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We investigate the electric double layer formed between charged walls of a slit-like pore and a solvent prim-

itive model (SPM) for electrolyte solution. The recently developed version of the weighted density functional

approach for electrostatic interparticle interaction is applied to the study of the density profiles, adsorption

and selectivity of adsorption of ions and solvent species. Our principal focus, however, is in the dependence of

differential capacitance on the applied voltage, on the electrode and on the pore width. We discuss the prop-

erties of the model with respect to the behavior of a primitive model, i.e., in the absence of a hard-sphere

solvent. We observed that the differential capacitance of the SPM on the applied electrostatic potential has the

camel-like shape unless the ion fraction is high. Moreover, it is documented that the dependence of differential

capacitance of the SPM on the pore width is oscillatory, which is in close similarity to the primitive model.

Key words: solvent primitive model, density functional, electrolyte solutions, adsorption, differential

capacitance
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1. Introduction

The most frequently applied microscopic modelling for the electric double layer (EDL) formed at an

interface between a charged solid surface involves the primitive model (PM) of the fluid ionic subsystem.

Namely, it is assumed that ions are charged hard spheres immersed into a dielectric continuum having

a certain dielectric constant. This very simplified model, compared to real systems in laboratory, has

been used for the development and testing of theoretical approaches, as well as to explain experimental

observations.

In the theoretical approaches, the dielectric discontinuity at the electrode-electrolyte interface is usu-

ally neglected. Another simplification commonly used in the problem of adsorption of PM electrolyte

solutions into slit-like pores is to assume that the dielectric constant of the bulk fluid and inside a pore

is the same. These comments just illustrate how far the present theoretical modelling is from an entirely

satisfactory description of the EDL problems.

One step forward can be made by considering the solvent primitive model (SPM) rather than the PM

in the EDL problems. The essence of the SPM is to take into account the effects of excluded volume, due

to the presence of solvent molecules (most frequently considered as hard spheres) that are neglected in

the PM. First attempts to investigate the SPM at a charged surface have been undertaken in references

[1, 2]. More comprehensive efforts to explore the properties of the SPM at charged surfaces have been

carried out using a density functional theory [3, 4] and Monte Carlo computer simulations [5, 6]. For
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the purposes of our study, it is worth mentioning that Tang et al. [3] used Tarazona’s weighted density

method to describe the hard sphere interaction, while the electrostatic contribution to the free energy

functional was modelled assuming that the residual part of the direct correlation functions of nonuni-

form fluid is the same as in a bulk ionic system. On the other hand, in their recent investigation, Oleksy

and Hansen [4] used a version of the density functional approach in which the electrostatic correlation

contribution was neglected. In the same context, quite recently the SPM has been used to describe certain

aspects of partitioning of electrolyte solutions through semipermeable membranes [7–9]. The importance

of such sophistication of modelling, in spite of intrinsic impossibility to describe dielectric properties of

the solvent medium, has been documented.

The present state of knowledge regarding the properties of the SPM electric double layer is still incom-

plete, in particular, concerning the problem of adsorption of electrolyte solutions in the slit-like pores,

where an overlap of structures formed at two pore walls can cause some peculiarities of the density pro-

files, adsorption, dependence of the accumulated charge on the applied voltage and differential capaci-

tance. The overlap of double layers formed at each wall has been involved in the interpretation of recent

experimental observations of the dependence of the capacitance of an electrolyte solution on the pore

width [10, 11], exhibiting a maximum for a particular very narrow pore of the width slightly larger than

the value of the diameter of ions. Computer simulations performed for primitive type models, though

with sophistication of the internal structure of ions in some cases, have confirmed the experimental re-

sults and provided a certain explanation of the peculiarities of the behavior of the differential capacitance

in narrow pores [12–16].

The study of the effect of the differential capacitance of the SPM electric double layer on the value

of electrostatic potential, on the pore walls and on the pore width is the principal issue of the present

communication. To investigate this model, we use the recent successful weighted density functional ap-

proach proposed for a restricted primitive model of electrolyte solutions in contact with charged solid

surface [17, 18]. Here, this approach is extended to a mixture of positive and negative ions and hard

spheres confined in slit-like pores. In doing this, we use the recent developments dealing with the study

of a similar problem, although at the level of the PM for electrolyte solutions in slit-like pores [19–22].

2. The model and theory

The SPM under consideration consists of three species, i.e., positive and negative ions (+,−) and sol-

vent molecules mimicked as hard spheres (hs). For the sake of simplicity, in this work we assume that

the diameters of all species are the same, σ+ =σ− =σhs =σ. The valencies of cations and anions are the

same Z (+) = |Z (−)| = Z . Moreover, we restrict to univalent ions in what follows, i.e., Z = 1. The interac-

tions between species are as follows:

u(αγ)(r ) =

{

∞, r <σ,
e2 Z (α) Z (γ)

4πǫǫ0

1
r

, r >σ,
(1)

where α, γ=+,−,hs; e denotes the magnitude of elementary charge, ǫ is the relative permittivity and ǫ0

is the permittivity of the vacuum. Also Z (hs) = 0, thus the solvent is just the fluid of hard spheres.

The mixture of three components is confined in a slit-like pore of the width H . The interaction of ions

with the pore walls is described by the potential v (α)(z) = v ′(α)(z) = v ′(α)(H − z) (α=+,−),

v ′(α)(z)= vhw(z)+ v (α)
el

(z), (2)

where vhw(z) is the hard-wall potential

vhw(z)=

{

∞, for z <σ/2 and z > H −σ/2,

0, otherwise,
(3)

and

βv (α)
el

(z)=−2πlBQ Z (α)z (4)

is the Coulomb potential. In the above β = 1/kT , Qe is the surface charge density of the wall, lB =

e2/(4πkT ǫǫ0) denotes the Bjerrum length. Energetic aspects of interactions between ions for the model
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in hand are given in terms of reduced temperature T ∗
el
=σ/lB. We assume that the interaction of solvent

species with the pore walls, v (hs)(z)= v ′(hs)(z)= v ′(hs)(H − z), is given in the form of Yukawa potential,

v ′(hs)(z) =

{

∞, for z <σ/2 and z > H −σ/2,

εgs exp[−λgs(z −σ/2)]/z, otherwise.
(5)

The confined mixture is in equilibriumwith the bulkmixture composed of the same components. The

bulk dimensionless densities of the species α=+,−,hs are ρ∗
α = ρασ

3 (ρ∗
ion = ρ∗

++ρ∗
−).

We use the density functional approach, described more in detail in our recent works, see e.g., ref-

erences [19, 20, 23]. In essence, we construct a thermodynamic potential for the system and then the

equilibrium density profiles are obtained by minimizing the thermodynamic potential,

Ω= F +
∑

α=+,−,hs

∫

dr

[

v (α)(z)ρ(α)(z)−µα

]

+

∫

drq(z)Ψ(z). (6)

In the above ρ(α)(z) and µα are the local density and the chemical potential of the species α, respectively,

F is the free energy functional and q(z) is the charge density,

q(z)/e =
∑

α=+,−

Z (α)ρ(α)(z). (7)

The electrostaticΨ(z) satisfies the Poisson equation,

∇
2
Ψ(z) =−

4π

ǫǫ0
q(z). (8)

The solution of differential equation (8) for the slit-pore geometry with walls of equal charge is perfomed

similarly to reference [24], where the model is different, however. Moreover, the method of solving the

Poisson equation for a set of interconnected slit-like pores with permeable walls was explained and anal-

ysed in every detail in the recent work by Kovacs et al. [25]. For the model of a single slit defined by

equations (2)–(5) in the present study, the solution requires the choice of the boundary condition, namely

of the value of the electrostatic potential at a wall, V0 =Ψ(z = 0) =Ψ(z = H).

From the electro-neutrality condition of the system it follows that

Q +

∫

dzq(z)= 0, (9)

whereQe is the surface charge density of the wall as we have already mentioned above.

The free energy of the system, F , is the sum of the ideal, Fid, hard sphere, Fhs and residual electrostatic

excess contribution, Fel, arising from the coupling between electrostatic and hard-sphere interactions.

The ideal part of the free energy, Fid, is known exactly,

Fid/kT =
∑

α=a,c ,hs

∫

drρ(α)(z)
[

ln
(

ρ(α)(z)
)

−1
]

. (10)

The excess free energy due to hard sphere interactions between the species +,−, and hs, Fhs, is taken

from the fundamental measure theory [26–30]. The details of the White Bear version of the fundamen-

tal measure theory are given in references [26–28] Finally, the residual electrostatic contribution Fel is

described by using the so-called “weighted correlation approach”, WCA-k2 approximation, developed for

nonuniform RPM ionic fluids by Wang et al. [17, 18] based on the analytic solution of the mean spherical

approximation, cf. also reference [19]. The expressions used in the present study are given by equa-

tions (11)–(14) of our recent work [19]. They are omitted to avoid the unnecessary repetition.

At equilibrium, the density profiles minimize the thermodynamic potential Ω, i.e.,

δΩ

δρ(α)(r)
= 0, α=+,−,hs. (11)

The resulting density profile equations can be straightforwardly derived by modifying those given in

references [4, 17–19]

As we have mentioned above, the adsorption system is in equilibriumwith the bulk SPMmixture, this

equilibrium being determined by the equality of chemical potentials of each species in the bulk phase and

in the pore. The bulk densities of ionic species satisfy the electro-neutrality condition Z (+)ρ++Z (−)ρ− = 0.
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3. Results

Let us now specify a set of parameters of the model we study below. As already mentioned in the in-

troduction, we restrict our attention to the model of equal diameters of all the species involved. Actually,

we performed calculations for the model with a larger diameter of solvent species compared to the diam-

eter of ions, but qualitatively the trends observed are very similar to those discussed below. The distance

from the wall and pore width are given in reduced units, z∗ = z/σ and H∗ = H/σ, respectively. Also,

the electrostatic potential at the wall is considered in reduced units, V ∗ = eV0/kT . Another introductory

comment concerns the interaction between solvent hard sphere species and pore walls. It has been writ-

ten in the form of Yukawa interaction. However, in the present study we just consider weakly adsorbing

walls, kT /εgs = 1 and λgs = 3. This interaction has been introduced having in mind a possible extension

of the SPM model in order to take into account the attractive interaction between solute particles in the

spirit of works by Oleksy and Hansen [4, 31–33]. On the other hand, our interest is in a dense fluid with

high fraction of solvent species and low ion content. Thus, in the majority of numerical calculations, the

solvent bulk density is taken to be ρ∗
hs

= 0.5.

3.1. Density profiles and adsorption

We begin the discussion by considering the microscopic structure and the resulting thermodynamic

properties. The evolution of the density profile of a hard sphere solvent of the SPM with an increasing

electrostatic potential on the wall is shown in figure 1. It can be seen that the contact value of the pro-

file ρhs(z) decreases with an increasing V ∗, showing that hard spheres are expelled from the vicinity of

the wall. The density of the second layer at z∗ = 2.5 increases with an increasing V ∗, reaches a maxi-

mum value at V ∗ = 30.8 and then slightly decreases with a further increase of the electrostatic potential.

This proves that hard sphere solvent particles are again slightly expelled from the second layer at the

expense of a weakly increasing density closer to the pore center. These trends are due to accumulation

and simultaneous separation of ion species close to the charged surface of the pore, figure 2.

The density of counter-ions substantially increases close to the pore walls while the density of co-

ions decreases at the contact and in the pore walls vicinity with an increasing V ∗. However, structural

changes also occur in the second layer around z∗ = 2.5. In this layer, the co-ion density increases while

opposite trends are seen for the counter-ions. It seems, however, that the presence of hard sphere solvent
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Figure 1. (Color online) Evolution of the density profiles of hard sphere species, ρhs(z), of the SPM, with

the applied electrostatic potential on the wall, V ∗, at bulk density, ρ∗
hs

= 0.5, ρ∗
ion

= 0.1, in the slit-like

pore of the width H∗ = 8. The energetic parameters of the SPM are T∗
el
= 0.15, kT /εgs = 1.0 here and in

all the subsequent figures.
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Figure 2. (Color online) Evolution of the density profiles of each ion species, ρ+,−(z), of the SPM, with the

electrostatic potential applied to the wall, V ∗. The system is the same as in figure 1.

species in the pore center promotes the separation of ions of the opposite charge close to the wall, thus

playing a role of supporting the external field effects.

The trends of behavior of the average density of species in the pore with an increasing electrostatic

potential are illustrated in figure 3. Excess adsorption of the species is defined as common:

Aex
α =

∫

dz
[

ρα(z)−ρα

]

(12)

and the average density of the species is as follows:

〈ρα〉H =
1

H

∫

dzρα(z). (13)

From the panel (a) of this figure we learn that the excess adsorption of a hard sphere solvent substantially

decreases with an increasing electrostatic potential and is negative in almost entire range of V ∗. In all

three cases considered, we kept constant the total density of the bulk solution at ρhs +ρion = 0.6 and

changed its composition by decreasing the ion density in the systems 1, 2, and 3. The curves behave

differently at low, intermediate and high V ∗. In a narrow region of rather small V ∗ and at high values of

V ∗, the lowest excess adsorption is observed for the system 3 that has the lowest fraction of ions in the

23603-5



O. Pizio, S. Sokołowski

0 10 20 30 40 50

V
*

-1.5

-1

-0.5

0

A
ex

hs

a

1

2

3

0 10 20 30 40 50

V
*

0.35

0.4

0.45

0.5

0.55

<
ρ* hs

>
H

b

1

3

2

0 10 20 30 40 50

V
*

0

0.01

0.02

0.03

0.04

0.05

<
ρ* co

-i
on

s>
H

c

1

2

3

ρ*

ion
 = 0.1

0 10 20 30 40 50

V
*

0

0.1

0.2

0.3

<
ρ* co

un
te

r-
io

ns
>

H

d 1

2

3

ρ*

ion
 = 0.1

Figure 3. (Color online) Excess adsorption and average density of hard sphere species of the SPM in the

slit like pore H∗ = 8, panels (a) and (b), respectively. Average density of co-ions [panel (c)] and of counter-

ions [panel (d)] in this pore. The nomenclature of systems is the following: 1— ρ∗
hs

= 0.5, ρ∗
ion

= 0.1; 2—

ρ∗
hs

= 0.55, ρ∗
ion

= 0.05; 3— ρ∗
hs

= 0.59, ρ∗
ion

= 0.01.

bulk phase. The average density of hard sphere species [panel (b)] decreases with an increasing V ∗, its

dependence on V ∗ being non-monotonous, however.

This behavior of the excess adsorption and of the average density of solvent species is due to the

changes of the average density (and distribution of ions) in the pore under the effect of external electric

field. In particular, the behavior of the average density of co-ions [panel (c)] with an increasingV ∗ having

a maximum in the interval between 20 and 25 can be traced back to the corresponding density profiles

showing how the co-ions are expelled from the vicinity of the wall and how they form a relatively dense

second layer. Again, changes of the structure discussed in terms of the curves in figure 2 are manifest

due to the different rate of growth at low and high V ∗ of the average density of counter-ions [panel (d)

of figure 3]. Most important, changes of the density of ion species and changes of distribution of solvent

species upon increasing the electrostatic potential cause the changes of the dependence of the charge in

the pore and consequently the changes in the shape of the differential capacitance.

3.2. Differential capacitance

The differential capacitance,

CD =

(

∂Q

∂V0

)

H ,T,µα

, (14)

23603-6



Solvent primitive double layer model

0 10 20 30 40 50

V
*

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
*

D ρ*

ion
 = 0.1

1 2
3

a

0 10 20 30 40 50

V
*

0.03

0.04

0.05

0.06

C
*

D

ρ*

hs
 = 0.5

ρ*

hs
 = 0.4

ρ*

hs
 = 0.3

ρ*

ion
 = 0.1

ρ*

hs
 = 0

b

0 10 20 30 40 50

V
*

0.015

0.03

0.045

0.06

C
*

D

ρ*

hs
 = 0.5

ρ*

ion
 = 0.1

ρ*

ion
 = 0.01

ρ*

ion
 = 0.05

c

Figure 4. (Color online) The dependences of the differential capacitance, C∗
D
, on the applied voltage, V ∗

at a different bulk fluid density and a different composition shown in each panel. The nomenclature of

systems 1, 2, and 3 [panel (a)] is given in the text.

is obtained by taking a derivative of the charge by electrostatic potential on the wall and is plotted as

a function of electrostatic potential in figure 4. In all the cases studied we observe the camel-like shape

of the differential capacitance. Considering the fixed total density as in figure 3, we see now that the

highest maximum value of the capacitance is reached when the ion fraction is the highest, namely for the

system 1 compared to 2 and 3. However, the value of the maximum is less sensitive to the ion fraction

compared to the trough at a very small V ∗ [panel (a) of figure 4]. At a very high V ∗ the curves for three

systems tend to almost equal value. If we compare the system 1 and its PM counterpart at the same ion

density (ρ∗
ion

= 0.1), then it appears that the differential capacitance curves behave qualitatively similarly.

However, in the SPM case, the C∗
D
maximum is much higher compared to PM. Thus, it seems that the

presence of solvent species enhances the separation of ions of the opposite charge by “putting” them

slightly closer to the pore walls, where the electric field makes its job. In order to obtain higher values

of the differential capacitance at maximum, one can either take a denser solvent (at a fixed ion density)

like it is shown in the panel (b) of figure 4 or may increase the ion fraction at a fixed solvent density, like

in the panel (c) of figure 4. To summarize, the presence of solvent species in the SPM permits to alter the

values of differential capacitance in different regions of V ∗, in comparison to PM. However, the overall

shape remains qualitatively similar unless the ion fraction becomes high (in real systems one needs in

fact to take into account the solubility limit).
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Figure 5. (Color online) The dependences of the differential capacitance, C∗
D
, on the pore width, H∗ at a

different voltage, V ∗. Panels (a) and (b) show a comparison of the results for the SPM and PM at the same

conditions. Panel (c) contains the results for C∗
D

(H∗) solely for the SPM at a different fixed voltage V ∗.

The final issue we would like to discuss is the dependence of the differential capacitance on the pore

width. This problem for a restricted primitive model of electrolyte solutions confined in slit-like pores

was quite comprehensively discussed in the recent work from this laboratory [19]. In the panel (a) of

figure 5 we compare the SPM and PM curves for C∗
D

(H) at rather low values of the electrostatic potential,

namely at V ∗ = 1 and V ∗ = 3. The curves for two models are of similar shape. However, the solvent

affects the values for C∗
D
, especially in narrow pores. The first maximum of C∗

D
can be either supressed

(at V ∗ = 1) or enhanced (at V ∗ = 3) due to the solvent presence [figure 5 (a)]. The curves for SPM and PM

eventually tend to zero if H∗ tends to its minimum value.

At higher values of V ∗, V ∗ = 5 and V ∗ = 10 [panel (b) of figure 5], the qualitative features of the

shape of functions in question are again similar for SPM and PM. Nevertheless, in the SPM case, we

observe more pronounced oscillations of the differential capacitance on the pore width. In other words,

the phase of overlap of the density profiles of ions formed at each wall (discussed in detail in [19])

is altered, due to the presence of solvent species. In close similarity to the PM system, the shape of the

dependence ofC∗
D

(H∗) in the present SPM case alters depending on the value of the electrostatic potential

V ∗. The differential capacitance can either grow or drop in the region of very narrow pores depending

on the choice of the voltage. Still, the oscillatory behavior (showing well pronounced and less pronounced

maxima and several troughs) is observed for the confined SPM.

It is interesting to mention that Oleksy and Hansen observed the oscillatory curve for the solvation
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force between charged plates with the SPM-like solution in between. However, their calculations were

performed under the condition of a constant charge on the plates rather than at a constant potential

carried out in the present study. It seems that to establish the relation between the oscillatory curve for

the differential capacitance and the dependence of the solvation force on the charged plates separation

is of utmost importance in future research. In addition, we would like to emphasize that the model of

this study permits several extensions. One of the promising extensions is the possibility to improve the

model by introducing the concepts of chemical association in order to deal with the adsorption of either

chain molecules or the network-forming solvent. Theoretical background is rather straightforward to be

developed along the lines presented in e.g., [34].
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Примiтивна модель розчинника подвiйного електричного

шару в щiлиноподiбнiй порi: мiкроскопiчна структура,

адсорбцiя та електроємнiсть з використанням методу

функцiоналу густини

O. Пiзiо1, С. Соколовскi2

1 Iнститут хiмiї, Нацiональний автономний унiверситет м. Мехiко, Мехiко, Мексика

2 Вiддiл моделювання фiзико-хiмiчних процесiв, Унiверситет Марiї Кюрi-Склодовської, Люблiн, Польща

Ми дослiджуємо електричний подвiйний шар, сформований мiж двома зарядженими стiнками щiлинопо-

дiбної пори, i примiтивну модель розчинника для розчину електролiту. Недавно розвинута версiя методу

зваженого функцiоналу густини для електростатичної мiжчастинкової взаємодiї застосовується до вивче-

ння профiлiв густини, адсорбцiї i селективностi адсорбованих iонiв i компонентiв розчинника. Ми зверта-

ємо основну нашу увагу, проте, на залежнiсть диференцiйної електроємностi вiд прикладеної напруги на

електродах i в порi. Ми обговорюємо властивостi моделi по вiдношенню до поведiнки примiтивної моде-

лi, а саме, у вiдсутностi твердокулькового розчинника. Ми спостерегли, що диференцiйна електроємнiсть

примiтивної моделi розчинника при прикладеному електростатичному потенцiалi має “двогорбову” фор-

му, незважаючи на високу концентрацiю iонiв. Крiм того, знайдено, осцилюючу залежнiсть диференцiй-

ної ємностi примiтивної моделi розчинника вiд ширини пори, що є дуже подiбно до примiтивної моделi.

Ключовi слова: примiтивна модель розчинника, функцiонал густини, розчини електролiтiв, адсорбцiя,

диференцiйна електроємнiсть
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