 3. The calculated dielectric constants for the crystals M2A found with and without the local field

(LF) effects.

ε∞,with LF ε∞,without LF

A O S Se Te O S Se Te

Li2A 2.65 3.65 3.88 4.17 2.89 4.47 4.72 5.09

Na2A 2.98 3.24 3.43 3.54 3.26 3.96 4.19 4.38

K2A 2.98 2.94 2.93 2.96 3.49 3.72 3.72 3.81

Rb2A 3.91 2.86 2.94 2.89 4.57 3.59 3.73 3.72

4. Conclusions

The electron energy spectra for M2A crystals have been originally calculated based on quasiparticle

corrections within the GW approach. The results obtained herein show that the values of the interband

gaps found without the quasiparticle corrections are usually underestimated by 20−50 percent (see ta-

ble 2). All the Na2A crystals considered here are characterized by direct gaps Γ−Γ. The rest of the M2A

crystals have indirect gaps X−Γ. The non-local self-energy operator Σ in equation (2.2) was evaluated

without application of the plasmon pole model. The GW calculations have been carried out using the

ABINIT code employing the contour deformation method [12, 15]. As can be seen from table 2, the cor-

rections ∆E are not weakly dependent on the wave vector. Therefore, the scissor operator is not a good

approximation for all the crystals considered here. The long wave limits of the dielectric constants of

the considered crystals have been evaluated for the first time. The last one found for Li2O crystal is well

compared with the experimental value. Table 3 shows that the nine crystals listed therein have dielectric

constants less than 3.0. We can assume that the exciton binding energy possessed by them is in the range

from about 0.5 to 1.0 eV. Thus, the bandgap calculated in the GWA would exceed the experimental value

of the optical absorption energy by the value of the binding energy of the exciton [4, 14]. We hope that

the results obtained here will stimulate the experimental study of these materials, which is important for

practical applications.
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Квазiчастинкова електронна енергетична структура

халькогенiдiв лужних металiв

С.В. Сиротюк, В.М. Швед

Нацiональний унiверситет “Львiвська полiтехнiка”, вул. С. Бандери, 12, 79013 Львiв, Україна

Електроннi енергетичнi спектри халькогенiдiв лужних металiв M2A (M: Li, Na, K, Rb; O, S, Se, Te) були пiдра-

хованi за методом проекцiйних приєднаних хвиль (PAW) за допомогою програми ABINIT. Одночастинковi

стани у формалiзмi Кона-Шема були знайденi в рамках GGA (узагальнене градiєнтне наближення). Далi на

основi цих результатiв були отриманi квазiчастинковi енергiї електронiв та дiелектричнi константи у на-

ближеннi GW. Для розглянутих кристалiв M2A розрахунки на основi функцiї Грiна були зробленi вперше,

за винятком Li2O.

Ключовi слова: електронна структури, формалiзм GGA, формалiзм GWA, метод проекцiйних приєднаних

хвиль, дiелектрична стала
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