УДК 577.112.824+57.012.62

© Е. М. Остоловский, А. Д. Боцянский, С. Н. Борисенко, Н. В. Толкачева, 1990

МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ СТРУКТУРЫ СЫВОРОТОЧНОГО АЛЬБУМИНА ЧЕЛОВЕКА

С помощью комплекса физико-химических методов (ИК- и ЯМР-спектроскопия, круговой дихроизм и др.) в работе установлено, что молекула сывороточного альбумина человека представляет собой весьма компактную глобулу со значительным вкладом доли упорядоченных и неупорядоченных структур.

Введение. Известно, что сывороточный альбумин является простым глобулярным белком с единственной полипептидной цепью, состоящей из 585 аминокислотных остатков с молекулярной массой 66 438 [1, 2]. Отмеченная регулярность цис-цис-последовательности послужила причиной предположения того, что в основе молекулярной огранизации альбумина лежит повторяющаяся структура из петель, составляющих домены [3, 4].

Последние данные о полной нуклеотидной последовательности мРНК сывороточного альбумина человека подтвердили и уточнили повторяющуюся гомологию в доменной структуре альбумина [5]. Браун [6] предложил трехдоменную ковалентную структуру альбумина быка и человека, состоящую из субдоменных гомологических участков. Позже данные о доменной организации альбумина были подтверждены экспериментально [7], хотя и описаны четыре его кристаллические формы, существенно различающиеся между собой, что, скорее всего, связано с необычайно сложной гетерогенностью этого белка [8].

Несмотря на вышеизложенное, вопрос о молекулярной структурной организации молекулы альбумина еще не решен окончательно. Поэтому в настоящей работе с помощью ряда современных физико-химических методов были продолжены исследования в этом направлении, позволяющие расширить и дополнить уже существующие представления об этом биополимере.

Материалы и методы. Мономерные, иммунохимически чистые препараты альбумина (ЧСА) выделяли препаративным электрофорезом в полиакриламидном геле (ПААГ) [9].

ИК-спектры поглощения лиофилизированного препарата записывали в области 4 000—700 см⁻¹ на спектрофотометре ИКС-22 в прессовках с бромистым калием в соотношении белок : бромистый калий 1 : 100 [10].

Вторичную структуру свежевыделенных препаратов ЧСА изучали методами дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) с помощью спектрополяриметра «Perkin-Elmer 241-МС» (Швеция) и дихрографа «Dichrograph III» фирмы «Joben Yvon» (Франция). Содержание упорядоченных структур рассчитывали по расширенному уравнению Моффита по спектрам КД [11, 12]. Температурно-пертурбационные дифференциальные спектры записывали с помощью двухлучевого регистрирующего спектрофотометра «Specord UV-VIS» (ГДР) в области длин волн 240—340 нм. Расчет пертурбируемых остатков тирозина проводили по методу Демченко и Зимы [13]. Расположение α-спиральных участков рассчитывали по общепринятому методу предсказания вторичной структуры [14].

Солюбилизацию бензола препаратами альбумина изучали рефрактометрическим методом [15]. Определяли общий объем гидрофобных полостей и солюбилизирующую способность белка, т. е. связывание углеводорода белком.

Запись спектров протонного магнитного резонанса молекул H_2O , остающихся локализованными в структуре лиофилизированного белка, осуществляли на ЯМРспектрометре широких линий марки РЯ-2301 производства НПО «Аналитприбор» (СССР), модернизированном для проведения биологических исследований в интервале температур от —50 до +30 °C [16]. Размеры гидрофильных каналов, т. е. диаметр (Ø) микропор, в которых локализованы молекулы «связанной воды», рассчитывали по данным ЯМР путем а нализа гистерезисной кривой, используя уравнение Мазура [17].

Способность нековалентного связывания белка с люминесцирующими веществами определяли с помощью флюоресцентных зондов 1-анилинонафталин-8-сульфоната (АНС), его магниевого производного (АНС)₂-Mg и N-фенилнафтиламина (ФНА) в кварцевой кювете на спектрофлюорометрической установке конструкции Туровсрова [18]. Концентрация рабочих растворов белка во всех случаях составляла $3,7\cdot10^{-6}$ М, зондов — $1,7\cdot10^{-5}$ М. Белки и АНС растворяли в воде, ФНА — в небольших количествах спирта, после чего доводили водой до конечной концентрации этанола 0,8 %. Интенсивность свечения измеряли в максимуме полосы флюоресценции при комнатной температуре, длина волны света возбуждения для всех зондов составляла 365 нм. Микровязкость различных участков белковой молекулы исследовали методом поляризации люминесценции зондов [19].

Степень анизотропии (A) люминесцентного излучения определяли по интенсивности свечения измеренной в максимуме соответствующей полосы флюоресценции при параллельном (||) и перпендикулярном (\perp) расположении поляризаторов. Время затухания флюоресценции (τ) определяли методом фазовой флюориметрии по измеренной разности фаз (ϕ) между возбуждаемым и испускаемым светом по формуле tg $\phi=\omega\tau$. Угловая частота (ω) модулированного возбуждающего света составляла 15 и 25 мГц. Полученные значения времен жизни возбужденного состоялия используемых люминофоров довольно близки и составляют 9,2 нс для AHC и 7,25 нс для ϕ HA.

Объем 1 моля зондов (V) рассчитывали в зависимости от их плотности. Для АНС он составил 2,3·10⁻⁴, для ФНА — 1,68·10⁻⁴м³/моль. Модифицируя уравнение Перрена можно видеть, что поскольку вязкость среды (η) связана с анизотропией (А), временем жизни возбужденного состояния (т) и объемом моля зонда (V) соотношением $\eta = \frac{A}{A_0 - A} \frac{\tau RT}{V}$ (A_0 — анизотропия флюоресценции для неподвижных неориентирован ных молекул зондов (эти величины для АНС и ФНА соответственно составляли 0,37 и 0,27); R — универсальная газовая постоянная; T — температура по шкале Кельвина), то, определив экспериментально A и τ , по вышеприведенной формуле можно рассчитать микровязкость непосредственного окружения зондов в белке.

Для каждого вида исследований значения получены из не менее чем пяти независимых опытов. Оценку точности измерений проводили методами математической статистики. При доверительной вероятности $\alpha = 0.95$ методики обеспечивали погрешность не более 2 %.

Результаты и обсуждение. Анализ ИК-спектров показал наличие в них характеристических полос, свойственных белкам Амид А (~3300 см⁻¹), Амид В (~3100 см⁻¹), Амид I (~1650 см⁻¹), Амид II (~1550 см⁻¹), а также области в интервале 1450—1030 см⁻¹, захватывающей полосу Амид III [20]. Для спектров ЧСА характерио также сильное перекрывание полос поглощения Амид А и Амид В, а также диффузного поглощения вблизи 700 см⁻¹ (рисунок).

Ряд особенностей ИК-спектров альбумина сыворотки крови человека позволяет сделать заключение о том, что в его пространственной структуре отмечается неупорядоченная форма укладки полипептидной цепи (~30-35 %), о чем можно судить по частотам наиболее интенсивных компонент полос поглощения Амид А, Амид I и Амид II, а также большой полуширине суммарной полосы Амид А+Амид В [21]. В данном образце отмечена и доля α-спиральных участков, на превалирование которых в конформации ЧСА указывает относительно сильная полоса около 1660 см-1 и максимум полосы Амид II [22, 23]. Положение максимума полосы Амид В свидетельствует о том, что в исследуемом белке доля β-структур весьма незначительна и это подтверждается отсутствием компоненты в контурах полосы Амид II при 1520 см⁻¹ и незначительной интенсивностью при 1630 см⁻¹ полосы Амид I [24]. О «рыхлости» структуры данного белка свидетельствует и тот факт, что в его ИК-спектрах четко выражено поглощение вблизи 3400 см⁻¹, а это служит определенным указанием на наличие в структуре данного образца свободных NH_2 - и NH-групп, не участвующих в

образовании водородных связей [22, 23]. Кроме того, в исследуемом белке имеются и протонированные NH₂-группы, которые четко идентифицируются выделяемыми компонентами при 1580 и 1500 см⁻⁻¹ в полосе поглощения Амид II. Это также указывает на незначительное участие NH₂-групп исследуемого белка в структурообразовании. Естественно, что структура макромолекул с меньшим числом водородных связей должна быть менее жесткой по отношению к гомологичным белкам крысы и морской свинки, где поглощение вблизи 3400 см⁻¹ выра-

ИК-спектры и спектральные характеристики ЧСА IR spectra and spectral characteristics of HSA

жено весьма слабо [23]. Данные по ИК-спектроскопии прямо согласуются с нашими спектральными исследованиями. Как следует из данных табл. 1, молекула альбумина представляет собой довольно компактную глобулу приблизительно с 50 %-ной спиральностью, по данным ДОВ и КД, и экспонированием на ее поверхности около половины имеющихся тирозилов, по данным ДТПС [25—29].

Известно, что образование глобулярных структур возможно лишь при достаточном количестве гидрофобных боковых цепей, в результате чего образуются гидрофобное ядро и гидрофильная оболочка. При этом явление солюбилизации в белковых системах представляет интерес как с точки зрения строения белка, так и в отношении изучения его функ-

Таблица 1 Спектральные характеристики молекулы ЧСА по данным ДОВ, КД и ДТПС The spectral characteristics of the molecules HSA by DOR. CD and TPDS

·	Показатели Д	ОВ	Пока	Показатели ДТПС	
—a ₀	b0	Спиральные структуры, %	O ₂₁₀	Спиральные структуры, %	Доступность ос- татков тирозина, %
306 ± 5	313±7	$49,8\pm 2,6$	18000 <u>+</u> 172	48,4 <u>+</u> 0,56	50,2±0,32

Примечание. — a_{0} , — b_0 — параметры ДОВ для расчета структур; O_{210} — удельная эллиптичность по КД-спектрам.

Таблица 2

Солюбилизация бензола сывороточным альбумином Solubilization of benzene by serum albumin

Показатели	преломления	Растворимость угле-		Общий объем гидрофобных полостей, им ^а	
Раствора белка	Раствора угле- водорода в раст- воре белка	водорода в водном растворе белка, 1 мл/100 мл	Связывание угле- водорода белком, моль/моль		
1,33376	1,33414	0,2411	$56 \pm 0,32$	818,0±2,5	

ISSN 0233-7657. БИОПОЛИМЕРЫ И КЛЕТКА. 1990. Т. 6. № 5

циональных свойств. Важная роль отводится и структуре связанной воды [15, 30]. Поскольку речь идет о геометрических объемах молекулы белка, интересно сопоставить полученные данные физическими методами с реальными объемами гидрофобных областей и количеством «связанной» воды, т. е. факторами, определяющими конформационную структуру биополимера. Солюбилизация бензола препаратами альбумина свидетельствует о том, что одна молекула ЧСА связывает 56 молей бензола и имеет общий объем гидрофобных полостей, равный 818 нм³ (табл. 2). По таким параметрам он занимает промежуточное положение между весьма компактными белками типа лизоцима (90 нм³) и довольно рыхлыми типа γ-глобулина (1337,0 нм³), при этом ЧСА довольно близко приближен к последнему.

Таким образом, согласно нашим данным, ЧСА является белком с менее жесткой, т. е. сравнительно рыхлой структурой, что обусловливается также довольно значительным объемом его гидрофобных областей.

Пространственная конфигурация белковых молекул зависит от целого ряда сложных взаимоотношений, но в итоге определяется конкурирующими между собой гидрофобно-гидрофильными взаимолействиями. Оценка соотношения эффективных гидрофобных и гидрофильных поверхностей может также служить фактором, определяющим (характеризующим) конформационную структуру образца.

С помощью ЯМР-спектроскопий проведен расчет размеров диаметра каналов, в которых находятся молекулы H_2O . Для исследуемого образца это составило 0,24 нм, что явно недостаточно для формирования с помощью связанной H_2O жесткой структуры белка, так как явно видно, что в такие малые объемы вряд ли может вписаться достаточное число молекул воды для образования льдоподобной структуры [30, 31]. Это также позволяет предположить, что конформационная структура ЧСА не отличается особой жесткостью.

Результаты флюоресценции позволяют анализировать свойства микроокружения люминофоров в белке. Благодаря этому можно определить, где в макромолекуле белка локализована флюоресцирующая группа. В частности, различные зонды располагаются на разной глубине белковой глобулы. В результате этого одни зонды реагируют на перестройки в области гидрофобного ядра, другие — на поверхностные перестройки, в связи с чем эти свойства можно использовать для изучения внутриструктурной организации макромолекул. Если исходить из представлений о существовании в молекуле белка гидрофобных областей, по крайней мере, двух типов: плотного гидрофобного ядра и таких же периферийных участков, расположенных на поверхности глобулы, то наибольшим сродством к такому ядру обладал зонд ФНА. Это обусловлено его химическими особенностями и строением (табл. 3). Из анализа интенсивности флюоресценции следует, что области, заполняемые ФНА, являются «универсальными» для гомологичных белков [32].

Результаты, полученные при использовании зонда АНС, по интенсивности флюоресценции значительно ниже по сравнению с ФНА. При этом механизмы связывания АНС и локализация его в белке отличают-

Таблица З

Интенсивность флюоресценции, анизотропия и микровязкость зон сорбции люминофоров для ЧСА

Intensity of fluorescence (F, %), anisotropy (A) and microviscosity (η) zones of sorption luminofores for HSA

Интенсивность флюоресцен- ции (F), %		<u> Анизотропия (А)</u>			Микровязкость (ŋ),Па-с			
ΦΗΑ	AHC	(AHC) ₂ -Mg	ΦΗΑ	AHC	(AHC) ₂ -Mg	ΦHΛ	AHC	(AHC) ₂ -Mg
91	66	100	0,21	0,043	0,031	0,0368	0,0014	0,009

ISSN 0233-7657. БИОПОЛИМЕРЫ И КЛЕТКА. 1990. Т. 6. № 5

ся от таковых для ФНА. По всей вероятности, АНС взаимодействует, вначале ориентируясь на положительный заряд молекулы белка, и лишь затем связывается с поверхностными гидрофобными областями ЧСА, которые не входят в зону «универсального» гидрофобного ядра.

Зонд (АНС)₂-Мg диссоциирует в водном растворе на две молекулы АНС и ионы магния и позволяет рассмотреть влияние Mg²⁺ на ЧСА при концентрации АНС, равной предыдущему опыту. Оказалось, что при использовании данного зонда отмечен положительный эффект. т.е. значительное увеличение интенсивности флюоресценции, связанное, очевидно, со сродством данного препарата к ионам магния. Следует также предположить, что существует зависимость между интенсивностью флюоресценции, общим объемом гидрофобных полостей и количеством воды в препарате. Особенно это четко прослеживается с зондом АНС. При насыщении белка водой и изменении объема полостей интенсивность флюоресценции резко падала.

Величины параметров поляризации флюоресцентных зондов для АНС и ФНА различны и это отражается на микровязкости зон сорбции этих люминофоров (табл. 3). Полученные данные свидетельствуют о том, что микровязкость зон сорбции ФНА существенно превосходит таковую зон локализации АНС (более чем в 20 раз).

На основании данных физико-химических методов исследования препаратов ЧСА, проведенного в настоящей работе, можно предположить определенную внутримолекулярную структурную организацию этого белка. Так, по нашим представлениям, внутри глобулы ЧСА находится плотное «универсальное» для альбуминов гидрофобное ядро, основу которого поддерживают и создают инвариабельные аминокислоты, и именно они ответственны за структурную доменную организацию. Скорее всего, спиральные участки молекулы ЧСА в основном входят в состав данного ядра. На поверхности молекулы сывороточного альбумина располагаются гидрофобные области (или участки) с минимальными показателями микровязкости. Именно эти области, по всей вероятности, могут наиболее активно участвовать в процессах связывания с самыми различными лигандами в связи с их доступностью для транспортируемых веществ.

MOLECULAR ORGANIZATION OF HUMAN SERUM ALBUMIN STRUCTURE

E. M. Ostolovsky, A. D. Botsyansky, S. N. Borisenko, N. V. Tolkachova

M. V. Frunze State University, Simferopol

Summary

Physicochemical methods (IR- and NMR-spectroscopy, circular dichroism, etc.) that human serum albumin molecule is a compact globule with 50 % spiral structure and with exposition of a half of tyrozil on its surface. At the same time considerable percent of polypeptide chain with disordely packed form and with small contribution of \beta-structure part is observed in the molecule space structure. Theoretical calculations of α -spiral parts localization in serum albumin molecule indicate that approximately equal number of amino acids residues is found in every of three domains.

СПИСОК ЛИТЕРАТУРЫ

- 1. Behrens P. Q., Spiekerman A. M., Brown J. R. Structure of human serum albumin //
- Behrens P. Q., Spiekerman A. M., Brown J. R. Structure of human serum albumin // Fed. Proc. 1975. 34, N 5. P. 591.
 Melown B., Moravek L., Kostka H. Complete amino acid of serum albumin // FEBS Lett. 1975. 58, N 2. P. 134-137.
 Geisow M. J., Beaven G. H. Large fragments of human serum albumin // Bio-chem. J. 1977. 101, N 3. P. 619-625.
 Brown J. R. Structure of serum albumin: disulfide ridges // Fed. Proc. 1974. 38, N 4 P. 22
- N 4.— P. 33.
- 5. Dugaiczyk C., Law S., Deunison O. Nucleotide sequence and the encoded amino acids of human serum albumin in RNA // Proc. Nat. Acad. Sci. USA.- 1972.- 79, N 1.— P. 71—75.

ISSN 0233-7657. БИОПОЛИМЕРЫ И КЛЕТКА. 1990. Т. 6. № 5

- Brown J. R. Structural originals of mammalian albumin // Fed. Proc.- 1978.- 35, N 10.- P. 2141-2144.
- 7. Микрокалориметрическое исследование доменной организации сывороточного аль-бумина / Е. И. Тиктопуло, П. Л. Привалов, С. Н. Борисенко, Г. В. Троицкий // Молекуляр. биология.— 1985.— 19, № 4.— С. 1072—1078. 8. Mepherson A. Crystallysation of protein form in polyethylene glycol // J. Biol.
- Chem.— 1976.— 252, N 9.— P. 6300—6303.
- Ажицкий Г. Ю., Багдасарьян С. Н. О возможности выделения мономерного им-мунохимически чистого альбумина // Лаб. дело.— 1975.— 66, № 1.— С. 712—714.
 Остоловский Е. М., Задорожный Б. А., Бочаров Л. П. Гидрофобная структура
- альбумина сыворотки крови и печени кроликов разного возраста // Журн. эволюц. биохимии и физиологии.— 1982.— 18, № 5.— С. 522—526. 11. Троицкий Г. В. Новая система расчетов конформации белка по спектрополяримет-
- рическим данным // Биоэнергетика и биол. слектрофотометрия. М. : Наука, 1967. ---260
- 12. Chen J. H., Young J. T., Nartinez H. Determinant ion of the secondary structures оf protein by C. D. // Biochemistry. 1972. 11, N 22. Р. 4120 – 4131. Демченко А. П., Зима В. Л. Ультрафиолетовая спектрофотометрия и структура
- 13.
- Демченко А. П., Зима В. Л. Ультрафиолетовая спектрофотометрия и структура белков.— Кнев : Наук. думка, 1981.— 208 с.
 Завьялов В. П., Тронцкий Г. В. Гипотетическая конформация иммуноглобулина G // Молекуляр. биология.— 1973.— 6, № 7.— С. 833.— 840.
 Измайлова В. Н., Ребиндер П. А. Структурирование в белковых системах.— М. : Наука, 1974.— 329 с.
- Габуда С. П., Ржавин А. Ф. Ядерный магнитный резонанс в кристаллогидратах и гидратированных белках. Новосибирск : Наука, 1978. 135 с.
 Остоловский Е. М., Мишин Е. Н., Шадрин Г. Н. Изменение гидратационных свойств сыворогочного альбумина кролика в онтогенезе // Биофизика. 1983. 28, № 5.— С. 874—875. 18. Гусев Е. В., Туроверов К. К., Розанов Ю. М. Установка для измерения спектраль-
- ных и поляризационных характеристик люминесценции // Функцион. морфология, генетика и биохимия клетки. Л. : Наука, 1974. С. 364—370.
- 19. Владимиров Ю. А., Добрецов Г. Е. Флуоресцентные зонды в исследовании биоло-гических мембран.— М.: Наука, 1980.— 320 с.
- Чиргадзе Ю. Н. Инфракрасная спектроскопия полипептидов и белков // Итоги науки и техники.— М.: ВИНИТИ, 1973.— С. 9—61.— (Сер. молекуляр. биология; <u>T</u>. 1).
- Сузи Г. Инфракрасная спектроскопия макромолекул и модельных соединений. М. : Мир, 1973. 345 с.
- 22. Беллами Д. Инфракрасная спектроскопия сложных молекул.-- М.: Мир, 1963.--260 c.
- 23. Остоловский Е. М., Афанасьев С. М., Задорожный Б. А. Инфракрасные спектры альбумина сыворотки некоторых млекопитающих // Природ. комплексы Крыма, их оптимизация и охрана.— Симферополь, 1984.— С. 91—95.
- Элиот А. Инфракрасные спектры сложных молекул.— М.: Изд-во иностр. лит., 1963.— 382 с. 24.
- 25. Троицкий Г. В. Электрофорез белков. Харьков : Изд-во Харьк, ун-та, 1962. 323 c.
- 26. Белки сыворотки крови при спортивной тренировке / А. М. Ефименко, Н. В. Тол-качева, Е. М. Остоловский, А. В. Станевич // Укр. биохим. журн.— 1978.— 50, № 6.— С. 723—726.
- 27. Дальнейшее изучение гетерогенности электрофоретической фракции альбумина при патологии / Г. В. Тронцкий, И. Ф. Кирюхин, Н. В. Толкачева, Г. Ю. Ажицкий // Вопр. мед. химии.— 1974.— 20, № 1.— С. 24—31.
- Вопр. мед. химии. 1974. 20, № 1. С. 24. 51.
 Особенности транспортной функции альбумина сыворотки крови при физических на-грузках / Н. В. Толкачева, С. Н. Багдасарьян, А. М. Ефименко, Г. В. Троицкий // Укр. биохим. журн. 1981. 53, № 4. С. 26—29.
 Багдасарьян С. Н., Троицкий Г. В. Изучение денатурации сывороточного альбуми-на методами ДТПС и спектрополяриметрии // Биофизика. 1979. 24, № 5. С. 901. 905.
- C. 821—825
- 30. Аксенов С. И., Харчук О. А. О состоянии воды в растворах белков и вирусов // Связан. вода в дисперсных системах.— М.: Изд-во Моск. ун-та, 1977.— Вып. 4.— C. 118—138,
- Остоловский Е. М., Мишин Е. Н., Щербаков В. Н. Видовые особенности конфор-мационной структуры альбумина сыворотки крови по данным ЯМР- и ИК-спектро-скопии // Тез. докл. І Всесоюз. биофиз. съезда. М., 1982. Ч. 1. С. 87-88.
 Остоловский Е. М., Боцянский А. Д., Задорожный Б. А. Исследование структуры
- сывороточного альбумина млекопитающих методом флуоресцентных зондов // Биофизика.— 1988.— 33, № 2.— С. 356—358.

Симфероп. гос. ун-т им. М. В. Фрунзе

Получено 05.04.89