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As recently reported [Turiv T. et al., Science, 2013, 342, 1351], fluctuations in the orientation of the liquid
crystal (LC) director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid
becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate
random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the
expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director
relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD) linear in
time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the
dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion) or faster (superdiffusion) than τ.
These results are discussed in the context of coupling of colloidal particle’s dynamics to the director fluctuation
dynamics.
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1. Introduction

Unlike the visible world around us, the atomic, molecular and small particle worlds are in a state of

constantmotion. Thismotion is widely occurring in nature and plays important role in physics, chemistry,

biology and engineering [1]. The physical approach to this motion (Brownianmotion [2]), developed early

in the 20th century by Einstein [3, 4], Smoluchowski [5], and Langevin [6], still forms the basis for our

understanding of these stochastic dynamics, with the main result, derived by Einstein [3, 4], being that

the mean squared displacement (MSD)
〈
∆r2

〉
of a particle undergoing Brownian motion in a Newtonian

fluid increases linearly with time,
〈
∆r2(τ)

〉 = 6Dτ, where D is the diffusion constant. For a spherical

particle with hydrodynamic radius R in a fluid with viscosity η, the diffusion coefficient is given by the
Stokes-Einstein relation D = kBT /ζ, where kB is the Boltzmann constant, T is the temperature and ζ is
the viscous friction coefficient, which under no-slip conditions is given by ζ = 6πRη. The normal, linear
diffusion regime for a particle of massm is established on time scales long compared to the microscopic

timem/ζ, which is typically in the nanosecond range. These results are valid for Brownian motion under
the influence of two forces, the viscous frictional force linear in particle velocity, F =−ζv, and a random
force with white-noise-spectrum due to random collisions with surrounding particles.

Brownian particles in complex systemsmay, however, exhibit quite different dynamics, reflecting the

properties of particles themselves (e.g., the effects of a crossover from short-time anisotropic to long-time

isotropic diffusion for ellipsoidal particles in water [7]) as well as the local properties of the host medium

that may be inhomogeneous, exhibit nonlinear friction or elastic properties, etc., with 〈∆r2(τ)〉 ∝ τα,

where the exponent α may be different from 1. For example, colloidal particles in polymer networks
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[8, 9], in F-actin networks [10], in surfactant formed lyotropic liquid crystal [11]may exhibit a subdiffusive

behavior with 0 < α < 1; superdiffusion, α > 1, was observed in concentrated suspensions of swimming
bacteria [12, 13] and in “living polymers” [14].

The behaviour of colloidal particles in a nematic liquid crystal (NLC) is in many respects more com-

plicated as compared to the isotropic fluid host. First of all, the particle sets a certain director distortion

around itself, due to the anisotropic nature of surface interactions (surface anchoring) [15]. These di-

rector distortions lead to long-range elastic interactions of the particle with the bounding walls. Second,

the orientational nematic order leads to an anisotropy of the Stokes drag [16–25]. As a result, Brownian

motion in a nematic host becomes anisotropic with two different diffusion constants D∥ and D⊥, corre-
sponding to the directions parallel and perpendicular to the nematic director n. Third, although the LC
medium is homogeneous, the average axes of orientation fluctuate in time and space and thus influence

the diffusive regimes [26, 27]. In addition to normal diffusion, the particle experiences two anomalous

regimes, with MSD growing slower (subdiffusion) and faster (superdiffusion) than τ. The anomalous dif-

fusion occurs at time scales that correspond to the relaxation times of director fluctuations [26]. All three

regimes of diffusion are anisotropic, with the MSD being larger for the motion along the director. Once

the nematic is melted, the diffusion becomes normal and isotropic.

In this paper, we elaborate in detail the Brownian dynamics of colloidal particles in a nematic host

on time scales shorter than the expected time of director fluctuations τrelax. Following the experiments

described in [26], we first give a detailed description of the particle tracking experiments with an ex-

tensive analysis of the possible errors in the observed trajectories of the colloids. This is followed by an

analysis of the diffusion of colloids, which turns out to be nonlinear with time for a certain time lag, as

it is described in [26]. In the theoretical section, we present a model consideration of the diffusion of the

colloidal particle in LC, where we explain the anomalous regime by coupling of the particle motion and

director fluctuations.

2. Experiment

2.1. Material

The refractive indices for ordinary (no) and extraordinary (ne) modes of light propagation in a ne-

matic are different from each other. The director n is also the local optic axis. Whenever the director
fluctuates, birefringence ∆n = ne −no and the associated “lens” effect of the distorted optic axis around

the particle translate these fluctuations into phantom drifts of the image. To overcome the problem, we
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Figure 1. (Color online) Wavelength dependence of the refractive indices and optical anisotropy of the

NLC IS–8200 which chemical structure formula is placed in the plot.

use the nematic IS–8200 synthesized at Merck (Germany) with ultra-low birefringence ∆n = 0.0015 (at
light wavelength λ = 520 nm) [28]. IS–8200 is a thermotropic (solvent free, single-component) material
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with the nematic state in the temperature range 47–53°C, above which it melts into the isotropic fluid,

figure 1. Small ∆n suppresses the image shifts caused by fluctuations.

2.2. Director alignment

Alignment of the director at both the particle’s surface and the bounding plates influences the diffu-

sion and thus needs to be controlled.We explored the alignment at the surface of spheres to be perpendic-

ular to the surface. In his case, the particles were functionalizedwith dimethyl-octadecyl- [3(trimethoxysi-

lyl)propyl] ammonium chloride (DMOAP) [29]. The overall uniform orientation of the nematic was set by

two glass plates covered with rubbed polyimide PI–2555 (Nissan Chemicals) alignment layers that pro-

duce a uniaxial planar alignment n0 = (1,0,0) = const in the cell. The locally distorted director around
the spheres should smoothly transform into n0 [22]. The resulting equilibrium director configuration is

of a dipolar type (with a point defect — hyperbolic hedgehog accompanying the sphere, figure 2) for the

normal anchoring. The director distortions around the particle [30] lead to a repulsion from the bounding

substrates [31]. The particles levitate [32] in the bulk at some height determined by the balance of gravity

and elastic forces.

(a) (b)

Figure 2. (Color online) (a) Schematic director field around a sphere with normal surface anchoring and

(b) optical image of 5 µm silica sphere of the dipole structure immersed in IS–8200 placed between crossed

polarizers.
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Figure 3. (Color online) (a) Intensity of the transmitted light as a function of the applied voltage. (b) In-

tensity of the transmitted light as a function of time after voltage is switched off. IS–8200 liquid crystal,

homeotropic alignment, crossed polarizers. Cell thickness 20 µm.
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2.3. Time scale

The director field n (r, t ) fluctuates in time and space [32]. The relaxation time of fluctuations is much
slower than the relaxation time of vorticity ∼ ρl 2/η ∼ 1 µs, which is the time needed by the perturbed
fluid of density ρ and viscosity η∼ 0.1 Pa · s to flow over the distance l . For a director perturbation with
a wavevector q, this time is τrelax ∼ ηeff/(q2K ), where ηeff and K are the effective viscosity and elastic
constant. A uniaxial nematic features five independent viscosities and at least four Frank elastic con-

stants, thus ηeff and K are complex combinations of these that depend on the director field [33]. In a flat
cell of a finite thickness h, the fluctuation spectrum is restricted; in case of strong director anchoring at
the boundaries, the minimumwavevector component in the z-direction perpendicular to the cell bound-
aries is q z

min = π/h [34]. We are interested in wavevectors not much larger than q = π/d , where d is the
sphere’s diameter, since perturbations with wavelength much shorter than d will produce on average
a negligible effect. The corresponding range of viscous relaxation times is thus τd < τrelax < τh , where

τh = ηeffh2/π2K and τd = ηeffd 2/π2K . To estimate these, we experimentally determined the quantity
ηeff/K in the splay Frederiks transition of IS–8200 and found ηeff/K ≈ 1011

s/m
2
, figure 3.

2.4. Optical particle tracking: experimental and data analysis procedures

Experimental setup consists of a CMOS high-speed video cameraMotionBlitz EoSensmini1 (Microtron

GmbH) mounted on an inverted microscope Nikon TE2000-U with a 100×1.3 N .A. immersion objective.
The camera is capable of a 5000 fps maximum frame rate (time resolution 0.2 ms); the images are gray-

scale with 256 gradations (bit depth 8). The pixel size is 14× 14 microns, so that the magnification is
140 nm/pixel, with the Airy disk covering∼ 100 pixels. For temperature control, we used a Linkam LTS120
heating stage (accuracy 0.3°C).

For a point light source, its image is diffraction-blurred into an Airy disk, whose intensity profile in the

image plane has a root-mean-square (r.m.s.) size of s = 0.44λM/2 N .A., where λ is the wavelength, N .A.
the numerical aperture, and M the transverse magnification of the optical system. N .A. should be max-
imized in order to decrease the diffraction blur. Meanwhile, since the image is pixelised as it is formed

on a detector matrix, larger magnification M implies more pixels in the image, and thus more informa-

tion and better ultimate position accuracy. In practice, N .A. andM are determined by the objective lens,

typically with N .A. ∼ 1 andM ∼ 100, so that s ∼ 10 µm.
Particle trajectories are almost invariably analyzed in terms of mean square displacement [35], MSD,

i.e.,
〈
∆x2(τ)

〉
and

〈
∆y2(τ)

〉
, where τ is the time lag and angular brackets stand for ensemble average. In

an isotropic medium
〈
∆x2(τ)

〉
and

〈
∆y2(τ)

〉
are equal, whereas in an anisotropic medium, such as NLC,

they are different. Ensemble average cannot be obtained from a single trace. Instead, one can do a time

average which is believed to be the same as the ensemble average in the limit of infinite averaging time.

Specifically, one computes〈
∆x2(τ)

〉= 〈
[x(t +τ)−x(t )]2〉 ,

〈
∆y2(τ)

〉= 〈
[y(t +τ)− y(t )]2〉 , (1)

where angular brackets now stand for time average. Even though time averages equal the ensemble

averages in an ergodic system, time averages over a trace of finite length and time step possess specific

statistical errors [36].

Themeasurement errors (δxi , δyi ) (assumed to have zeromean) in particle coordinates (xi , yi ) yield a

positive additive contribution to MSD computed through equation (1), as it is a quadratic form. Assuming

(xi , yi ) = (x̃i+δxi , ỹi+δyi ), where (x̃i , ỹi ) are the true coordinates, and denoting xi = xt , δxi = δxt , where

t = i∆t , one gets for
〈
∆x2(τ)

〉
(and similarly for

〈
∆y2(τ)

〉
)〈

∆x2(τ)
〉 = 〈

[(x̃t+τ+δxt+τ)− (x̃t +δxt )]2〉
= 〈

(x̃t+τ− x̃t )2〉+〈(x̃t+τ− x̃t )(δxt+τ−δxt )〉+〈
(δxt+τ−δxt )2〉 , (2)

where the first term is the “true” MSD. Assuming that the errors are uncorrelated with the coordinates,

〈x̃δx〉 = 0, the second term in equation (2) averages to zero. Assuming further that the errors of different
trace points are uncorrelated, 〈δxt+τδxt 〉 = 0, and have the same variance

〈
δx2

〉 = ∆2
0, the last term in

equation (2) yields 2∆2
0. Thus, 〈

∆x2(τ)
〉= 〈

∆x̃2(τ)
〉+2∆2

0 , (3)

23001-4



Anomalous Brownian motion in a nematic medium

(a) (b)

10-3 10-2 10-1 100

10

15

20
 55 a.u.
 105 a. u.
 83 a.u.

M
SD

 (n
m

2 )

 (s)

 
 

50 60 70 80 90 100 110
5

10

15

 

 

M
SD

 (n
m

2 )

Ith (a. u.)

(c) (d)

Figure 4. (Color online) (a) Grayscale image of 5 µm particle glued to the bottom substrate of the cell. (b)

Images of the particle recorded at different intensity threshold levels. Red area consists of pixels that are

used to calculate the particle’s center coordinates. (c) Apparent MSD of a glued particle at different levels

of threshold intensity. (d) The optimum value of intensity threshold Ith is determined from the minimum
of MSD for the glued particle.

so that measurement errors result in a constant additive background in MSD. The assumption of uncor-

related errors almost certainly holds true for static errors, but it may not be the case for dynamic errors.

For instance, the errors due to birefringence fluctuations are likely correlated to some extent over the

time interval corresponding to the time scales of the fluctuations. This will add a time lag dependence to

the background so that, in general, it is a function of τ, i.e., ∆2
τ. The presence of the background should be

taken into account in data analyses. We will experimentally estimate these errors and their time depen-

dence by determining the apparent MSD of immobilized particles. Digital images of colloidal particles,

captured at a maximum frame rate of 2400 fps (time resolution is 0.4 ms), were analyzed to find the coor-

dinates (x, y) of the particle’s center using the intensity-weighted algorithms. Specifically, we computed

x =
∑

i Ii xi∑
i Ii

, y =
∑

i Ii yi∑
i Ii

, (4)

where xi and yi are coordinates of i -th pixel, Ii is its intensity. On each frame with 8-bit gray scale (0–

255 arbitrary units of intensity) we take into account only the pixels that have an intensity higher than

certain threshold intensity, Ii ,th. The different threshold intensity results in different apparent MSD for

an immobilized particle. Images of the particle at different threshold levels are demonstrated in figure 4.

Red area consists of pixels that are taken for the calculation of the particle’s center coordinates. The

optimal level of the threshold which gives minimum value of the apparent MSD of glued particle was

extracted from the dependence of MSD vs intensity threshold, figure 4.
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To establish the limit of accuracy in the measurements of particle’s positions that depends on bire-

fringence, we used particles immobilized (by a Norland adhesive) at the bottom plate of the cell filled

with three different fluids: two types of a nematic and water as isotropic fluid. The probing light beam

traveled twice through the entire thickness of the cell. The apparent mean square displacement of the im-

mobilized particles vs time lag is shown in figure 5. The apparent displacements represent a cumulative

effect of errors in measuring the particle’s position caused by the optical system of the microscope, vi-

brations and birefringence. It grows with birefringence of the material, being the largest for the nematic

pentylcyanobiphenyl (5CB) with the highest birefringence (∼ 0.2). In all cases, the apparent MSD in the
time range of interest was about 10−16

m
2
or less; these values are about 100 times smaller than the MSD

of free spheres experiencing on these timescales an anomalous diffusion described in the main text.
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Figure 5. (Color online) MSD versus time lag for immobilized silica spheres of diameter 5 µm in four

different cells (all of thickness 50 µm) filled with two types of a NLCs and water; the data for an empty

cell are labeled as “dry particle”. Normal surface anchoring. Higher birefringence results in a higher

apparent displacement of the particles.

3. Results

The measured MSD vs. time lag τ dependencies for d = 5 µm silica spheres in IS–8200 are presented
in figure 6 (a), for perpendicular anchoring. In the isotropic phase (elevated temperature T = 60°C) the
diffusion is normal in the entire range of time lags, with the diffusion coefficient D = 9.2 ·10−16

m
2
/s. In

the nematic, at T = 50°C, the diffusion becomes anisotropic, with MSD being different when measured
parallel and perpendicular to n0. At relatively long time scales, τ > (20−40) s, both MSD components
grow linearly with τ, with the diffusion coefficients D∥ = 1.9 ·10−16

m
2
/s and D⊥ = 1.4 ·10−16

m
2
/s for the

normally anchored spheres. At the times shorter than about (20–40) s, theMSD time dependence becomes

markedly nonlinear, figure 6 (a). An apparentMSD of particles glued to the bottom of the cell (see figure 5)

is much smaller than the MSD in the nonlinear range and is practically time-independent; it merely adds

a constant background to the MSD of the moving particles. Thus, the non-linear behavior at short times

is not a spurious effect due to the finite accuracy of measurements [37] or birefringence.

To obtain a better insight into the different diffusion regimes and the characteristic times limiting

their borders, we calculated the velocity autocorrelation functionCv∥(τ) = 〈vx (τ)vx (0)〉 [38, 39], where vx

is the translational velocity of the particle along the x-axis, and a similar quantity Cv⊥(τ) = 〈
vy (τ)vy (0)

〉
for y -direction. In fact, one calculates the autocorrelation function of the mean velocity over finite time
interval between the position of the particle (time lag) which is much shorter than the correlation time.

Under this condition, the mean velocity autocorrelation serves as a good estimate of the velocity autocor-

relation function [40].

For the diffusion in the isotropic fluid and for the diffusion at large time scales in the nematic, Cv∥ (τ)
and Cv⊥ (τ) are close to zero, figure 6 (b), as it should be for the normal diffusion with MSD growing
linearly with τ. However, both Cv∥ (τ) and Cv⊥ (τ) become negative in the nematic, when the time lag
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Figure 6. (Color online) (a) MSD versus time lag for 5 µm silica particle with normal surface anchoring

diffusing in the isotropic (T = 60°C) and nematic (T = 50°C) phases of IS–8200, in the directions parallel (x)
and perpendicular (y) to the overall director. Cell thickness 50 µm. (b) Velocity autocorrelation function
calculated from experimental data for the normally anchored sphere moving in the nematic, parallel and

perpendicular to the director and in isotropic phase. Arrows show τsup and τsub, where Cv (τ) is close
to 0.

is within a certain interval τsup < τ < τsub, indicating α < 1, i.e., subdiffusion. At shorter time scales
τ< τsup, Cv∥ (τ) and Cv⊥ (τ) become positive, indicating α> 1 and superdiffusion. Determination of τsup

is straightforward, as a point where the velocity autocorrelation functions change their sign. The value

τsub is determined approximately when the deviation from zero exceeds 10−17
m

2/s2, a typical scatter of
VACF data in figure 6 (b) as it was proposed in [26].

4. Discussion

The anomalous Brownian motion is only observed in the nematic phase. As soon as the nematic is

brought into isotropic state, the sub- and superdiffusive behavior changes to a normal linear MSD time

dependence down to the shortest experimentally accessible times. Thus, anomalous dynamics must be

related to the dynamics of additional degrees of freedom that exist in the nematic, but not in the isotropic

phase, namely to the nematic director dynamics. The experiments demonstrate that the orientationally

ordered environment influences the Brownian motion of a particle most profoundly, causing, in addition

to anisotropy, anomalous super- and subdiffusion. The corresponding times, τsub and τsup, vary with the

type of anchoring at the particle’s surface, size, and displacement direction [26]. Above these time scales,

the diffusion becomes normal (but still anisotropic). The anomalous character of the diffusion in the

range τ < τsub is evident not only in the nonlinear dependency of MSD on τ, figure 6 (a), but also in the

behavior of velocity correlation functions, figure 6 (b).

The currentmodels of Brownianmotion in a nematic [16, 20, 24, 25] consider the director field around

the particle as being stationary. The predicted diffusion is always normal albeit anisotropic. Our results

agreewell with thesemodels if τ is large, τ> τsub. At τ< τsub, however, the diffusion becomes anomalous;
we attribute the effect to the director fluctuations.

The relaxation times of director fluctuations relevant to the Brownian motion are expected to be

limited by the interval τd < τ< τh , where τd = ηd 2/π2K and τh = ηh2/π2K are the characteristic times
associated with the particle diameter and the cell thickness, respectively. At times τ> τh , the fluctuations

are suppressed by the surface anchoring at the cell plates. For τ¿ τd , the influence of perturbations with

the wavelength much shorter than d averages to zero over the distance d . For d = 5 µm in an IS–8200 cell
of thickness 50 µm, the limits are estimated as τd ≈ 0.3 s and τh ≈ 30 s. The time range τd < τ< τh thus
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embraces the experimentally determined τsub = (20−42) s and τsup = (4−10) s, see figure 6.
The nematic is a viscoelastic medium, in which the director field n(r, t ) is coupled to the the velocity

field v(r, t ). Both n(r, t ) and v(r, t ) are perturbed by the particle and by the director fluctuations. Trans-
lational motion is coupled to the orientational dynamics of n(r, t ). In its turn, director reorientations
induce torques and forces that cause the material to flow (the so-called backflow effect [33, 41, 42]) and

thus modify v(r, t ). The director fluctuations establish an intrinsic memory at the scales τd < τ < τh ,

which is typically much longer than the hydrodynamic memory time of the isotropic fluid [32]. The in-

trinsic memory is known to cause both superdiffusion and subdiffussion, sometimes just by varying the

parameters of the very same system [43]. Below we present qualitative effects that help to understand

the connection of director fluctuations to the intrinsic viscoelastic memory and anomalous diffusion in

the interval τd < τ< τh .

The equation of motion for the director fluctuations δn in a bulk nematic liquid crystal reduces to the
torque equation for viscous and elastic torques [32],

γ1
∂

∂t
δn = K∇2δn, (5)

where γ1 is the rotational viscosity and K is the effective elastic constant. Performing Fourier-Laplace

transform of equation (5) yields the dispersion relation with purely imaginary frequency ω=−iK q2/γ1,

from which it follows that the fluctuation modes are overdamped and thus purely relaxational with the

relaxation time τq = γ1/(K q2). Their power spectrum is then

Iq (ω) = kBT

πK q2

τq

1+ (
ωτq

)2 (6)

with the corresponding correlation function

Cq (τ) = 〈
δn−q (0)δnq (τ)

〉= kBT

K q2 e−τ/τq . (7)

Fluctuation amplitude is thus

〈∣∣δnq
∣∣2

〉
≡Cq (0) = kBT /

(
K q2

)
.

If a nematic is confined in a flat cell, then, due to restrictions imposed by the boundary conditions

and particle’s size, only a discrete set of fluctuation wave vectors is allowed. Consequently, the relaxation

times of different fluctuation modes depend on the size of the inclusion, cell thickness and anchoring

conditions at the surfaces [36, 44].

A coupling between the LC director and particle dynamics may result in a variety of scenarios of a

particle movement. A dipolar inclusion behaves as an elastic dipole with the dipole moment P = aR2

(a = 2.04, reference [30]) and, therefore, interacts with inhomogeneities of the director field that arise
due to thermal fluctuations. The dipole energy is thenU =−4πK P∇n, so that the particle experiences a
force F = −∇U = 4πK P∇ (∇n). Neglecting the inertial effects, the particle then moves with a velocity v
that is proportional to the force,

v= F
6πηR

= 2K P

3ηR
∇(∇·δn). (8)

Following the Fourier-transformation into reciprocal space, the director fluctuation component δnq with

wave vector q results in a particle velocity component

vq =−2K P

3ηR
q(q ·δnq). (9)

Particle velocity autocorrelation function is then

Cv,q(τ) = 〈
v−q(0) · vq(τ)

〉= (
2K P

3ηR

)2

q2 〈
q ·δn−q(0) q ·δnq(τ)

〉
. (10)

For the fluctuation mode that involves splay deformation, δn is in the (n,q) plane and perpendicular
to n [32], so that q·δn= qδn sinθ, where θ is the angle between q and n. Particle velocity autocorrelation
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function is then proportional to the director autocorrelation function of equation (7),

Cv,q(τ) =
(

2K P

3ηR

)2

q4 sin2θ
〈
δn−q(0)δnq(τ)

〉= Aq2 sin2θe−τ/τq , (11)

where we substitutesd the director correlation function from equation (7) and absorbed all constant pref-

actors into A = (2P/3ηR)2kBT K . The obtained equation describes the contribution of thermal director
fluctuations with wavevector q to the particle velocity autocorrelation function. To obtain a full velocity
correlation function, the equation should be integrated over q. (Note that fluctuations with different q are
uncorrelated.) Integration should only involve fluctuations occurring on length scales large compared to

the particle size d = 2R , which corresponds to the wavenumbers smaller than qd = C /d , where C is a
constant of the order one. (The high-q fluctuations with the correlation length smaller than the size of
the particle will exert uncorrelated forces on different parts of the particle, averaging out to zero.) Thus,

Cv(τ) = A
∫

q<qd

q2 sin2θe−τ/τqdq, (12)

where dq is the volume element in q-space.
The MSD is expressed through the velocity autocorrelation function as follows [39, 45]:

〈
∆x2(τ)

〉= 2

τ∫
0

dt ′
t ′∫

0

Cvx (t )dt . (13)

Conversely, Cvx (τ) = 1/2 d2

dτ2

〈
∆x2(τ)

〉
. The coupling mechanism discussed above evidently leads to

Cv (τ) > 0, and, therefore, to superdiffusion. Thus, direct dipole coupling to the director fluctuation dy-
namics may be responsible for the superdiffusion that we observe.

If the director field n(r) around the particle is bent by an external action or thermal agitation, it
will exert a torque on the particle, proportional to the director rate of change ṅ(t ). In response, the par-
ticle will rotate with angular velocity ω∝ ṅ(t ). Neglecting the inertial effects, a particle rotating with
an angular velocity ω will also move with a velocity v proportional to |ω|, and thus to |ṅ(t )|, see, e.g.,
references [25, 46]. Thus, the particle velocity is coupled to the director fluctuations of the surround-

ing nematic, and thus the particle velocity autocorrelation function is proportional to the (q-dependent)
director angular velocity correlation function,

Cv,q(τ) = c
〈
δṅ−q(0) δṅq(τ)

〉
, (14)

where c is a coupling constat. One needs to integrate over q , noting as before that only fluctuations with
q < qd are relevant. The particle velocity correlation function then becomes

Cv(τ) = c
∫

q<qd

〈
δṅ−q(0) δṅq(τ)

〉
dq. (15)

Recalling that, for any mechanical property A that is a function on the phase space of a classical many-

particle system, there holds 〈Ȧ(0)Ȧ(t )〉 = − d2

dt 2 〈A(0)A(t )〉 [45], the director angular velocity correlation
function Cṅ,q(τ) = 〈

ṅ−q(0) ṅq(τ)
〉=− d2

dτ2 Cn,q(τ), where Cn,q(τ) is given by equation (7), so that

Cṅ,q(τ) = 〈
ṅ−q(0) ṅq(τ)

〉=− kBT

K q2τ2
q

e−τ/τq . (16)

Clearly, the director angular velocity autocorrelation function is negative. This is easy to understand in

view of the fact that director fluctuations are only small angular excursions from the mean, so that if the

director rotates in certain direction at a given instant of time, at a later time it should be rotating back,

which means a negative angular velocity autocorrelation. At short times, however, the relation equation

(16) is not valid, as the initial value of an autocorrelation function must be positive. At short times, the
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inertial effects cannot be neglected, and correct asymptotic behavior of Cn,q(τ) is such that its initial
second derivative is negative, so that Cṅ,q(τ) is positive at short times, as it should be.
From equations (15) and (16) it follows that, if the particle motion couples to the director rotations,

then the particle velocity autocorrelation function becomes

Cv(τ) =−B
∫

q<qd

q2e−τ/τqdq, (17)

where B is a constant. Thus, Cv(τ) due to this coupling mechanism is negative, and corresponds to sub-
diffusion.

The couplingmechanismbetween the director bendingmodes and particle diffusion, discussed above,

is indirect in the sense that director reorientations are directly coupled to particle rotations, and the lat-

ter may then couple to translations. Another mechanism that would couple the director bending modes

with particle translation is through the backflow effects [47], whereby director fluctuations induce flows

that affect the embedded particles. In the simplest realization in two dimensions, the force exerted on

the fluid and that generates a backflow depends on the director angular velocity ṅ, its gradient ∇ṅ, and
the director field gradient [48]. This force generates a viscose flow with a velocity v proportional to the
force, and thus depends on ṅ and ∇ṅ. Assuming that an embedded particle just follows the flow, its veloc-
ity autocorrelation function will thus depend on the director angular velocity autocorrelation function,

which leads to subdiffusion, as discussed in the preceding paragraph. This is most readily seen for one of

the contributions to the backflow, which is proportional to the projection of the director angular velocity

gradient onto the director n, i.e., n∇ṅ [48]. The corresponding contribution to the particle velocity is then
v= kn∇ṅ, where k is a proportionality factor. Transforming to the reciprocal space,

vq = k
(
n · iq

)
ṅq = ikq cosθ ṅq , (18)

where q is the wavevector and θ is the angle between q and n. Velocity autocorrelation function is then

Cv,q(τ) = 〈
v−q(0)vq(τ)

〉= k2q2 〈
ṅ−q(0)ṅq(τ)

〉
. (19)

Substituting
〈

ṅ−q(0)ṅq(τ)
〉
from equation (16) and integrating over q to obtain Cv (τ), one ends up with

the same integral as in equation (17) (of course with a different pre-factor). Thus, the coupling to the di-

rector fluctuations through backflow effects leads to a negative particle velocity autocorrelation function

of the form of equation (17), and thus to subdiffusion.

The described mechanisms and their interplay may lead to intricate scenarios of coupled particle dy-

namics, depending on the time scales and relative strength of the two coupling effects. The time scales

may in fact be well separated. Indeed, there are two independent director fluctuation modes that in-

volve different types of director distortions [32]. If the elastic constants pertaining to these deformations

are much different, then these two modes will relax on different time scales. In particular, only one of

the fluctuation modes involves a splay deformation, which is the only distortion that directly couples to

elastic dipoles through the first mechanism discussed above.

The diffusion dynamics shown in figure 6 is a complex and multidimensional process that involves

different factors and mechanisms. This complexity does not allow one to take into account all aspects

of the diffusion process; however, our analysis gives a physical picture where the elastic interaction be-

tween the embedded particles and director fluctuations may describe the complex behavior of particle’s

dynamics in a NLC.

Figure 7 shows the experimental data of IS–8200 for MSD parallel to the nematic director, together

with theoretical curves. The data are the same as in figure 6 (a), with the background due to position deter-

mination errors (figure 5) subtracted. In order to generate the curves in the figure, we used the viscosity

η = 2.5 Pa·s (manufacturer supplied data) and the elastic constants K11 = K33 = 30 pN and K22 = 10 pN
(our estimates), from which the average elastic constants are K1 = 1

3 K33 + 2
3 K11 = 30 pN for splay (super-

diffusion) and K2 = 1
3 K33 + 2

3 K22 ≈ 17 pN for bend (subdiffusion) [32]. Contributions of the super- and
subdiffusion to MSD were computed by integration, equation (13), of the velocity correlation functions

of equation (12) and (17), respectively. We assumed that qd = C /d , where C is a constant of the order
of one. To obtain the fit in the figure, we varied C and the magnitudes of the super- and subdiffusive
contributions. Fit results are seen to agree well with the experimental data, both in the regions of super-

(inset in figure 7) and subdiffusion (figure 7).
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Figure 7. (Color online) MSD parallel to the nematic director for 5 µm particle in IS–8200 along with

theoretical curves for anomalous (green dash line) and normal contributions (black dash line) as well as

fit (blue solid line) of the experimental data obtained as a combination of the previous two. Inset: data in

double logarithmic scale in order to show fittings for short time scales.

5. Conclusions

We investigate the thermal motion of colloidal particles in a nematic liquid crystal for the time scales

shorter than the expected time of director fluctuations. At long times, compared to the characteristic time

of the nematic director fluctuations, we observe a typical anisotropic Brownian motion with the MSD lin-

ear in time and inversely proportional to the effective viscosity of the nematic medium. At shorter times,

however, the dynamics is markedly nonlinear and exhibits subdiffusive (slower than∝ τ) evolution of

MSD. We present a simple illustration of how the director fluctuations influence the Brownian motion

through the long-range interactions. Although this study dealt with standard liquid crystals, the observed

anomalous diffusion is expected to arise in any dispersive environment with reduced symmetry and

orientational order. This is a remarkable finding, since local orientational order should profoundly in-

fluence the dynamics of many complex biological systems, such as cell membranes, the cycloskeleton,

assembles of anisotropic particles, etc. A detailed theoretical description of the effect is highly desirable.
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Аномальний броунiвський рух колоїдної частинки в

нематичному середовищi: вплив флуктуацiй директора

Т. Турiв1,2, О. Бродин1,3, В.Г. Назаренко1
1 Iнститут фiзики НАН України, просп. Науки, 46, 03028 Київ, Україна
2 Iнститут рiдких кристалiв, Кентський державний унiверситет, вул. Унiверситетська Еспланада, 1425,
44242 Кент, Огайо, США

3 Нацiональний технiчний унiверситет України “КПI”, просп. Перемоги, 37, 03056 Київ, Україна
Як було нещодавно опублiковано в [Turiv T. et al., Science, 2013, 342, 1351], флуктуацiї в орiєнтацiї рiдко-
кристалiчного (РК) директора можуть переносити iмпульс вiд РК до колоїда, тодi дифузiя самого колоїда
стає аномальною на коротких промiжках часу. Використовуючи методи вiдеомiкроскопiї та одночастин-
кового вiдстеження, ми дослiджували випадковий тепловий рух колоїдної частинки в нематичному РК на
часах, коротших за очiкуваний час флуктуацiй директора. На довгих часах, в порiвнянi з характеристи-
чним часом релаксацiї нематичного директора, ми спостерiгали типовий анiзотропний броунiвський рух
з середнiм квадратом змiщення частинки пропорцiйним до часу τ та обернено пропорцiйним до ефе-
ктивної в’язкостi нематичного середовища. Однак на коротших часах, динамiка помiтно вiдрiзняється вiд
лiнiйної, середнiй квадрат змiщення в цьому випадку зростає повiльнiше (субдифузiя) або швидше (су-
пердифузiя) вiд τ. Результати пояснюються в контектсi зв’язку динамiки колоїдної частинки з динамiкою
флуктуацiй директора.
Ключовi слова: нематичний рiдкий кристал, броунiвський рух, флуктуацiї директора
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