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An overview of theoretical results and experimental data on the thermodynamics, structure and dynamics of

the heterophase glass-forming liquids is presented. The theoretical approach is based on the mesoscopic het-

erophase fluctuations model (HPFM) developed within the framework of the bounded partition function ap-

proach. The Fischer cluster phenomenon, glass transition, liquid-liquid transformations, parametric phase dia-

gram, cooperative dynamics and fragility of the glass-forming liquids is considered.
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1. Introduction

Structure of a glass-forming liquid and glass possesses a short-range and medium-range order (SRO

and MRO) rather than a long-range order (LRO). Below the crystallization temperature, Tm , precautions

have to be taken to avoid crystallization or a quasi-crystalline structure formation and to prevent the

supercooled liquid state down to the glass transition. Therefore, a liquid can be transformed into amor-

phous (glassy) solid only if cooling is fast enough to avoid crystallization. As a result, the liquid is non-

equilibrium and unstable at the glass transition. For this reason a description of the glass transition can-

not be based on the canonic Gibbs statistics. A palliative approach based on the bounded statistics can be

formulated as follows.

If the cooling time is much longer than the equilibration time of the liquid structure on scale ξ [let us

denote this time by τ(ξ)] and no significant structural correlation occurs on scales r > ξ, one can consider

the glass transition as a sequence of transformations of the structure states which are equilibrated just on

the scales r < ξ. Statistical description of such a liquid can be developed if we exclude from the statistics

the states with the correlation scale r > ξ and, on the other hand, ensure that the observation time, τobs, is

much longer than τ(ξ). In this case, the Gibbs partition function can be replaced by the bounded partition

function which is used then to determine the free energy of the partially equilibrated liquid. Limitation of

the phase space due to the exclusion of the states with correlation lengths r > ξ leads to an increase of the

free energy of the equilibrium state. The standard Gibbs statistics restores with ξ→∞. The observation

time limits from above the scale of the relaxation time τ(ξ) and, consequently, the scale ξ, because τ(ξ)

increases ∼ ξθ (the exponent θ depends on the features of the relaxation kinetics).

The spatial scale of the SRO, ξSRO, is minimal among the possible correlation lengths in the liquid. Ac-

cordingly, τ(ξSRO) is the shortest structure relaxation time because it is controlled by rearrangement of a

comparatively small number of directly interactingmolecules. The formation of longer correlations, with

ξ≫ ξSRO, which involves a large number of molecules in rearrangement and is driven by relatively weak

multi-molecular forces, takes much longer than τ(ξSRO) time. The liquid or glass, which is equilibrated on

the scale r ∼ ξSRO without considerable correlations on larger scales, is the minimally ordered amorphous

state which can be considered using the bounded statistics method. For this reason, as the first step, the

bounded partition function should be considered taking into account the states with equilibrated SRO.
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It is experimentally established that the glass-forming liquids are heterophase (their structure con-

sists of the mutually transforming fluid-like and solid-like substructures). Observations of the het-

erophase structure of glass-forming liquids are numerous. Among significant observations of the last

decades we should mention the formation of the Fischer cluster (fractal aggregate of the solid-like HPF

in glass-forming organic liquids and polymers [1–10]), evolutive HPF in supercooled triphenyl phosphit

observed in [11], and others1.

Many types of the SRO usually coexist in glasses. In Bernal’s mechanical model of the dense random

packing of hard spheres, six types of the local order (Bernal’s holes) are statistically significant and nearly

one third of them are non-crystalline [13]. Similar results are obtained using computer simulations of

liquids and glasses with different interatomic potentials [14–18]2.

A wide spectrum of relaxation times in glass-forming liquids is observed due to the variety of SRO

types (see [19, 20] and references cited).

Since SRO is the molecular order formed due to microscopic forces, the correlation length ξSRO is

equal to or exceeds the range of direct molecular interactions. Therefore, to describe heterophase states,

a mesoscopic theory is needed, in which molecular species of size r ∼ ξSRO specified by SRO are “ele-

mentary” structural elements rather than molecules. These are not molecular potentials that determine

the equilibrium states and relaxation dynamics of heterophase states but rather the parameters of het-

erophase fluctuation interactions connected with molecular potentials. Evidently, the mesoscopic Hamil-

tonian is more universal but less detailed than the microscopic Hamiltonian specified by molecular po-

tentials. Parameters of the mesoscopic Hamiltonian can be considered as phenomenological coefficients

with averaged out microscopic details of molecular interaction.

These ideas are in the base of the heterophase fluctuation model (HPFM) [10, 21–27] which is con-

sidered in sections 2–6 and in appendixes A and B. It is further used while considering the issues of the

thermodynamics of a liquid-glass transition and polymorphous transformations of glass-forming liquids

and glasses induced by the SRO reordering and mutual ordering of heterophase fluctuations (section 7

and appendix C). The cooperative relaxation dynamics of a heterophase liquid is considered within the

framework of phenomenological model formulated in HPFM [10, 22] (section 8). Conclusive remarks are

placed in section 9.

2. Hetrophase fluctuations and the order parameter

The heterophase fluctuation is an embryo of a foreign phase in the matrix phase. In many liquids,

even in normal state (above the crystallization temperature, Tm), solid-like species are revealed bymeans

of difractometry. The first observation of such heterophase fluctuations (HPF) was made by Stewart and

Morrow [28]. They have discovered sybotactic groups (transient molecular solid-like clusters possessing

specific short-range order) in simple alcohols above Tm .

The HPF are non-perturbative fluctuations in contrast to perturbative fluctuations of physical quan-

tities near their equilibrium values in the homophase state3. Theory of the heterophase states originates

from Frenkel’s paper [29]. Frenkel has coined the term “heterophase fluctuations” and explored the ther-

modynamics of heterophase states of fluid and gas in the vicinity of the phase coexistence curve. Frenkel’s

theory is applicable to all kinds of the coexisting phases (including the fluid and solid phases) far below

the critical point. In this case, the amount of substance belonging to HPF is small, and thus Frenkel’s

droplet model, with non-interacting nuclei of a foreign phase, properly describes the heterophase state.

Frenkel’s theory fails in the case of strong HPF, when the fraction of molecules belonging to the

“droplets” is large (for example, when it is near or exceeds the percolation threshold), and thus droplet-

droplet interaction cannot be neglected. Besides, this theory was not generalized to include in its consid-

eration the states with many SRO-types of the nucleating “droplets”. Both these restrictions of the Frenkel

model are obviated in the HPFM.

1Survey article [12] is devoted to the physics of heterogeneous glass-forming liquids.
2 Just a few of a huge number of papers devoted to this subject are cited.
3Review [30] is a good introduction to the physics of HPF. The role of non-crystalline solid embryos in vitrification of organic

low-molecular substances (e.g., phenols) was discussed by Ubbelohde in [31].
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The HPFM is based on the statistics of the transient solid-like and fluid-like mesoscopic species (clus-

ters) which are called s-fluctuons and f -fluctuons, respectively. By definition, each fluctuon is specified

by SRO. The minimal size of a fluctuon is equal to the SRO correlation length, ξSRO. An arbitrary number

of types of the s-fluctuons, m Ê 1, can be included into consideration.

To escape needless complications, let us assume that the fluctuons are uniform-sized with size r0

and with the number of molecules per fluctuon equal to k0 ∼ r 3
0 . Thus, ξSRO ≃ r0. This simplification is

reasonable from the physical point of view because in the both states SRO is formed due to the action of

the same microscopic forces, and the difference of the densities of a liquid and a solid usually amounts

to just a few percent. The solid-like and fluid-like fractions consist of s- and f -fluctuons, respectively.

Let us denote by N the total number of molecules of liquid and byN f , N1, . . . , Nm the numbers of

molecules belonging to f - and s-fluctuons,

N f +N1 + . . .+Nm = N . (2.1)

The total number of fluctuons is Nfluct = N /k0.

The (m +1)-component order parameter of the heterophase liquid is determined as follows:

{c} = (c f ,c1, . . . ,cm), ci =
Ni

N
Ê 0, i = f ,1, . . . ,m , (2.2)

c f +c1 + . . .+cm ≡ c f +cs = 1. (2.3)

Evidently, ci is the probability of the molecule belonging to i -th type of fluctuons. Ns = N1+N2+. . .+Nm =
cs N is the number of molecules of the solid-like fraction. The spatial distribution of the fluctuons on scale

r ≫ r0 can be described by the order parameter fields ci (x) with mean values equal to ci .

Let us regard the k-th type s-fluctuons as statistically insignificant if ck ≪ m−1. The f -fluctuons be-

come statistically insignificant if c f ≪ 1. The exclusion of the statistically insignificant components of

the order parameter from consideration allows one to simplify the equations of HPFM. The statistically

insignificant entities, when necessary, can be included into consideration as perturbations.

3. The quasi-equilibrium glass transition and “ideal” glass

Let us consider more in detail the formulated in Introduction conditions under which the glass tran-

sition with equilibrated SRO takes place:

1) The liquid cooling time or the observation time, τobs, should be less than the time of crystallization,

τobs ≪ τLRO , (3.1)

τLRO is the time of long-range ordering.

2) The observation time is much longer than the time of short-range order equilibration,

τobs ≫ τSRO ∼ τα . (3.2)

Reordering of SRO due to localized cooperative rearrangement of the molecular structure is an elemen-

tary α-relaxation event. Therefore, it is put τSRO = τα (τα is the α-relaxation time).

The condition (3.1) limits the value of τobs from above. The temperature-time-transformation diagram

can be used to estimate τLRO and to outline the area on the (t ,T )-plane in which the condition (3.1) is

satisfied.

The condition (3.2) restricts the value of τobs from below. It implies that the SRO is equilibrated during

the glass formation. Hence, the order parameter (2.3) is a function of P and T and depends on time t just

because P and T depend on t . When this condition is satisfied, the glass transition can be considered as

a sequence of quasi-equilibrium transformations of the SRO.

Due to a dramatic increase of τα with the temperature decrease near Tg, the condition (3.2) can be

satisfied just above Tg. Evidently, the condition (3.2) cannot be satisfied below the temperature TF (τobs)

determined as the root of the equation

τα (T )
∣

∣

TF
= τobs . (3.3)
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This is the temperature of kinetic glass transition because below TF (τobs) the SRO can be considered as

“frozen”. Glass transition temperature Tg determined from the viscosity measurements or by means of

calorimetry or dilatometry at the same thermal history is usually equal to TF (τobs) with good accuracy,

i.e., Tg ≃ TF.

In the limiting case, with τobs → ∞ and τobs ≪ τLRO, when both conditions (3.1) and (3.2) are satis-

fied, the quasi-equilibrium cooling of a liquid leads to the formation of hypothetical “ideal” glass (with

equilibrated SRO and MRO but without any LRO). Hereinafter, the term “ideal glass” is used in this sense.

It is worth to note that due to the condition (3.1), the residual configurational entropy of the “ideal”

glass is not equal to zero at T → 0 because any two parts of such a glass can be considered as non-

correlated and statistically independent if the distance between them exceeds the largest correlation

length which is finite by definition.

In publications, the issues concerning the physical properties of equilibrium amorphous states below

Tg are often debated. Between them, the hypothetical vanishing and non-analyticity of the configura-

tional entropy, Sconf(T ), as a function of temperature, at a finite temperature TK (the Kauzmann paradox)

[32], and Vogel-Fulcher-Tamman singularity of τα (T ) at a temperature TVFT [33–35] are under discussion.

In the Adam-Gibbs model [36], the Kauzmann “entropy crisis” is included as an assumption which leads

to the VFT relaxation time singularity at TK. Thus, in the Adam-Gibbs model TVFT = TK. The values of TK

and TVFT found from the fittings of data on thermodynamics and dynamics of many glass-forming liquids

are close, TVFT ≈ TK. Due to the above noted absence of the “entropy crisis” in the “ideal” glass, one can

conclude that TK and TVFT should be considered as free parameters of the widely used phenomenological

model [36]. The issue of proximity of TK and TVFT is considered and confirmed within the framework of

HPFM in [37].

4. Mesoscopic free energy of the heterophase liquid

The phenomenologic free energy of the heterophase liquid in terms of the introduced order parame-

ter can be presented in the form of polynomial expansion in powers of {ci (x)},

G (P,T ; {c(x)}) =GL (P,T )+GV (P,T ) . (4.1)

In the summand GL(P,T ), just local interactions of the fields {ci (x)} are included,

GL(P,T ) =
∫

gL(x,P,T )d3x, (4.2)

gL(x,P,T ) =
∑

i

ci (x)g 0
i (P,T )+

z

2

∑

i ,k

ci (x)ck (x)g 0
ik (P,T )

+T
∑

i

ci (x) ln ci (x)+ g0 (P,T ) . (4.3)

g 0
i (P,T ) is independent of the order parameter free energy of i -th fluctuon; g 0

ik
(P,T ) Ê 0 is the fluctuonic

pair interfacial free energy; z is the fluctuonic coordination number which is taken as independent of the

fluctuon type.

The summand GV(P,T ) describes contribution of non-local (volumetric) interaction of s-fluctuons,

which is taken in the following form

GV(P,T ) =
N

k0
2π

∑

i , j

∫

Φ(r )wi j (r )r 2dr, r =
∣

∣~x −~x′∣
∣ , (4.4)

wi j (r )= 〈ci (x)c j (x′)〉 =V −1

∫

ci (x)c j (x′)d3x, (4.5)

wi j (r ) is the pair correlation function of s-fluctuons, V is the volume, Φ(r ) is the potential of pair inter-

action of the s-fluctuons. This interaction, analogous to the attraction potential of colloid particles in a

solvent, plays a significant role in states with diluted solid-like species because it provides aggregation of
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the s-fluctuons, leading to the Fischer cluster formation. It is taken as Yukawa potential with cutoff range

R0 which is larger than but comparable with r0,

Φ(r )=−
ϕ

r
exp(−r /R0). (4.6)

Fluctuonic short-range correlation appears due to both local and volumetric interactions. The Ornstein-

Zernike (OZ) equation [38] can be used to estimate the fluctuonic correlation length, ξ f l . It follows from

OZ equation that far from a critical point, ξ f l is comparable with the correlation length of the direct cor-

relation function, which, in turn, is comparable with the range of the fluctuonic pair interaction potential.

With R0 É 2r0 we have that ξ f l ≃ 2r0 ≃ 2ξSRO. As it is seen, the ordering of fluctuons causes extension of

the molecular pair correlations beyond r0 and the formation of the of molecular MRO. The liquid region

of size ξ f l with correlated fluctuons is referred to as correlated domain.

The fact that the components of the order parameter Ai (x) are normalized probabilities, which can-

not exceed 1, validates the presentation of G (P,T ) in the form of the polynomial expansion in powers of

{ci (x)}.

The connection of the phenomenological free energy (4.1)–(4.6) with the Gibbs free energy can be

found using the approach formulated in [39]. It is shown [39] that the free energy presented in terms

of the order parameter plays the role of the efficient Hamiltonian in the Gibbs statistics and determines

the most probable state of the system. The interplay between the mesoscopic free energy and the Gibbs

statistics is considered in appendix A.

5. The fluctuon-fluctuon interaction and the frustration parameter

The physical meaning of the pair interaction coefficients of the neighboring fluid-like and solid-like

fluctuons is clear. It is the fluid-solid interfacial free energy taking into account the geometry of the

contacting fluctuons.

The solid-like fraction can be considered as a mosaic composed of s-fluctuons with different SRO. The

interfacial free energy of a pair of s-fluctuons depends on their mutual orientations. Evidently, coher-

ent joints of the non-crystalline s-fluctuons is hampered at any orientation. The interfacial free energy

increase due to the geometric badness of the fit of contacting s-fluctuons is the structural frustration pa-

rameter4 . Because of its importance, let us consider the fluctuonic frustration parameter more in detail.

A non-crystalline solid-like cluster grows due to the attachment of new molecules. Hence, the former

surface molecules become the inner ones and the non-crystalline cluster structure becomes frustrated

because not all newly formed coordination polyhedra are exactly similar to the initial polyhedron. A

part of them can have the geometry similar to that of the initial coordination polyhedron but slightly de-

formed. The occurrence of the coordination polyhedra of completely different geometry is also possible.

Thus, if the initial coordination polyhedron has some symmetry, the newly formed coordination polyhe-

dra have a violated or completely changed symmetry. Consequently, the binding energies of the attached

molecules appear smaller than that of the inner molecule.

A decrease of the binding energy per molecule is accompanied by an increase of the configurational

entropy due to ambiguities of the geometrical changes of the new coordination polyhedra.

As an example, let us consider the growth of a z-vertex coordination polyhedron in the case when

the addition of a new coordination shell leads to the formation of z −1 new coordination polyhedra with

similar but deformed initial coordination polyhedron while one of them has a different geometry. In this

case, the energy of the inner z +1 molecules is

Ez+1 = ε0 (z +1)+ ε̄def(z −1)+ε1 = ε0 (z +1)+εfrust , (5.1)

ε0 is the mean energy of the initial cluster, ε̄def is the mean energy of deformation and ε1 is the energy

of a molecule with the coordination polyhedron of different geometry. The last two terms in r.h.s. of

4 For more information on the structural frustration see e.g., [40] and references cited. The importance of the frustration param-

eter at glass transition was considered and discussed qualitatively in [41, 42]. A specific frustration parameter avoiding the critical

point is introduced in the model of frustration-limited domains (FLD) [43, 44].
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(5.1) determine the frustration energy, εfrust. Because of uncertainty of the last molecule position, the

frustration configurational entropy due to this uncertainty is as follows:

sfrust = sz+1 = kB ln z. (5.2)

The frustration free energy is as follows:

gfrust = εfrust−T sfrust . (5.3)

As it is seen, εfrust is ∼ z while sfrust ∼ ln z. Therefore, gfrust > 0 with z ≫ 1.

One can conclude that generally the structure of interfacial layer of contacting fluctuons is frustrated

and that gfrust > 0.

6. Equations of the liquid state equilibrium

Variation of the free energy functional (3.1) at condition (2.3) yields the equations of equilibrium state,

δ

δci (x)
G(P,T )+λ

∂

∂ci (x)

∑

k

ck (x) = 0, (6.1)

λ is the Lagrange multiplier.

Let us denote by µi (P,T ) the derivative

µi (P,T ) =
∂
(

gl + gv

)

∂ci
= g 0

i +
∑

k

ck (x)gik +T ln ci (x)

+
∑

j

∫

Φ(x, x′)c j (x′)d3x′. (6.2)

Here, gik = zg 0
ik
. Variables (P,T ) are not shown.

As a result, it follows from (6.1) that

µ f (P,T ) =µ1(P,T ) = . . . =µm(P,T ) =−λ. (6.3)

These equations are analogous to the Gibbs equations of the equilibrium of phases.

Equilibrium state is stable if the quadratic form
∥

∥

∥

δ2G
δciδck

∥

∥

∥ is positively definite.

7. Solutions of the equations of state

7.1. Two-state approximation

In the physics of glass-forming liquids, different two-state models are in use for a long time [43, 45–57].

HPFM in the two-state approximation provides abbreviated entry of the glass transition.

In fact, in the two-state approximation of the HPFM, the mesoscopic substructure of the solid-like

fraction is neglected and the order parameter in the two-state approximation has just two components,

cs and c f ,

cs +c f = 1. (7.1)

Applying the spatial averaging, we obtain from (6.2)–(6.3)

(1−2cs ) g̃s f +T ln
cs

1−cs
= hs f . (7.2)

Here,

g̃s f = gs f − gss/2;hs f = g 0
f − g 0

s − gss/2, (7.3)

g 0
s =

∑

k

c∗k g 0
k +T

∑

k

c∗k ln c∗k , gss =
∑

gik c∗i c∗k , c∗i = ci /cs , (7.4)
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gss is the frustration parameter. It depends on the interaction coefficients of the s-fluctuons and proba-

bilities
{

c∗
i

}

. For a while, the volumetric interactions (4.6) are not accounted for.

In the two-state approximation, the coefficient gs f and the frustration parameter gss are taken as con-

stants. Some remarks concerning the accuracy of two-state approximation of HPFM appear in section 9.

Equation (7.2) is isomorphic to the equation of state of the Ising model with an external field hs f . The

solution of equation (7.2) at cs ≪ 1 is as follows:

cs (T )= exp
{[

∆s f s

(

T 0
e

)(

T 0
e −T

)

− gs f

]

/T 0
e

}

. (7.5)

Here,

∆s f ,s (T ) =−
∂
(

g 0
s − g 0

f

)

∂T
= s f (T )− ss (T ) (7.6)

is the difference of entropies of the f - and s-fluctuon. T 0
e is the solution of the equation

g 0
f

(

P,T 0
e

)

= g 0
s

(

P,T 0
e

)

. (7.7)

At c f = 1−cs ≪ 1

c f (T ) = exp
{[

∆s f ,s

(

T 1
e

)(

T 1
e −T

)

− gs f

]

/T 1
e

}

, (7.8)

where T 1
e is the solution of the equation

g 0
f

(

P,T 1
e

)

= g 0
s

(

P,T 1
e

)

+ gss . (7.9)

The physical meaning of the characteristic temperatures T 0
e , T 1

e is explained below.

The temperature Te , at which the “external field” hs f is equal to zero, is the coexistence temperature

of two heterophase liquid states determined by equation

g 0
f (P,Te ) = g 0

s (P,Te )+ gss/2. (7.10)

At T = Te , we have cs(Te ) = c f (Te ) = 1/2. In the vicinity of Te ,

cs ≈
1

2
+

hs f (T )

2(2Te − g̃s f )

[

1−
2T h2

s f
(T )

3(2Te − g̃s f )3

]

=
1

2
+
∆ss, f (Te ) (T −Te )

2(2Te − g̃s f )
+O

(

(T −Te )3
)

. (7.11)

As it follows from (7.7), (7.9) and (7.10),

T 0
e ≈ Te + gss/2∆s f ,s , T 1

e ≈ Te − gss/2∆s f ,s . (7.12)

The solution (7.11) is stable at g̃s f (P,Te ) < 2Te . If g̃s f (P,Te ) > 2Te , it is unstable and at T = Te , (P ) the first

order phase transition takes place.

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.8 1.0 1.2

Temperature, T/T0
e

c s

T0
e

Te

a

T1
e

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0.0

0.5

1.0
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T0
1

c s

Temperature, T/T0
e

TeT1
e

Figure 1. (Color online) The solid-like fraction of of liquid, cs , vs T /T 0
e at (a) g̃s f (P,Te ) > 2Te and (b)

g̃s f (P,Te )< 2Te .
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Figure 2. (Color online) Schematic representation of the hetrophase liquid states: (a) rare s-fluctuons

in fluid described by equation (7.5); (b) f -fluctuons in glass [equation (7.8)]; (c) heterophase state with

comparable fractions of the s- and f -fluctuons [equation (7.11)].

Graphic representation of solutions of equation (7.2) is shown in figure 1. The stable and unstable

solutions are depicted by solid and dashed lines, respectively.

If g̃s f = 2Te , i.e.

gss = 2gs f −4Te , (7.13)

then, the 2nd order phase transition takes place at T = Te (P ). In accordance with (7.5) and (7.8), above T 0
e

and below T 1
e , the HPF are weak but within the temperature range

[

T 1
e ,T 0

e

]

, where in compliance with

(7.11) cs and c f are comparable quantities, they are strong.

It worth to note that the solutions (7.5) and (7.8) reproduce the results of Frenkel’s model in the vicin-

ity of the phase coexistence temperatures (here, T 0
e and T 1

e , respectively). Therefore, T 0
e can be consid-

ered as the coexistence temperature of the fluid and heterophase liquid phases while T 1
e is the phase

coexistence temperature of the “ideal” glass (as it is determined above) and the heterophase liquid. Thus,

T 1
e is the ideal glass transition temperature. The real glass transition temperature, Tg, which depends on

τobs (see section 3), is above T 1
e due to dramatic retarding of the structure relaxation with temperature

decrease. For this reason, the real glass transition temperature range,
[

Tg,T 0
e

]

, is narrower than
[

T 1
e ,T 0

e

]

.

The structure of the heterophase states in the vicinity of the characteristic temperatures T 1
e , Te and T 0

e

is schematically presented in figure 2. In figure 3, the mesoscopic structure of the solid-like fraction with

several types of s-fluctuons is shown schematically. Let us remind that the solutions of equations (7.5),

(7.8), (7.11) are obtained under the assumption that the fractions of s-fluctuons {ci } , i = 1, . . . ,m are nearly

constant or they are changing continuously and smoothly. This assumption fails if a phase transformation

with stepwise changes of the fractions {ci } within the solid-like fraction takes place. In the next section,

the impact of such a phase transformation within the solid-like fraction on the features of the fluid-solid

Figure 3. (Color online) The same as in figure 2 (c) but the mesoscopic structure of the solid-like fraction

containing several types of the s-fluctuons is shown.

43701-8



Heterophase liquid states

phase transformation is considered.

7.2. Phase transition in the solid-like fraction

Evidently, a phase transition in the solid-like fraction causes a non-analytic behaviour of the solutions

of equation (7.2). This type of the liquid-liquid transition appears due to multiplicity and interaction of

the s-fluctuons which leads to the mutual ordering and phase separations within the solid-like fraction.

As a minimal model, let us consider the heterophase liquid with two types of s-fluctuons. Hence,

m = 2. Thus, in (6.3) i , j = 1,2. The equation of state (6.3) for the solid-like fraction is as follows:

(

1−2c∗1
)

cs g̃12 +T ln
c∗1

1−c∗1
= h12 , c∗i = ci /cs , c∗1 +c∗2 = 1,

g̃12 = g12 −
(

g12 + g22

)

/2, h12 = g 0
2 − g 0

1 +cs

(

g22 − g11

)

/2. (7.14)

It is seen that this equation is isomorphic to equation (7.2) but the “external field” h12 and the pair

interaction coefficient cs g̃12 depend on cs . Therefore, associated solutions of equations (7.2) and (7.14)

should be considered together. The search for a general solution of these nonlinear equations at an arbi-

trary set of coefficients is a cumbersome and hardly attractive task because the values of the coefficients

for substances are initially unknown. Nevertheless, we can look for some “typical” solutions at a reason-

able specification of the coefficients.

As a useful example, let us consider solutions of equation (7.14) in the vicinity of the coexistence

curve, h12 (P,T ) = 0, assuming that cs

(

g22 − g11

)

is a negligible quantity. In this case, the coexistence

temperature, T12, is determined by equation

g 0
1 (P,T12) = g 0

2 (P,T12) . (7.15)

It is assumed that T12 is above the coexistence temperature Te . A phase transformation of the solid-

like fraction and induced liquid-liquid phase transition at T12 < Te is considered in [27].

In the vicinity of T12

h12 = g 0
1 (P,T )− g 0

2 (P,T ) ≈ (s1 − s2) (T −T12) ≡∆s12 (T −T12) , (7.16)

s1 and s2 is the entropy of s-fluctuon of type 1 and 2, respectively.

If cs (T12) g̃12 > 2T12, then there are two stable solutions of equation (7.14) and, as a consequence,

two stable solutions of equations (7.2), (7.3). Consideration of these solutions is contained in appendix B.

Their graphic representation is shown in figure 4. The jump of the parameter cs at T = T12 is [see (B.7) in

appendix B] as follows:

∆cs (T12) ≈ (s1 − s2)exp
(

−gs f β
)

. (7.17)

0
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Figure 4. (Color online) First order phase transition within the solid-like fraction (a) induces the liquid-

liquid first order phase transition (b).
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Figure 5. Continuous but stepwise evolution of c∗1 (T )shown in a) induces the appearance of the inflection

point of cs (T ) at T = T12, b).

If cs (T12) g̃12 < 2T12, the fractions c∗1 ,c∗2 and parameter cs change continuously at T = T12 but the

inflection points of the functions c∗1 (T ) and cs (T ) appear at T = T12 (figure 5). Hence, the expression

(7.17) estimates the bench height of the parameter cs .

The heat of the phase transitions is determined by equation (B.8) in appendix B,

∆H12 ≃ cs (T12) (s1 − s2)k−1
0

[

H f s +T12

]

, (7.18)

H f s is the heat of the fluid-solid phase transition. It is taken into account here that the heat of 1 ↔ 2

solid-solid phase transition is equal to (s1 − s2)k−1
0 T12.

It is worth to note that at a fixed value of cs , equation (7.14) is isomorphic to Ising model with non-

zero external field and with exchange integral cs g̃12 which can be positive or negative. The external field

controls the ratio c∗1 /c∗2 while the sign of the exchange integral determines the type of mutual ordering of

the s-fluctuons. With cs g̃12 > 0 (ferromagnetic interaction), s-fluctuons of different types tend to separate.

At cs g̃12 < 0, the “antiferromagnetic” order with alternating s-fluctuons of different types is preferable.

In both cases, the fluctuonic SRO generates molecular medium-range order with the correlation length

ξ f l ∼ 2r0 [in compliance with the general conclusion made in section 4 after equation (4.6)].

7.3. The Fischer cluster

Along with the above considered types of MRO appearing due to local fluctuonic interaction, there

is a different type of the fluctuonic order with comparatively large (as it was observed, up to ∼ 102 nm)

correlation length, ξFC ≫ ξ f l . It appears due to the aggregation of the s-fluctuons under the effect of the

volumetric gravitation potential (4.6). The equilibrated aggregation of s-fluctuons possesses the fractal

structure with fractal dimension, correlation length, equilibration time and relaxation dynamics depend-

ing on the liquid features and temperature. This remarkable phenomenon, which was discovered and

investigated in detail by Fischer et al. [1–10, 23–27], is known as the Fischer cluster. The Fischer cluster

was visualized by observing a speckle pattern in ortho-terphenil [6]. The speckle pattern fluctuates and

rearranges very slowly, with characteristic time ∼ 1 min at T = 293 K, while the α-relaxation time at

this temperature is τα = 40 ns. With temperature increase, the speckle size and contrast decreases and

at T > 340 K no speckle is seen. Schematically, the heterophase liquid structure with and without the

Fischer cluster is shown in figure 6. It is worth to note that the Fischer cluster formation in heterophase

liquid is not an exclusion but the rule if the Fischer cluster equilibration time, τFC, is shorter than the

observation time, i.e., if τα ≪ τFC ≪ τobs ≪ τLRO. The heterogeneous structure and slow structural re-

laxation are observed not only in many Van der Waals molecular liquids but also in some metallic melts

above Tm [58–60].

The Fischer cluster was originally identified using the results of the small-angle X-ray scattering on

the density fluctuations. The conventional large-scale density fluctuations in a homophase liquid are
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Figure 6. (Color online) Schematic fragments of the heterophase liquid with (a) and without (b) Fischer’s

cluster. Just two types of statistically significant s-fluctuons are shown. The circle shows the size of the

correlated domain.

proportional to the isothermal compressibility κT and are independent of the wave vector q ,

∣

∣ρ(q)
∣

∣

2 |q→0 ∼κT T. (7.19)

Here, q is the wave vector, ρ(q) is the amplitude of density fluctuations. The intensity of X-ray scattering

on the density fluctuations, I
(

q
)

, is proportional to
∣

∣ρ(q)
∣

∣

2
.

It appears that a q-dependent excess scattering intensity, Iexc
(

q
)

∼ q−D (D is the fractal dimension)

occurs at T < TA ≈ T 0
e . The Iexc

(

q
)

is much larger than the scattering intensity on the thermal fluctuations

(7.19). The results of the wide-angle X-ray scattering show that SRO of the liquid contains both the fluid-

like and solid-like components at T < TA [9, 61]. It turns out that the thermodynamics and α-relaxation

dynamics are quite the same in the liquid states with and without the Fischer cluster. It means that the

changes of the thermodynamic properties due to the Fischer cluster formation are too small to be reliably

detected and that the fluctuonic SRO does not undergo noticeable changes. Therefore, the Fischer cluster

formation can be considered as the process of self-organization of the correlated domains (CDs), i.e.,

entities possessing the fluctuonic SRO with the correlation length ξ f l ≈ 2r0, (section 4).

Theory of the Fischer cluster is developed in [10, 23–26]. The Fischer cluster is considered as a fractal

aggregation of s-fluctuons with the fractal dimension D f and correlation length ξFC. Minimization of the

free energy as function of c̄s , D f and ξFC allows one to determine the equilibrium values of D f and ξFC.

It is found (see appendix C) that

ξFC
(

c s ,D f

)

≈
(

c s

)

1
D f −3 r0 , D f = 3−

(

ln
r0

ξ f l

)−1

ln cs,CD , (7.20)

cs,CD is the concentration of s-fluctuons within CD ([24–26], appendix C)

cs,CD =
[

1+
I (D f ,ξFC)

∂2g 0
(

c s

)

/∂c2
s − I (D f ,ξFC)

]

c s Ê cs . (7.21)

The quantity I (D f ,ξ), (C.21), is proportional to φ0. Equation (7.21) shows that within the CD, concentra-

tion of s-fluctuons is larger than its mean value cs : cs,CD ≃ cs +constφ0.

The liquid state with the Fischer cluster is stable (while the state without the Fischer cluster is

metastable or unstable) at

cs > cs,0 <
(

r0

ξ f l

)2

≈ 0.16, 1 < D f É 3. (7.22)

Transformation of the state without Fischer’s cluster into the state with Fischer’s cluster is a weak

first order phase transition with the transformation heat ∝ϕ0.

The upper bound of the cs -range in which the Fischer cluster exists, cs,1 = (ξ f l /r0)2cs,0 [see (C.26)],

decreases, ∼ φ0, with an increase of the strength of the s-fluctuons gravitation potential φ0. When cs
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Figure 7. (Color online) Parametric phase diagram on the plane
(

T∗, g∗
ss

)

, T∗ = T /T 0
e , g∗

ss = gss /∆ss, f T 0
e .

The phase coexistence lines T = T 0
e ; T = Te ; T = T 1

e and the threshold of the Fischer cluster formation

temperature, T∗
FC

, approximately determined using equations (7.5), (7.22) are shown. The critical end

point at g∗
ss,c exists on the line T = Te . Bold line 1 schematically presents an evolution phase curve of the

equilibrium system.

approaches cs,1 < 1 from below, the fractal dimension D f approaches 3 and ξFC →∞. It means that at

cs Ê cs,1 the solid-like fraction consists of the connected 3-dimensional solid-like clusters of size r > ξ f l .

Thus, at cs Ê cs,1, the topology of the heterophase liquid equilibrated on scale r Ê ξ f l changes.

7.4. Parametric phase diagram

In the HPFM, the structure and phase states of the heterophase liquid are described in terms of T

and coefficients gs f , gss , hs f . It is useful to construct a phase diagram (the parametric phase diagram) of

the glass-forming liquid in terms of these parameters5. The parametric phase diagram of the two-state

approximation is determined by equations (7.7), (7.9), (7.10) and the equation (7.22) in combination with

(7.5). Namely, they determine the coexistence temperatures of different states in terms of the coefficients

gs f , gss ,hs f . The quantities T 0
e ,T 1

e ,Te and TFC are coexistence temperatures of

1) the fluid and heterophase liquid (T 0
e );

2) the heterophase liquid and “ideal” glass(T 1
e );

3) the fluid-like and solid-like states (Te );

4) the heterophase liquid with and without the Fischer cluster (TFC).

Introducing the scaled temperature, T ∗ = T /T 0
e , and the frustration parameter g∗

ss = gss/∆s f ,s T 0
e , we can

present the relations (7.8) in a dimensionless form,

T 0∗
e = 1, T ∗

e = 1− g∗
ss/2, T 1∗

e ≈ 1− g∗
ss . (7.23)

The end critical point location on the fluid-solid phase coexistence curve, T ∗ = T ∗
e (P ) is located at

g∗
ss,c = 2gs f

/(

∆ss, f T 0
e

)

−4T ∗
e (P ) > 0. (7.24)

The first order fluid-solid phase transition on the phase coexistence curve takes place at g∗
ss < g∗

ss,c.

The parametric phase diagram depicted on the plane
(

T ∗, g∗
ss

)

using relations (7.23), (7.24) and (7.22),

(7.5) is shown in figure 7. As an example, here is also shown one phase trajectory which becomes non-

physical below the glass transition temperature T ∗
g . Within the range 0 < g∗

ss < g∗
ss,c the first order phase

transition takes place on the phase coexistence line T ∗ = T ∗
e . A weak first order phase transition takes

place on the line T ∗ = T ∗
FC
.

5 Tentative phase diagrams of glass-forming liquid in terms of the model coefficients are introduced in [41] and then in [62].
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7.5. Static structure factor and the order parameter restoration

Pair correlation function of the density fluctuations ,
⌢

̟ (q,T ), of the heterophase liquid with the Fis-

cher cluster is ∼ q−D at r0 ≪ q−1 ≪ ξ−1. At qr0 ∼ 1, it is a superposition of the pair correlation functions

of fluctuons,

⌢

̟ (q,T ) = c f (T )̟ f (q)+
m
∑

i=1

ci (T )̟i (q)= [1−cs (T )]̟ f (q)+cs (T )̟s(q), (7.25)

̟s(q) =
1

cs

m
∑

i=1

ci̟i (q), (7.26)

̟ f (q), ̟i (q) are Fourier transforms of the pair correlation functions of the f - and s-fluctuons, respec-

tively. The cross-correlation terms ∼ c f cs are omitted in (7.25). The quantities ̟ f (q), ̟i (q) weakly de-

pend on the temperature. For this reason, the equation (7.25) can be applied to restore the order param-

eter cs (T ) using the structure factors ̟ f (q),̟s(q) measured in the liquid, fluid and glassy states [61]. On

the other hand, as it is shown in [22], cs (T ) can be restored from calorimetric data using the relation

cs ≃
[

H f (T )−Hexp(T )
]

/
[

H f (T )−Hs (T )
]

(7.27)

which follows from equation (4.3). Here, H f (T ), Hs (T ) are enthalpies of the fluid and glass extrapolated

in the temperature range
[

T 1
e ,T 0

e

]

, and Hexp(T )is the experimentally measured enthalpy of the glass-

forming liquid. Comparison of the results of the order parameter restoration from the structural data,

using equation (7.25), and from the calorimetric data, using relation (7.27), gives a good chance to check

the reliability of the HPFM. This procedure was performed using structural and calorimetric data of salol

[9, 61]. Results are presented in figure 8 by scattered symbols. Solution of the equation of state in the two-

state approximation (subsection 7.1), in which the experimentally measured thermodynamic parameters

and free parameter g̃s f are used, is presented there by a solid line.

Let us remind that the analytic solution describes the order parameter cs (T ) of the equilibrated sys-

tem. Therefore, it noticeably deviates from the experimentally determined values cs (T ) near the glass

transition temperature, where the liquid becomes non-equilibrium. Relations (7.25) and (7.27), obtained

without the assumption that the system is equilibrated, allow us to recover the thermal history of “true”

(in the phenomenological sense) value of cs .

Figure 8. (Colo online) The solid-like fraction of salol vs T as it is found from the analysis of the calori-

metric data (triangles), and from the temperature dependence of the structure factor (circles) [22, 61].

Arrows indicate the temperatures T 0
e , Te , Tg, T 1

e . Line presents an analytic solution of the equation of

state in the two-state approximation with fitting parameter g̃s f .
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8. Dynamics

8.1. α-relaxation

Thermally activated cooperative structural rearrangements which can involve up to ∼ 102 molecules

[19, 20, 63–67] are called α-relaxation. A large amount of the molecules are involved in the rearrange-

ment due to correlations. Structural rearrangement of a fluctuon also involves rearrangements of the

neighboring fluctuons within CD of size ξ f l . Therefore, the size of cooperatively rearranging domain is

nearly equal to ξ f l .

The activation energy of α-relaxation,

Eac =
d lnτα

dβ
, β=

1

T
, (8.1)

depends on the order parameter. It can be presented as an expansion in powers of the order parameter

[10, 22]6,

Eac = E 0
ac+E 1

accs +E 2
acc2

s + . . . . (8.2)

Above TA , the activation energy is nearly equal to E 0
ac. Cooperativity of the liquid dynamics is induced by

the s-fluctuons interaction which becomes considerable below TA .

Fischer and Bakai [22] have suggested that CD can be rearranged when all the molecules therein are

in fluid-like state with correlations destroyed on the scale ξ f l . This assumption leads to the following

expression [22]

Eac =
A

(1−TK/T )2
+ zCDcs

(

H f −Hs

)

+O
(

c2
s

)

. (8.3)

zCD ∼
(

ξ f l /a
)3

is the cooperativity parameter, which is the mean n umber of molecules within the CD; H f ,

Hs is the enthalpy of liquid-like and solid-like fraction per molecule. The first term is taken in the form

proposed for random packings of spheres in [68, 69]. Its denominator takes into account the decrease of

the free volume of the fluid and the numerator is equal to the activation energy above TA . The Kauzmann

temperature, TK, is a fitting parameter (see comments concerning TK in section 3)

Figure 9. The activation energy of salol vs the reciprocal temperature [2].

Enthalpies H f (T ) and Hs (T ) within the temperature range
[

Tg,TA

]

are understood as extrapolations

of these functions measured at T > TA and T < Tg, respectively.

As an example of using the equation (8.3) [22], the activation energy of salol was analyzed in [22]. The

activation energy of salol vs the reciprocal temperature is shown in figure 9. The experimental data are

shown by circles. The curve is a result of fitting the formula (8.3) using parameters A = 967 K; TK = 153 K,

6 There is no reason to believe that Eac (cs ) is a singular function at cs ∈ [0,1].
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Te = 257 K; TA ≈ 325 K; zCD = 32; k0 = 7. The input of the first term of r.h.s of (8.3) in the activation energy

is nearly 10% at T = Tg.

It is noteworthy that since the main input in the activation energy makes the term proportional to

cs , Eac (T ) has the inflection point at T ≈ Te . Stickel has proposed an efficient method of analysing the

α-dynamics to check the applicability of the Vogel-Fulcher-Tamman formula and other phenomenologic

and empiric expressions proposed for τα(T ) [70–72]. He has analyzed many molecular liquids and found

the flex points of Eac (T ) identified as Te . Coincidence of the values of TA and Te extracted from the

dynamic, calorimetric and structural data (figures 8, 9) support the adequacy of HPFM.

8.2. Ultra-slow modes and the Fischer cluster equilibration time

Two relaxational modes are connected with the Fischer cluster. The phase transformation of a liquid

without the Fischer cluster into the state with the cluster is controlled by nucleation and growth of a

new phase. Since the phase transformation heat is small, the phase equilibration time is rather large

compared with the time of elementary cooperative rearrangement τα. The Fischer cluster equilibration

time is determined in [10],

τFC ∼
T

ϕ

(

ξFC

ξ f l

)D f +2 τα

D f −1
. (8.4)

Rearrangements of the equilibrated Fischer cluster on the scales ξ−1
f l

≫ q > ξ−1
FC

are registered as the ultra-

slow modes [2–9]. The relaxational rate of the ultra-slow mode is ∼ q2. It is found within the framework

of HPFM [10] that

Γusv

(

q
)

∼
(

qξFC
)2

(

πξ f l

ξFC

)2

τ−1
α +O

(

q4
)

. (8.5)

The characteristic times Γ−1
usv and τFC are proportional to τα and the proportionality coefficients are rather

large at ξFC ≫ ξ f l . As it is seen, τFC ≫ Γ
−1
usv ≫ τα. Relations (8.4),(8.5) are in harmony with the experimen-

tal data.

8.3. Fragility

The fragility parameter,
⌢
m, introduced by Angell in [73, 74], is an important characteristic of the glass-

forming liquid dynamics near Tg. It is taken as the measure of deviation of the temperature dependence

of τα from the Arrhenius law. There exist strong liquids, with small fragility parameter,
⌢
m ∼ 10, the most

fragile liquids, with
⌢
m ≈ 102, and liquids with moderate fragility in between. The fragility parameter is

tightly connected with the structural properties and thermodynamics of a liquid, and for this reason,

it is widely used at analysing the glass transition and classification of liquids. Angell’s definition of this

parameter is as follows:

⌢
m= T −1

g

[

d
(

logτα
)

dβ

]

=
Eac

Tg ln10

∣

∣

∣

∣

Tg

. (8.6)

In HPFM, the quantity Eac is determined by equation (8.3). As it follows from (8.3) and (8.6),

⌢
m=

1

Tg

[

A
(

1−TK/Tg

)2
+ zCD

[

H f (Tg)−Hs (Tg)
]

k−1
0 cs

(

Tg

)

]

, (8.7)

H f

(

Tg

)

−Hs

(

Tg

)

∼
(

s f − ss

)(

Tg−Te

)

.

The main contribution in
⌢
m gives the second term within the brackets of (8.7). It is proportional to the

number of molecules involved in the cooperative rearrangement, zCD ∼ ξ3
f l
, as well as to the difference

of the configurational entropies of the solid-like and fluid-like species. The difference of their vibrational

entropies is comparatively small. Since these quantities can be measured regardless of τα, equation (8.7)

permits to check the relevance of the HPFM predictions. For example, it was found that for salol, HPFM

gives
⌢
m ≈ 67 [10]. The fragility parameter of salol estimated in [75] is equal to 63.
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As it was noted above, (subsection 8.3), the H f (T ) and Hs (T ) within the temperature range
[

Tg,TA

]

are understood as extrapolations of these functions measured at T > TA and T < Tg, respectively. Nat-

urally, the linear or quadratic extrapolation provides an acceptable result if the function is smooth and

the higher derivatives are small. Phase transformations in the solid-like fraction lead to stepwise changes

of Hs (T )and, consequently, to the stepwise behavior of τα (T ). In this case, extrapolations of τα (T ), de-

termined by equation (8.1), from high and low temperatures into the range
[

Tg,TA

]

cannot be properly

fitted. Equations (7.17), (7.18), (8.1)–(8.3) determine the temperature dependence of τα (T ) in this case.

In a series of experiments with some metallic glasses [76–80], the fragility parameter value deter-

mined using the data on τα (T ) in the vicinity of Tg and its value recovered from the extrapolated curve

τα (T ) measured at high temperatures are completely different. As it is revealed [76], such a behavior

of τα (T ) of Zr-based alloy Vitreloy 4 is connected with the liquid-liquid first order phase transition. In

others melts, a transition of this type is assumed.

Equations (7.17), (7.18), (8.1)–(8.3) provide theoretical description of this phenomenon known as the

fragile-to-strong liquid transformation. More in detail it is considered in [81].

9. Concluding remarks

The statistical basics of HPFM include substantiation of the mesoscopic efficient Hamiltonian and the

application of the bounded statistics method while describing supercooled liquid states. Solutions of the

equations of state of HPFM ascertain interplay of the thermodynamic, structural and dynamic properties

of the glass-forming liquids. Thus, juxtaposing the theoretical predictions with experimental data (as an

example, see figures 8, 9) permits to cross-verify the adequacy of HPFM.

The conditions of the liquid quasi-equilibrium evolution (3.1), (3.2) determine the applicability range

of the bounded statistics in which the states with the crystalline order on scale ξ≫ ξ f l are excluded. On

the other hand, the amorphous states with the fluctuonic order having large correlation length are in-

cluded in the statistics and the Fischer cluster is described within the framework of HPFM. Compatibility

of the conditions (3.1), (3.2) with the fluctuonic order equilibration on large scales should be specified.

The hierarchy of characteristic scales of spatial correlations (starting from the local order and molec-

ular size a), a < ξSRO < ξ f l < ξFC, . . . is connected with the hierarchy of time scales τ(a) < τα
(

ξ f l

)

<
Γ
−1
usv < τ(ξFC) [τ(a) is the molecule oscillation time within the cage]. Elementary step of the nucleation

and growth of the crystalline embryo is the cooperative rearrangement on the spatial and time scales

ξ f l and τα, respectively. Therefore, the formation of the crystalline embryos with the size larger than

ξ f l takes much longer time than the SRO equilibration time. As a result, the condition (3.2) can be re-

garded as satisfied when the condition (3.1) is fulfilled. Hence, the crystalline species of size ∼ ξ f l coexist

with non-crystalline species within the solid-like fraction of liquid and in glass. As a confirmation, direct

observations of the structure of metallic glasses by means of a high resolution field ion microscopy and

transmission electron microscopy (see figure 6.5 in [21], [82, 83] and references cited) reveal the coexis-

tence of crystalline and non-crystalline structural species with sizes of up to a few nanometers.

The Fischer cluster equilibration (along with the ultra-slow modes) is observable only if the crystal-

lization time is much longer than τ(ξFC). The crystallization heat (which is the thermodynamic driving

force of the crystallization) is much larger than the heat of the Fischer cluster formation. Therefore, the

Fischer cluster can be observed just in normal liquids and in the supercooled liquids with strongly hin-

dered crystallization.

The amount of the solid-like fraction, cs , determines the measure of the fluid-to solid transformation.

Due to the definitive role of cs (T ), its description is an important issue of the theory. The two-state ap-

proximation is a minimal model permitting to solve this problem considering the fluid-solid HPF states

without details of the solid-like subsystem. Evidently, this model is satisfactory if just one type of the s-

fluctuons is statistically significant or when variations of the probabilities
{

c∗
i

}

within the glass-transition

temperature range are insignificant, i.e., if the mesoscopic structure of the solid-like fraction does not

vary considerably. At the same time, estimation of the two-state approximation accuracy shows that it

can yield acceptable results in more general cases.

The accuracy of the two-state approximation can be estimated considering the states with transform-

ing s-fluctuons. The assumption on a smooth evolution of the coefficients of equation (7.2) fails if the
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phase transformations, similar to those considered in subsection 7.2, take place within the solid-like frac-

tion. Nevertheless, even in this case, a stepwise jump of cs (T ) is comparatively small because the en-

tropy jump and transformation heat at the solid-solid polymorphic transformation, as a rule, is small,

∆s12 ∼ 10−1 while ∆s f s ∼ 1. Therefore, one can expect that the two-state approximation is acceptable

with accuracy to terms O
(

10−1cs

)

or even better.

Figuratively speaking, in a general case, the glass and solid-like fraction of a liquid is a mosaic com-

posed by the mesoscopic species of size ∼ r0 (figure 3). However, unless until the mutual ordering of

s-fluctuons and the impact of the mosaic details on cs is beyond the scope of interests, the two-state ap-

proximation can be used.

The question whether glass is a non-equilibrated highly viscous liquid or it is a non-equilibrated solid

has rather got a conceptual sense. The thermodynamic continuity of the glass transition permits to believe

that glass is a liquid with very high viscosity and long equilibration time. But, as a matter of fact, the glass

near and below Tg, with cs → 1, is solid with statictically insignificant amount of the fluid-like species.

Nevertheless, it flows, like a polycrystal does, due to the diffusional-viscous flow [84]. Field-emission mi-

croscopy of metallic glasses visualizes their grainy (polycluster) structure with sizes of grains ∼ 102 nm.

The Coble mechanism of the plastic deformation [85, 86] prevails near Tg in such a glass [84]. The grainy

structure of glass is the result of the existence of many centers of solidification within the liquid. There-

fore, the polycluster mosaic structure of glass forms in liquids with different features of molecular forces.

Slow structural relaxation hinders the “reclusterization” processes and the formation of “ideal” glass.

The Fischer cluster topology changes with an increase of the solid-like fraction. Its fractal dimension

D f is less than 3 at cs < cs,1 and it is equal to 3 at cs Ê cs,1 (see subsection 7.3 and appendix C). Thus, at the

point cs = cs,1 = 1− const φ0, the topological transition takes place at which the heterophase correlated

domains transform into homophase ones. It is important that this transition does not presuppose the

Fischer cluster equilibration on scales ξFC > ξ f l . This result denotes a change of the structural relaxation

mode at glass transition considered in [84].

The mesoscopic theory of thermodynamics and dynamics of the glass-forming liquids and glasses is

connected with the microscopic approach based on the consideration of the potential energy landscape

(see [87] and references cited) by the landscape coarsening procedure used while deducing the efficient

Hamiltonian (appendix A). The coefficients of the fluctuon interaction save the memory on the micro-

scopic potential energy landscape.

A. The bounded phase space and efficient mesoscopic Hamiltonian

Below Tm , a crystalline state is the most probable one. It occupies a phase space regionΩcr of the total

phase space Ω. Ω can be presented as the sum of the regions belonging to crystalline and non-crystalline

states,

Ω=Ωcr+Ωncr . (A.1)

Excluding Ωcr, we obtain the bounded phase space belonging to non-crystalline states. The bounded par-

tition function
⌢

Z (P,T ) =
∫

Ωncr

exp
[

−EN

(

x, p
)

β
]

d3N x d3N p (A.2)

determines the free energy of the non-crystalline state

G (P,T ) =−T ln
⌢

Z (P,T ) . (A.3)

In [39], the procedure of derivation of the equation of the free energy in terms of the order parameter

(2.3), G ({c(x)}), (it is called the efficient Hamiltonian in [39]) is expounded. It is based on the map of the

phase space on the functional space of the order parameter {c (x)},

G ({c(x)}) =−T ln

∫

Ωncr

exp
[

−EN

(

x, p
)

β
]
∏

~q,i

δ
(

ci (~q)−ci (~q ; x, p)
)

d3N x d3N p. (A.4)
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Here, ci

(

~q ; x, p
)

are Fourier transforms of the components of the order parameter at a fixed coordinate

(x, p) of the bounded 6N-dimensional phase space Ωncr.

Performing the integration in the functional space, we have

G (P,T ) =−T ln

∫

exp
[

−G
({

c(~q)
})

β
]
∏

~q ,i

dci

(

~q
)

. (A.5)

Selecting in this expression the contribution of long-wavelength components, q → 0, and performing a

polynomial expansion in powers of ci (x) (4.1)–(4.6), we obtain

G (P,T ) = −T ln

∫

exp
[

−Heff ({c})β
]

∏

qr0≪1,i

dci

(

~q
)

+G̃(P,T ),

Heff ({c}) = G (P,T ; {c(x)}) . (A.6)

The term G̃(P,T ) takes into account the spatial fluctuations of the order parameter with qr0 ∼ 1. To in-

clude this summand into consideration is important in the vicinity of critical points. It generates random

fields and has an impact on criticality. It is shown in [10] that at the end point on the phase coexistence

curve, the first order phase transition can take place due to the impact of the random field.

Within the framework of the method of cooperative variables, used while considering the gas-liquid

critical point [88] and systems with the Ising-type Hamiltonian [89], a procedure of accounting of G̃(P,T )

in the vicinity of the critical point is expounded.

B. Solutions of the equations of state

To get solutions of the equations (7.1)–(7.4), (7.14), (7.16), let us consider the solutions of equa-

tions (7.14), (7.16) taking cs (T ) as an unknown function which should be determined later on using

equations (7.2)–(7.4).

If s1 > s2, the “external field” h12 is positive below T12 and negative above T12. The first order phase

transition takes place and discontinuous transformation of the phase 1 into phase 2 takes place at T12 if

cs (T12) g̃12 > 2T12 . (B.1)

Under this condition, the solution similar to the solution (7.11) of equation (7.2) exists but it is unstable.

To get the other two solutions near T12, equation (7.14) can be rewritten taking into account the

relation (7.16) as follows:

−2α∗cs g̃12 +T ln
1+2α∗

1−2α∗ ≈ 2
(

−cs g̃12 +2T
)

α∗+
16

3
T

(

α∗)3 =∆s12 (T −T12) . (B.2)

Here, α∗ = c 1
2
α∗ = 1

2
−c∗1 = c∗2 − 1

2
.

Near T12, as it follows from (B.2), there exist two other stable solutions,

α∗
1,2 =±

p
3

2

(

cs g̃12 −2T

2T

)1/2 (

1−
h12

cs g̃12 −2T

)

(B.3)

at (α∗)2 ≪
(

cs g̃12 −2T
)

T −1.

Equation

cs (T ) g̃12 = 2T (B.4)

determines critical temperatures of the system. Near a critical point, where (α∗)2 Ê
(

cs g̃12 −2T
)

T −1, as

it follows from (B.2)

α∗ ≈
1

2

[

3∆s12 (T −T12)

2T

]1/3

. (B.5)

Turning to the search of self-consistent solutions cs(T ), one can use the expressions found in subsec-

tion 8.1 and (B.3), (B.5). At T > Te , equation (7.5) describes the required solutions cs,1(T ) and cs,2(T ) if we

put correspondingly

c∗1 = c∗1,1 (T ) =
1

2
+α∗

1 (T ) or c∗1 = c∗1,2 (T ) =
1

2
+α∗

2 (T ) . (B.6)

43701-18



Heterophase liquid states

Graphic representation of the solutions c∗1,1 (T ), c∗1,1 (T ) and cs,1(T ), cs,2(T ) is shown in figure 3.

The jump of c∗1 at T = T12 is ∆c∗1 (T12) ∼ 1. Hence, in accordance with (7.5)

∆cs (T12) = cs,2 (T12)−cs,1 (T12) ≈ (s1 − s2)k−1
0 cs (T12) . (B.7)

Here, s1, s2 are entropies of s-fluctuons.

The heat of the phase transition is equal to

∆H = ∆cs (T12) H f s +cs (T12) H12 ≃ cs (T12)

(

s1 − s2

k0
H f s +H12

)

= cs (T12)
s1 − s2

k0

(

H f s +H12

)

, (B.8)

Hs f is the heat of the fluid-solid phase transition and H12 = (s1 − s2)k−1
0 T12 is the heat of 1 ↔ 2 solid-solid

phase transition.

C. Thermodynamics and structure of the Fischer cluster

The contribution of volumetric interactions into the free energy density, as seen from (4.4), is as fol-

lows:

gV (P,T ) = 2π

∫

Φ(r )wss(r )r 2dr ′, r =
∣

∣x − x′∣
∣ , (C.1)

wss(r ) = 〈cs(x)cs (x′)〉 = cSωss(r )+c2
s , (C.2)

where cs is the mean value of cs (x).

Assuming that the s-fluctuons form fractal aggregates of dimension D f with correlation length ξFC,

we look for the correlator wss(r )of the following form

wss(r )= cs

( r0

r

)3−D f

exp(−r /ξFC)+c2
s

[

1−exp(−r /ξFC)
]

, r Ê r0, 1É D f É 3. (C.3)

The condition 1É D f É 3 provides the topological connectivity of the Fischer cluster. It follows from (C.2),

(C.3) that

ωss =
[

( r0

r

)3−D f

−cs

]

exp(−r /ξFC), r Ê r0 . (C.4)

The parameters D f and ξFC should be found minimizing the free energy (4.1).

As the first step, we find the chemical potential µs (P,T ) of the reference system accounting for the

volumetric interactions of non-correlated fluctuons, at ξFC → 0

µs (P,T ) = g 0
s (P,T )+ gss (P,T ) cs +T ln cs +ϕ0cs , (C.5)

ϕ0 = 4π

∫

Φ(r )r 2dr ′ =−4πR2
0ϕ. (C.6)

Hence, the equilibrium equation reads

(1−2cs )g̃s f ,v +T ln
cs

1−cs
= hs f ,v , (C.7)

g̃s f ,v = gs f (P,T )− gss (P,T )/2−ϕ0/2,

hs f ,v = g 0
f (P,T )− g 0

s (P,T )− gss (P,T )/2−ϕ0/2. (C.8)

Thus, with ωss(r ) = 0, the role of volumetric interaction is reduced to a renormalization of coefficients

of the equilibrium equation. If g̃s f ,v < 2Te , cs increases continuously with the temperature decrease (see

subsection 7.1). Just this case is considered hereinafter.
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Let us denote by g 0(cs ) the free energy of s-fluctuon in equilibrium liquid at ωss(r ) = 0, and by

gFC

(

cs ;D f ,ξFC
)

its value at ωss(r ), 0. The difference of these quantities determines the correlation free

energy, gcorr

(

cs ;D f ,ξFC
)

, as function of cs ,

gcorr

(

cs ;D f ,ξFC
)

= gFC

(

cs ;D f ,ξFC
)

− g 0(cs ). (C.9)

It follows from (C.1) that

gcorr(cs ;D f ,ξFC) = 2π

∞
∫

r0

Φ(r )ωss(r )r 2dr ′−cs∆scorrT

=−2πR2
0 c2

s

(

ξFC

R0 +ξFC

)α[

Γ
(

α, y
) cs,CD

cs
−Γ

(

2, y
)

(

ξFC

R0 +ξFC

)2−α]

ϕ−cs∆scorrT

=
1

2
c2

s

(

ξFC

R0 +ξFC

)α[

Γ
(

α, y
) cs,CD

cs
−Γ

(

2, y
)

(

ξFC

R0 +ξFC

)2−α]

ϕ0 −cs∆scorrT, (C.10)

∆scorr is the entropy difference per s-fluctuon due to the correlation,

∆scorr = −4πN−1
ξ

ξ
∫

r0

(

{

cs(r ) lncs (r )+ [1−cs (r )] ln [1−cs (r )]
}

− [cs lncs + (1−cs ) ln(1−cs )]
)

r 2dr,

cs(r ) = r D f −3, Nξ = 4πcsξ
3
FC/3r−3

0 =
4π

3
(ξFC/r0)D f , (C.11)

Nξ is the number of s-fluctuons in the correlated part of the fractal; Γ
(

α, y
)

is an incomplete gamma-

function, α= D f −1 > 0, y = r0/ξ f l ,

cs,CD =
(

r0

ξ f l

)3−D f

(C.12)

is the mean fraction of s-fluctuons within the correlated domain.

Integration in (C.11) at c s ≪ 1 gives

∆scorr =−
3−D f

D f
− ln

3

D f
. (C.13)

The correlation length ξFC can be estimated as follows. Noting, that in a fractal of dimension D f and

radius ξFC

cs(ξ) ≈
(

ξ

r0

)D f −3

, (C.14)

we have

ξFC
(

cs ,D f

)

≈ r0 (cs )
1

D f −3 . (C.15)

The fractal dimension D f is determined by relation (C.12) if equilibrium value of cs,CD is known. To find

it, let us consider the free energy of s-fluctuon within CD as a function of cs,CD and minimize it. Denoting

it by gCD (cs ,CD ) ≡ gCD

(

cs ;D f ,ξFC
)

, we have from (C.9)

gCD(cs,CD) = g 0(cs,CD)+ gcorr(cs,CD;D f ,ξFC). (C.16)

Minimum of gCD(cs,CD) is attained at the value cs,CD being the solution of the equation

∂gCD(cs,CD)/∂cs,CD = 0 (C.17)

under the condition

∂2gs,CD(cs,CD)/∂c2
s,CD > 0. (C.18)
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Noting that g 0(cs,CD) has a minimum at cs,CD = cs and expanding (C.16) in series on degrees of δcs =
cs,CD−cs , we have

gCD(cs,CD) =
1

2

∂2g 0(cs)

∂c2
s

δc2
s −

1

2
Γ

(

α, y
)

(

ξFC

R0 +ξFC

)α
(

c2
s +2csδcs +δc2

s

)

ϕ0

− Γ
(

2, y
)

(

ξFC

R0 +ξFC

)2

ϕ0c2
s . (C.19)

It follows from equation (C.17)–(C.19) that

δcs =
I (D f ,ξ)cs

∂2g 0 (cs)/∂c2
s − I (D f ,ξ)

, (C.20)

where

I (D,ξ) =
1

2
Γ

(

α, y
)

(

ξFC

R0 +ξFC

)α

ϕ0 . (C.21)

Thus,

cs,CD =
[

1+
I (D f ,ξFC)

∂2g 0 (cs )/∂c2
s − I (D f ,ξFC)

]

cs . (C.22)

It is seen that δcs ∼φ0 and cs,CD Ê c s due to the condition (C.18).

Equations (C.12) and (C.22) determine the fractal dimension. Equation (C.12) gives

D f = 3−
(

ln y
)−1

ln cs,CD , y = r0/ξ f l . (C.23)

Since 1 É D f É 3,

2 Ê
(

ln y
)−1

lncs,CD Ê 0. (C.24)

As it follows from (C.22) and (C.24), the fractal dimension changes within the range 1 É D f É 3 when cs

changes within the range

cs,0 É cs É cs,1 , (C.25)

where

cs,0 = y2

[

1+
2I (D f ,ξ)

∂2g 0 (cs )/∂c2
s −2I (D f ,ξ)

]−1

> 0,

cs,1 =
[

1+
2I (D f ,ξ)

∂2g 0 (cs )/∂c2
s −2I (D f ,ξ)

]−1

≈ 4cs,0 < 1. (C.26)

As it follows from (C.26), cs,0 < 0.16 with y = r0/ξ f l ≈ 0.4, i.e., cs,0 is nearly equal to the percolation

threshold of the solid-like fraction. The upper bound of the cs -range in which the Fischer cluster exists,

cs,1, decreases ∼ φ0 with an increase of the s-fluctuons gravitation strength φ0. It is worth to note that

D f → 3 and ξFC →∞ when cs approaches cs,1 from below. It means that with cs Ê cs,1 < 1, the solid-like

fraction consists of the connected 3-dimensional solid-like clusters of size r > ξ f l .
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A.S. Bakai

Гетерофазнi стани рiдини: термодинамiка, структура,

динамiка

О.С. Бакай

ННЦ Харкiвський фiзико-технiчний iнститут, 61108 Харкiв, Україна

Представлено огляд теоретичних результатiв та експериментальних даних щодо термодинамiки, структу-

ри i динамiки гетерофазних склоутворювальних рiдин. Теоретичний пiдхiд базується на моделi мезоско-

пiчних гетерофазних флуктуацiй, яка була розвинута в рамках пiдходу обмеженої статистичної функцiї.

Розглянуто явище кластер Фiшера, перехiд у фазу скла, перетворення рiдина-рiдина, параметричну фа-

зову дiаграму, колективну динамiку i фрагiльнiсть склоутворювальних рiдин.

Ключовi слова: склоутворювальнi рiдини, перехiд у фазу скла, кластер Фiшера, полiморфiзм,

параметрична фазова дiаграма
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