CHANGES IN STABILITY OF Z FORM DEPENDING ON IONIC STRENGTH. COMPARISON BETWEEN THE THEORY AND EXPERIMENT

V. I. Ivanov, E. E. Minyat

Institute of Molecular Biology, Academy of Sciences of the USSR, Moscow

Summarv

The polyelectrolyte theory for the B - Z transition has been tested with poly[d(G-m⁵C)] by changing the non-electrostatic contribution to the free energy difference between the B and Z forms. The non-electrostatic term was varied by addition of ethanol, a nonelectrolyte. The experiments confirmed a bell-shaped dependence of the Z form stability on counterion concentration, the maximum B form stability being at 0.1 M NaCl. In accordance with the theory the widths of the Z-to-B transition at low ionic strengths (<0.01), when expressed in logarithms, are equal. A value of 3.6 kcal/mol was obtained for the free energy of the B/Z junction in poly[d(G-m⁵C)].

These findings make it possible to believe that an explanation of the low ionic strength reverse Z to B transition, based on an idea of pushing out the contaminating polyvalent ions by Na+, is unlikely.

- Frank-Kamenetskii M. D., Lukashin A. V., Anshelevich V. V. Application of polyelectrolyte theory to the study of the B-Z transition in DNA // J. Biomol. Struct. and Dyn.— 1985.—3, N 1.— P. 35—42.
 Latha P. K., Brahmachuri S. K. A novel structural transition in poly(dG-m⁵dC)·poly(dG-m⁵dC): Z_B_Z/FEBS Lett.— 1985.—182, N 4.— P. 315—318.
 New DNA polymorphism: evidence for a low salt, left-handed form of poly(dG-m⁵dC) × xpoly(dG-m⁵dC) / B. G. Feuerstein, L. J. Morton, M. A. Keniry et al. // Nucl. Acids Res.— 1985.—13, N 8.— P. 4133—4141.
 Devarajan S., Shafer R. H. Role of divalent cations on DNA polymorphism under low ionic strength conditions // Ibid.— 1986.—14, N 6.— P. 5099—5109.
 Woisard A., Guschlbauer W., Fazakerley G. Y. The low ionic strength form of the so-dium salt of poly(dG-m⁵dC) is a B DNA // Ibid.— N 7.— P. 3515—3519.
 Bedenos A. A., Дыхие А. М., Франк-Каменецкий М. Д. Переход спираль клубок в ДНК // Успехи физ. наук.— 1971.—105, № 3.— С. 479—519.
 Manning G. S. The molecular theory of polyelectrolyte solutions with application to the electrostatic properties of polynucleotides // Q. Rev. Biophys.— 1979.—11, N 3. P. 79—93.
 Peck Y. L., Wang J. C. Energetics of B-to-Z transition in DNA // Proc. Nat. Acad.

- P. 19-93.
 Peck Y. L., Wang J. C. Energetics of B-to-Z transition in DNA // Proc. Nat. Acad. Sci. USA. 1983. 80, N 10. P. 6206-6210.
 Synthesis and physical characterization of DNA fragments containing N4-methylcytosine and 5-methylcytosine / V. Butkus, S. Klimasauskas, L. Petrauskiene // Nucl. Acids Res. 1987. 15, N 20. P. 8467-8478.

Ин-т молекуляр. биологии АН СССР, Москва

Получено 09,03,87

УДК 577.323

ФАЗОВАЯ ПОВЕРХНОСТЬ В – Z-РАВНОВЕСИЯ РАСТВОРА ПОЛИ $[д(\Gamma - \mathbf{I})]$ В КООРДИНАТАХ: **ДОЛЯ НЕЭЛЕКТРОЛИТА. ИОННАЯ СИЛА. ТЕМПЕРАТУРА ***

Э. Е. Минят, А. Т. Карапетян, П. О. Вардеванян, В. И. Иванов

Введение. Метод фазовых диаграмм является мощным средством для изучения термодинамики и природы кооперативных переходов в ДНК. Так, изучение тройного равновесия между В-, А-формами и клубкообразным состоянием позволило связать между собой термодинамические параметры каждого из переходов: А-В, А-клубок, В-клубок [1, 2]. Фазовая диаграмма для В=Z-равновесия растворов поли [д(Г-м⁵Ц)]

^{*} Представлена членом редколлегии М. Д. Франк-Каменецким.

БИОПОЛИМЕРЫ И КЛЕТКА. — 1988. — Т. 4, № 4

в зависимости от доли неэлектролита и ионной силы доказала полиэлектролитную теорию В—Z-перехода под действием простых противоионов и дала возможность определить энергию границы на стыке В- и Z-конформаций [3]. Ранее мы установили, что поли [д(Г—Ц)] в 55%-ном водно-этанольном растворе низкой ионной силы способен к резкому температурному переходу Z- в В-форму [4, 5]. Возникает естественное желание расширить данное исследование варьированием всех трех переменных: спирта, ионной силы и температуры. Тем самым получается еще один тип фазовой диаграммы, который мог бы полнее раскрыть природу В—Z-перехода и определить его энергетические характеристики.

Материалы и методы. Использовали препарат поли[д(Г—Ц)] фирмы «Pharmacia, Mol. Biol.» (США). Оптическая плотность в образцах не превышала 0,5 в области максимального поглощения (250—260 нм).

Измерения В — Z-переходов проводили в термостатируемой кювете на дихрографе (Mark III, «Jobin Ivon», Франция). Остальные условия даны в подписях к рисункам.

Результаты и обсуждение. Данные для построения одного из сечений (иопная сила (μ), температура (t)) полной фазовой диаграммы В—Z в координатах (этанол, % (a), μ , t) были получены в нашей прежней работе [5]. Но там оно не приведено, так как нас интересовали лишь изменения параметров кривой В—Z-перехода при комплексировании с полиамином, а не сами нараметры кривых свободного полинуклеотида. Было отмечено только, что в зависимости от «истории» образца положение точки перехода и ширина перехода свободного поли[$\mu(\Gamma-\Pi)$] непредсказуемо варьируют. В данной работе мы постунили следующим образом. Сначала получили сечение (a, t), взяв в

Рис. 1. Фазовое равновесие В \rightleftharpoons Z поли[д(Г-Ц)] в координатах (a, t). Стрелки указывают варьируемую переменную и направление ее изменения. Концентрация NaCl 1 мМ

Fig. 1. Phase diagram for the $B \rightleftharpoons Z$ equilibrium of poly[d(G-C)] in coordinates (a, t). The arrows indicate the variables and the direction of their change. The NaCl concentration is 1 mM

Рис. 2. Зависимость температуры В — Z-перехода от ионной силы. Различные прямые соответствуют разным сериям измерений (см. текст). Содержание этанола 55 % по объему

Fig. 2. Dependence of the B-Z transition temperature on the NaCl concentration. The individual lines correspond to the samples of different preparations (see the text). Fraction of ethanol is 55 % (v/v)

качестве базовой ионную силу 10⁻³ М NaCl (рис. 1). При этом переходы осуществляли как изменением доли этанола, так и температуры (варьируемые переменные, а также направление их изменения на рис. 1 указаны стрелками). Из вида ветви В=Z-равновесия сразу следует одна из возможных причин разброса точек перехода в прежних опытах с 55%-ным этанольным раствором. В самом деле, из данных рис. 1 ясно, что изменение доли спирта на 1 % приводит к изменению точки перехода на 4 °C.

На рис. 2 представлены данные по влиянию ионной силы на положение середины кривой температурного перехода, т. е. сечение (lgµ, t).

БИОПОЛИМЕРЫ И КЛЕТКА. — 1988. — Т. 4, № 4

Каждая кривая — это опыты на образце полинуклеотида одного приготовления; разные кривые относятся к разным образцам. Видно, что кривые более или менее параллельны друг другу. Для объяснения максимального сдвига между ними — 3,5 °С — достаточно допустить, что содержание этанола варьирует в пределах $55\pm0,5$ %. Поскольку для данных рис. 1 μ =10⁻³ M NaCl, то сечения (*a*, *t*) и (lg μ , *t*) должны пересечься в точке со значениями μ =10⁻³ M, *a*=55 %. На рис. 1 соответствующее значение *t*=35 °С. Поэтому все линии рис. 2 мы парал-

Рис. 3. Усредненная по всем опытам фазовая диаграмма (lg µ, t) при содержании этанола 55 % (см. текст)

Fig. 3. Phase diagram averaged for all experiments ($\lg \mu$, *t*) at 55 % ethanol Рис. 4. Полная фазовая поверхность $B \gtrsim Z$ -равновесия поли[д($\Gamma - \Pi$)] в координатах:

(a, $\lg \mu$, t), построенная по сечениям (a, t) и ($\lg \mu$, t) (рис. 1 и 3 соответственно) Fig. 4. Total phase diagram for the B \neq Z equilibrium of poly[d(G-C)] in coordinates: (a, $\lg \mu$, t) built after the projections (a, t) and ($\lg \mu$, t) (Figs 1 and 3, respectively)

лельно сдвинули так, чтобы при $\mu = 10^{-3}$ М температура равнялась 35 °С. На рис. З дано усредненное таким образом сечение ($\lg \mu$, l).

Из рис. 1 и 3 следует, что оба сечения фазовой поверхности (a, lg μ , t) — прямые линии, и так как фиксированные величины a=55% этапола и $\mu=10^{-3}$ М пичем не выделены, то некоторый участок этой поверхности, содержащий данные прямые, представляет собой плоскость. Эта плоскость показапа на рис. 4. Пространство под плоскостью — область устойчивости В-формы, над — Z-формы. Пересечение плоскости раздела фаз В и Z с плоскостью (a, lg μ) является третьей фазовой диаграммой В—Z-равповесия в координатах (a, lg μ) при t= =0 °C. Отметим, что установить пеносредственно в эксперименте, варыпруя a и μ , наклон сечения (a, lg μ) практически невозможно, так как оп очень мал, а интервал изменения весьма ограничен.

Примечательно, что ветвь В=Z-равновесия в координатах (a, lgµ) имеет положительный угол наклона, т. е. с ростом ионной силы Z-форма, устойчивая здесь при малых иоппых силах, переходит в В-форму при увеличении μ (рис. 4). Такое поведение аналогично случаю с метилированным полн[д(Γ —м⁵ Π)], у которого при малых ионных силах тоже наблюдается именно Z-В переход [6]. В нашей работе [3] было показано, что добавление этанола в раствор поли [д(Г-м⁵Ц)] при малых ионных силах дает аналогичную восходящую ветвь В - Z-равновесия в координатах (a, lgµ). При этом обнаруживается количественное согласне с полиэлектролитной теорией В- Z-перехода [7]. У неметилированного поли [д(Г-Ц)] такой визкононный переход Z-В никем не наблюдался, так как он должен происходить при недостижимо низких значениях µ. Однако его можно сдвинуть в область больших µ, уменьшив пеэлектростатический вклад Fnel в разность свободных энергий В- и Z-состояний F_{BZ} (добавлением неэлектролита, например этанола). Поскольку известно, что F_{BZ} для неметилированного поли-нуклеотида много больше, чем для метилированного [8], то требуется добавка довольно большого количества спирта (~50 %). Таким образом, рис. 4 свидетельствует о том, что мы действительно наблюдаем низкоионный обратный Z—B-переход в поли [д(Г—Ц)]. Согласно тео-

БИОПОЛИМЕРЫ И КЛЕТКА. — 1988. — Т. 4, № 4

рии, электростатический член в области достаточно малых ионных сил равен [7]

$$F_{\rm BZ}^{el} = 2,3RT \left(\frac{1}{q_{\rm Z}} - \frac{1}{q_{\rm B}} \right) \lg \frac{\mu}{\mu_0} ,$$
 (1)

где q — безразмерная линейная плотность заряда полинуклеотида в Z- или В-форме; q=2L/H, где H — трансляция мономерного звена на ось спирали, равная 0,34 нм в В- и 0,37 нм в Z-формах [9]; $L=e^2/DkT$ — так называемая длина Бьеррума (e— заряд электрона, k— постоянная Больцмана, D— диэлектрическая постоянная, равная 50 для 55%- ного этанола [10]). В воде D=80, L=0,7 нм, а в наших условнях 55%-ного этанола L=1,12 нм. Отсюда $q_{\rm B}=6,6$ и $q_{\rm Z}=6,0$. Подставив эти значения в (1), имеем

$$F_{\rm BZ}^{el} = 0.035 RT \, \lg \frac{\mu}{\mu_0}$$
 (2)

Теперь, используя фазовую диаграмму (t, lgµ) (рис. 3), найдем эптальпию В—Z-перехода. Действительно, при сдвиге вдоль ветви фазовой диаграммы изменение свободной энергии

$$\delta F_{\rm BZ} = \delta F_{\rm BZ}^{el} + \delta F_{\rm BZ}^{T}.$$
(3)

Здесь δF_{BZ}^{T} — изменение свободной энергии, связанное с температурой, а δF_{BZ}^{el} — с ионной силой;

$$\delta F_{\rm BZ}^{T} = \frac{\Delta H_{\rm BZ}}{T} \, \delta T. \tag{4}$$

Но δF_{B2} = 0, так как мы не сошли с ветви. Отсюда с учетом (2) получаем

$$\Delta H_{\rm BZ} = 0.035 R T^2 \frac{\delta \lg \mu}{\delta T} \,. \tag{5}$$

Из рис. З явствует, что $\delta T/\delta \lg \mu = -(4,5\pm0,5)$. Подставив наклон в (5), находим $\Delta H_{BZ} = -(1,4\pm0,2)$ ккал/моль. Раньше мы определили ΔH_{BZ} для поли [д(Г-Ц)] в тех же условиях, но независимым методом с использованием полиамина N-(аминоэтил)-1,3-пропандиамин (АЭПДА) в качестве «скрепки», стабилизирующей Z-форму [5]. Получилось $\Delta II_{BZ} = -(1,4\pm0,2)$ ккал/моль.

Совпадение этих значений говорит не только о надежности определения величины $\Delta H_{\rm BZ}$, но и, что более важно, о применимости простой полиэлектролитной теории к данному случаю. Вообще говоря, было далеко не очевидно, что в 55%-ном этаноле, где нельзя исключить комплексирования щелочных ионов с полинуклеотидом, теория применима. О том, что такие опасения небезосновательны, свидетельствует, например, то обстоятельство, что в 80%-ном метаноле щелочные ионы, особенно цезий, уже образуют с ДНК истинные комплексы с константой ~10⁴ для цезия [11]. Зная $\Delta H_{\rm BZ}$ и ширину перехода ΔT , можно рассчитать значение второго важного термодинамического параметра В— Z-перехода — длину кооперативности, v_0 [12]:

$$v_0 = \frac{4}{\Delta T} \frac{RT^2}{|\Delta H_{\rm BZ}|} = 50$$
 пар оснований, (6)

так как в наших экспериментах $\Delta T \sim 10$ °C.

Такое зпачение v_0 на порядок меньше значения, полученного для В—Z-перехода в олиго [д(Г—Ц)]-вставках в плазмиды под действием отрицательной суперспирализации [13], но практически не отличается от значения v_0 =40 п.о., полученного нами при помощи сперминовой «скрепки» в водно-спиртовом растворе [14]. Соответствующий дуплекс переходит в Z-форму при a_0 =61 % трифторэтанола, что близко к 62 % для полимера. Ширина перехода олигонуклеотида Δa_8 =14,5, а поли-

мера — 2,6 % [14]. Так как столь короткий дуплекс переходит в Z-форму по принципу «все или ничего», то можно воспользоваться формулой для коротких полимеров ($n \ll v_0$): $n = 4Q/\Delta a_n$ (см., например, [3]). Здесь Q характеризует крутизну изменения F_{BZ} в интервале перехода. Подставив $\Delta a_8 = 14,5$ и n = 8, получим Q = 29 % трифторэтанола. Отсюда, зная a_{∞} (полимер) = 2,6, сразу получим $v_0 = 4Q/\Delta a_{\infty} = = 4 \cdot 29/2,6 = 45$ п.о. По-видимому, наличие большого количества спир-

та вызывает существенное спижение уо по сравнению с водным раствором, где $v_0 \sim 10^3$ п.о. [13]. Фазовая диаграмма рис. 4 позволяет, если известна ширина хотя бы одного перехода, рассчитать ширины остальных двух. Возьмем уже упоминавшуюся величину $\Delta T = 10$ °C.

Так как $\delta T/\delta a = \Delta T/\Delta a$, то, учитывая рис. 1, $\Delta a = 2.5$ %, что совпадает с непосредственно измеренной величиной.

Аналогично, $\Delta lg_{\mu} = 2$. Поскольку последняя величина выражена в логарифмах, то она очень велика. Чтобы совершить в наших условиях полный переход по соли, ее концентрацию надо изменить на два порядка, что в присутствии 50%-ного этанола осуществить невозможно.

В заключение приведем все коэффициенты, характеризующие крутизну изменения свободной энергии в интервале В-Z-перехода:

$$F_{\rm BZ}^{el} = 0.035 RT \, \lg \frac{\mu}{\mu_0}$$
; (5)

$$F_{\rm BZ}^{a} = 0.032RT (a - a_0); \tag{7}$$

$$F_{\rm BZ}^{T} = \frac{1.4}{T} (T - T_0). \tag{8}$$

PHASE SURFACE OF THE B-Z EQUILIBRIUM FOR poly[d(G-C)] SOLUTION IN COORDINATES: NON-ELECTROLYTE FRACTION, IONIC STRENGTH, TEMPERATURE

E. E. Minyat, A. T. Karapetyan*, P. O. Vardevanyan*, V. I. Ivanov

Institute of Molecular Biology, Academy of Sciences of the USSR, Moscow Advanced Training Institute for Teachers, Kirovakan, Armenian SSR

Summary

A iraginent of the B and Z interfaces of poly[d(G-C)] within 45-58 % ethanol, 10-45 °C and 0.5-3 mM NaCl is a plane. A projection (ethanol fraction, ionic strength) testifies to the occurrence of the reverse $Z \rightarrow B$ transition with an ionic strength increase, which was predicted by a polyelectrolyte theory but up to now was not observed with poly[d(G-C)]. Using the polyelectrolyte model the projection (temperature, ionic strength) permits estimating enthalpy of the Z-B transition: $\Delta H_{BZ} = -1.4$ kcal/mol.

- B-A transition in DNA / V. I. Ivanov, D. Yu. Krylov, E. E. Minyat, L. E. Minchen-kova // J. Biomol. Struct. and Dyn.— 1983.—1, N 2.— P. 453—460.
 Ivanov V. I., Krylov D. Yu., Minyat E. E. Three-state diagram for DNA // Ibid.— 1985.—3, N 1.— P. 43—54.
 Иванов В. И., Минят Э. Е. Изменение стабильности Z-формы от ионной силы. Срав-нение теории с экспериментом // Биополимеры и клетка.— 1988.—4, № 4.— С. 171— 177 177.
- 4. Karapetyan A. T., Minyat E. E., Ivanov V. I. Increase in temperature induces the Z to B transition of polyd(G-C) in water-ethanol solution // FEBS Lett.- 1984.-173, N 1.- P. 243-246.

- N 1.— P. 243—246.
 5. Термодинамика В Z-перехода поли[д(Г Ц)] в водно-этанольном растворе. «Скрепочная» калориметрия / А. Т. Карапетян, Э. Е. Минят, П. О. Вардеванян, В. И. Иванов // Биополимеры и клетка.— 1988.—4, № 3.— С. 115—119.
 6. Latha P. K., Brahmachuri S. K. A novel structural transition in poly(dG-Me⁵C) · po-ly(dG-Me⁵C): Z=B=Z // FEBS Lett.— 1985.—182, N 5.— P. 315—318.
 7. Frank-Kamenetskii M. D., Lukashin A. V., Anshelevich V. V. Application of poly-electrolyte theory to the study of the B-Z transition in DNA // J. Biomol. Struct. and Dyn.— 1985.—3, N 1.— P. 35—42.
 8. Behe F. M., Felsenfeld G. Effect of methylation on a synthetic polynucleotide: the B-Z transition in poly(dG-m⁵C) // Proc. Nat. Acad. Sci. USA.— 1981.—78, N 6.— P. 1619—1623
- P. 1619-1623.

БНОПОЛИМЕРЫ И КЛЕТКА. -- 1988. -- Т. 4, № 4 $3 - 8 \cdot 264$

- Molecular structure of a left-handed double helical DNA fragment at atomic resolution / А. Н.-J. Wang, G. J. Quigley, F. J. Kolpak et al. // Nature.— 1979.—282, N 5813.— Р. 680—684.
 Стабников В. Н., Ройтер И. М., Процюк Т. Б. Этиловый спирт.— М.: Пиш. пром-ати 1076—С. 1076
- сть, 1976.— С. 106.
- сть, 1970.— С. 100.
 11. Different conformations of double-stranded nucleic acids as revealed by circular dichroism / V. I. Ivanov, L. E. Minchenkova, A. K. Schyolkina, A. I. Poletayev // Biopolymers.— 1973.—12, N 1.— P. 89—110.
 12. Веденов А., Дыхие А., Франк-Каменецкий М. Д. Переход спираль клубок в ДНК // Успехи физ. наук.— 1971.—105, № 3.— С. 479—519.
 13. Peck L. J., Wang J. C. Energetics of B-to-Z transition in DNA // Proc. Nat. Acad. Sci. USA.— 1983.--80, N 10.— P. 6206—6210.
 14. Cooperative transitions in DNA with no separation of strands / V. I. Ivanov, L. E. Minchenkova, E. E. Minvat, A. K. Schvolkina // Cold Spring Harbor Svmp. Quant. Bi-

- chenkova, E. E. Minyat, A. K. Schyolkina // Cold Spring Harbor Symp. Quant. Bi-ol.— 1983.—47.— P. 243—250.

Ин-т молекуляр. биологии АН СССР, Москва Кировакан. пед. ин-т

Получено 09.03.87

УДК 547.963.3

СТРУКТУРА И СВОЙСТВА ПОЛИ(dA) · ПОЛИ(dT) И А : Т-УЧАСТКОВ ДНК. РАСЧЕТЫ ЭНЕРГИИ НЕВАЛЕНТНЫХ ВЗАИМОДЕЙСТВИЙ в системе, состоящей из регулярного полинуклеотида и двух слоев воды в его гликозидном желобе *

А. Г. Головинская, В. И. Полтев, В. П. Чуприна

Введение. Целый ряд экспериментальных данных [1-4] позволяет предположить, что участки двойной спирали ДНК, содержащие последовательности (dA)_n (dT)_n, имеют специфическую конформацию, от-личающуюся от В-формы ДНК со случайной последовательностью. В качестве структурной модели последовательности (dA)_n (dT)_n часто рассматривают «гетерономную» ДНК Арнотта [1]. Предложенная на основании рентгеновских исследований волокон натриевой соли поли(dA) · поли(dT) эта модель имеет существенно разные конформации сахаро-фосфатных цепей, А-подобную конформацию цепи поли(dA) и В-подобную — поли(dT). Но данные ЯМР и Раман-спектроскопии [5, 6] не подтверждают существования такой конформации в растворе. Недавно [7] на основании рентгеновских исследований кальциевой соли иоли(dA) · поли(dT) показана эквивалентность конформаций двух цепей, а на основании анализа данных Арнотта сделан вывод о близости конформации патриевой соли поли(dA) поли(dT) к конформации кальциевой соли.

Характерной чертой двуспирального фрагмента d(CGCGAATTCG-CG) в кристалле является наличие в его средней части водного «хребта», состоящего из двух слоев молекул воды [8]. Молекулы воды первого слоя соединяют Н-связями атомы N(3) аденина и O(2) тимина оснований соседних пар разных цепей. Молекулы воды второго слоя связаны Н-связями с атомами кислорода воды первого слоя. Этот хребет, по предположению Дикерсона и соавт. [8], играет важную роль в стабилизации В-формы и механизме В-А-перехода.

^{*} Представлена членом редколлегии В. И. Ивановым.

Принятые сокращения: поли (A:T) — регулярный двуспиральный полинуклеотид поли (dA) поли (dT); поли (A:T:H₂O) — регулярная система, состоящая из поли (A:T) и двух слоев воды в гликозидном желобе, расположенных подобно «водному хребту» в кристалле d(CGCGAATTCGCG) [8]; А: Т-участки ДНК — участки ДНК, содержа-щие пары А: Т без шага ТрА; L — ширина сахарного желоба двойной спирали, рас-стояние между ближайшими атомами фосфора противоположных цепей; R — расстояние между атомами N(3) аденина и атомом O(2) тимина соседней пары.